


E2 - 9838

P.Raychaudhuri

INCLUSIVE SCATTERING
AT LAZGE TRANSVERSE MOMENTA

IN MASSIVE QUANTUM ELECTRODYNAMICS



1. INTRODUCTION

There is great interest in the study of hadron-hadron
inclusive scattering at large transverse momentum P
because of their possible relation to basic processes at
small distances. The interest has arisen from the dis-
covery at the CERN, ISR that the production of particles
with large momenta transverse to the beam direction is
larger than expected. Berman, Bjorken and Kogut/!/ |
Blankenbecier, Bridsky and Gunion/2/ consider the basic
process to be an interaction of fundamental particles
(partons) within the hadrons and these parton pictures
predict the power law behaviour of the form
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where vs and 6., are the centre of mass energy and
scattering angle. The data analysis suggests that for
Vs> 5 GeVand p; > 0.5 GeV the spectrum for pp +7° + X

has a power law behaviour rather than falling exponen-
tially. NAL experiment data’3/ for 0.5<pp< 4 GeV
and for incident proton momentum between 50 and 4000 Gel
is well fitted by
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where N = 5 mb/GeV.2 Again asy's increase for fixed
r the spectrum rises. In addition, the large Py inclusive
cross section somewhat increases with energy in violation
of Feynman scaling. The presemt status of experimental
data/% for hadronic inclusive reactions is shownin fig. 1.
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Fig. 1. The local value of n at different values of X
for proton.

The experimental discovery of power law behaviour in
inclusive hadron scattering at large transverse momen-
tum leads to two basic theoretical attitudes. One is the
parton picture /5/  where high p; particles are due to
parton-parton wide angle scattering, sucha model predicts
n=4 the scattered partons are quarks and higher value
of n if they are diguarks, mesons, etc. Again from the
point of view o0f quantuin field theory the experimental
power law behaviour in inclusive reactions is quite inte-
resting, because Feynman Graphs consist of integrals of
rational functions and one would expect from perturbation
theory a power law behaviour in addition to lns factors.
Efremov 76/ considered large py onclusive processes
in field theory with scalar or pseudoscalar Yukawa coup-
ling. By summing logarithmic terms of all diagrams,
assuming finite charge renormalization he found

4



aa(O) +a b(0)-2

d g 1 1 )
g g . —_ y (1.3)
d'i 2.n X
Py T
where

n=2+e (g2)+2e(e2) = k(a, D)kl g)-11, ¢ ¢

are anomalous dimensions, ¢, , «, are the leadmg
Regge smgularltles of elastlc amplitude, and k(«, ,g,,) ,
k(a, ,go ) are some functlons of invariant charge

In the same theory Roth’?/ considered the process

and found by summation of leading logarithmic diagrams:

3 P
ede LTy ¢,
dﬂp p,‘ om s

;l VS
where 2
1, - 5g
(& == zIMnjil- —Zfs].
s 5 16 =

Roth has found a strong relation to deep inelastic
scattering and light cone physics with the inclusive had-
ronic interactions in pseudoscalar Yukawa. This feature
has already occured in many models. In this model there
appeared an explicit dependence on the electroproduction
structure function W, . In all cases he considered the
spectrum falls for large fixed P, and increasing energy.

In the present paper large p, inclusive processes,
eg., p+p » p+X, will be studied in renormalizable
field theory of a vector field V,l of mass # interacting
with a spin 1/2 field of mass m .

It appears, however, that the interest to this mecha-
nism 1is connected with the well known fact that in the
diffractive region s >»>t it leads to the nonscaling be-
haviour ¢~ constant in contrast with scalar gluon mec-
hanism o ~1/s.

The low order Feynman diagrams considered by us
give theq following result for large s

d’o 1 2
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i.e., the same power law behaviour as scalar gluon-
exchange. This power law hopes to work in the region
of small XT as it seen from experimental data (Fig. I).
We have not studied the relation between deep inelas-
tic scattering and light cone method with inclusive scat-
tering at large PT - We hope to study this in a future paper.

II. KINEMATICS AND LOW ORDER DIAGRAMS

We will consider the inclusive processes, where all
scalar products are large

Z2ab=s

2bpl =sx,

2apl =syl

and s oo

We consider the limit s-» o , x; , vy fxxed which
corresponds to large transverse momentum p 17 8
and to cot2(6/2)_x,/y|,where ¢ is the angle at whlch P
emerges in the centre of mass frame. We should note that
"1' and ¥, are kinematically bounded by P'2r Ss<xp,

< l—pz/ s

We are interested in calculating the Lorentz invariant
inclugive differential cross section E d3¢/d $ inaregion
where the transverse momentum is large. There are
two basic ways in which this can e done. One way to
calculate is to evaluate the contribution due to all exciu-
sive channels and then to sum all them wup (fig. 2).

But there is also another way to calculate the spect-
rum which points out an interesting symmetry and has
been made plausible/“/ that the inclusive differential
cross section for the process a+b “p; + anything is related



to discontinuity in M2=(a+b—pl)2=S(1—xl—yl)for the forward
three-to-three amplitude as 1s shown in fig. 2.

We shall calculate all the diagrams necessary to
determine the structure of leading diagrams. Once the
structure of the behaviour is realised we shall assume
that this structure will appear in all orders of perturba-
tion theory.
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Fig. 2. The inclusive spectrum either as a sum over
exclusive processes or as the discontinuty in the forward
three to three amplitude.

