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1. There exists a close analogy between the Goldstone
fields and the gauge fields /!/. Goldstonions arise ine-
vitably if a symmetry is spontaneously broken (the Gold-
stone theorem /2-% ), so do gauge fields when a sym-
metry is localized (the Yang-Mills-Utiyama theo-
rem 1.5 ) . They both transform by relevant groups
inhomogeneously.

In the present note we demonstrate that this analogy
is not accidental. Any gauge theory is proved to arise from
spontaneous breakdown of symmetry subject to certain
infinite parameter group, the corresponding gauge field
being the Goldstonion by which this breakdown is accom-
panied. Thus the Yang-Mills-Utiyama theorem turns out
a particular case of the Goldstone theorem.

Our paper develops and generalizes results of Borisov
and one of the authors (V.1.0.)'* who realized that the
gravitation theory is the theory of spontaneously broken
affine and conformal symmetries, the gravitation field
h,“ being the Goldstonion connected with proper affine
transformations. To ours there 1s close in the spirit also
the approach of Ferrari, Picasso '/ and Brandt, Ng 8l
They treat an Abelian gauvge field (photon) as the Gold-
stonion corresponding to the gauge transformation with
linear phase.

Anotl/le/r approach was suggested recently by Cho and
Freund They deduce non-Abelian Yang-Mills fields on
the N dxmensxonal compact group from the spontaneous
breakdown of affine symmetry in 4+N dimensions. Their
approach is nonminimal for it requires extra dimensions,



is restricted to the non-Abelian case only, and leads to
a lot of superflvous (scalar) Goldstonions along with
the Yang-Mills fields. Our scheme is free of such troubles.

2. The first statement is that any gauge transforma-
tion can be considered as a constant parameter transfor-
mation of some group X having the infinite number of
generators. The commutation relations between these
generators are defined uniquely by the algebra of the
initial finite parameter group. We confine ourselves to
gauge functions which are decomposable in the Taylor
series near x#=0 and consider first internal symmet-
ries.

The proof is as follows. ‘,e represent an element
of some local symmetry group G' (x) in the form
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where Q” are the generators of the corresponding finite
parameter group G and
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Thus the gauge group G‘ (x) (in some vicinity of X, =0 )
is a particular realization of infinite constant parameter

group K which is generated by operators Q Q“ Hn
together with Q* . The commutation relaﬁons between
themselves and w1th the 4-momentum operator P = -10“‘
can be written using their representation (2)
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where CI«; are the structure constants of the subgroup
G The transformation properties of Q:.-ull under
n

G°% and under the homogeneous Lorentz group L are
obvious. Together with the Poincare group ? the group
K forms the semi-direct product X =K¢x# . Once the Lie
algebra of K is found one can forget about particular
representation (2) and regard this group as given by its
Lie algebra solely.

3. Our main result is the following Theorem.

The gauge theory associated with the gauge local
group G (x) can be obtained by the Nambu-Goldstone
realization 'V of the symmetryunder the group K. the
subgroup G®x P being the vacuum stability subgroup. 3y
this procedure the gauge field turns out to be Goldstonion
corresponding to the generator Q' .

The most natural and direct approach to the Nambu-
Goldstone realization of a symmetry is the nonlinear
realization method thoroughly worked out in- " °". Ac-
cording to a2/ we have to parametrize the quotient
space h G" « L by the fields b (x),....b ;:lmi, (x)..

n
quantum numbers of which coincide with those of the
generators Q/l“, e Q and then we have to consider
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the left action of the group X in the guotient space:
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We are interested only in the action of the group K

because the Poincare group acts on fields and on X in
the standard way.



It follows from (6) that the fields b (x),. (x)..
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transform inhomogeneuvusly: “'
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Thus, these fields are Goldstonions . Other fields ¥(x)
transform by the representations of stability subgroup
Go but with parameters-functions U%(x,k):
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Uncer the stability group all the fields

W(x),b% (x),...b . )
(x), u(x),... ul---un(x
transform according to their representations in this group
Iinearly and homogeneously.

The invariant Lagrangians are written down in a stan-
dard way and they involve fields Y(x), covariant deri-
vatives Dp‘l'(x ", land the Goldstonion covariant deriva-
tives vpb “1' " The covariant derivatives are

e,
1,12/,
determined following general prescriptions of ! :
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Due to a specific siructure of the group K they involve
Goldstonions polynomially and one can easily find their
explicit form:
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For brevity we do not write covariant derivatives of

a
b L (022).

It is important that the symmetric and antisymmetric
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transform independently of each other. Covariant quan-
titiesV b‘:d and B ¥ do not centain Goldstonions
with more than one vector index. We see, therefore, that
the invariant Lagrangians can be constructed out of
V. b , D ¥ and ¥ only:
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Further, \ | b Zl coincides exactly with the covariant
Yang-Mills Field strength and the couplings of the Gold-
stonion b (x)  to other fields ¥(x) are identical with
the couplings of the Yang-Mills gauge field . Thus, we
can identify b% (x) with this gauge field.

Finally, the tensor Goldstonions bz e (n>2) turn

1 n

out to be unessential. One can eliminate them in a cova-
riant manner by means of the inverse Higgs phenome-
non /13  Namely, they all can be expressed in terms of



b“(x) and its derivatives by equating to zero the sym-

métric parts of covariant derivatives \"l b« z(n > 1)
P -
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Thus, there ic one essential, "true” Goldstonion b“l
which coincides with the Yang-Mills canonical field.
All other Goldstonions are merely certain functions of
this field and its derivatives. Note that the inhomogeneous
term a“% in Eq. (7) can result only from the transversal
part ofu field b¢ and not from the longitudinal part.
Therefore in fact just the transversal, physical component
of b“ is the Goldstonion ** connected with generator
Qz . Correspondingly, iust the invariance under the