For the theory which we have considered to calculate
p+p-+p+X the following diagrams in the lowest order
Feynman diagrams are possible.

There will be four diagrams similar to (i)-(iv) and
those can be obtained from 4 (i)-(iv) interchanging P, and
a byp; and b.

We study the inclusive differential cross section
as a function of s,x,,y,
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where s, , S} , p are the spins of the particles carrying

momentum a, respectively.
First we mll ca'lculate fig. 3.
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Fig. 3. Wigth order graphs for p(a)+p(b)»p(p )+X at
large p,. .
From fig. 3(i)-(iv)
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We can write (2.1) as
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From equation (2.2) one has
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We shall neglect mass terms in the numerator because
these do not contribute to the leading term. Equation (2.5)
can be written as
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where
2 2
s, :(b—pg+c), 52=p|+p3—b, Gl =(b——-p3+c) —-m",
22
G, =(a—-p2+c, - .

For the delta function and propagator we shall use
representation, e.g.,

ia I‘ (a--|b2)2— u 2+id

o —ifiglelem®)
B+ ‘{ c d'B:l ).

To make computation easier before calculating spur we
integrate over ¢, then we will have
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Similarly there will be seven other terms interchanging

Bl ’Bz’ﬁ;} by -Bl’ _62’ "63 .

After inspection from the spur calculation we see
that the maximum contribution will come from the ex-
pression evaluated from the spur calculation of (2.7)

512[(pl p2)(apl)2(bpl +bp2 —-ab)(papl—aps )+(bpl—ab)(p3pl+%p2—ap§+

+BP, (bpl +bp2—ab) +(p 40, Xbp, +bp, —ab) +(bp Xp,p, +P P, —ap)+

+ (bp )PP, + PPy 'aps)‘—(Plpz)z(ab Xg py+ppan)-

2.10
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+(ap )z(bp2)(p,ip +PPy— H]
and this expression will give us
E l—jsl- = constant. : (2.11)

But we shall show constant terms are cancelled. We will
assume s>m2 | s>, % and first scaling (8« c3.85)=
=A(B papa B, Jand letting A+0, we have from (2.9) after
applymg the Mellin transform

4 1 2 2
1287 s 2 21e2a3 a
—(2_”)3——"1 Y1Cof ‘Eﬂqﬂ?‘d“ldﬂldazdﬁzdasdﬁx(xl"l"x—:x

& +ioo ., j
i 0T _dicisk) (2.12)
2 51 [(j+1) sinnj(j+4)

—im2 (B + By + By) + a fmP ~iC) +a +a2)(u2—iG)(8
(a |+ﬁl+a3+63— 1)

1



2

3
where X,=a +f3 +as+f3, - Ky’ Ky =agtfBy +8 5 -

Again scaling (ay, By,aq.83)= A (ay, Bg.03.85)and letting
again ,\I » 0, we have
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Scaling again (u /i )= \Z(A ,‘) and letting again )‘2’0

we have
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12



F._BiBabs NP agtBy)  xBaBs (2.15)
(a,+BNagfBy (al’rBI) (ag+ By)

We see that the constant terms which expected by leading
singularity for E d’o/dp; cancell in massive elect-
rodynamics when we add all the diagrams of fig. 3. This is
due to gauge invariance and renormalizability of the
theory.

Now we have to consider the next leading terms from
the diagrams 3(i)-(iv). We have seen the next maximum
contribution j-.—4 is also cancelled. The nextterm which
will contribute to the inclusive differential cross section
is found to be of the form

3

d'o 1 2s

E « ——f e f(x,,y, ). (2.16)
FENS sz "z vh 5

Similarly, we have calculated E -— for the diag-

d? P
rams 4(iv)-(iv) and it is found to be of the form

f’—"« _—rn_f(x by, (2.17)
d p s2 ,u2

As we have expected, the interchange p, by b or a will
give less contribution. Similarly by interchanging a by
b in fig. 4(i)-(iv) we obtain the same result but in place
of x; we will have y,, etc.

The analogous calculations for ere setreTie veTin
quantum electrodynamlcs were done by Budnev et al. /97 ,
Baier and Fadin 719/ Kuraev and Lipatov /!in eight order
and the total cross sectlon is found to be ¢ ~ fnds.

S 0C

II1. DISCUSSIONS

From our calculations, we see that the dxfferential
cross section for the 1ncluswe scattering p+p - ( 1+ X
would behave as

d%s

El d.}Pl

:l—4f(xl ,yl)-
pT
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Fig. 4. Eigth order graphs by interchange b “p, -

This result cannot explain the experimental data which
shows in the whole X1 region more quark decreasing
depeudence on p for the differential cross section in
inclusive scattering at large transverse momenta (fig. 1).
Only the region x;<<1 give the hope that such sort of
mechanism would work there.

We see from our calculation that we have maximum
contributions from fig. 3 with the parameters 8, , 89 ,
Bg s a; ,ay ,ay are small. This strongly suggests that
large py inclusive scattering samples a region where
every particle is turned somehow close to every other
particle.
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So, the vector gluon exchange results for the high
p; inclusive process in the same behaviour as scalar
gluon in spite of special ”nondimensional” behaviour
o~ constant in diffractive region s>>t 712/
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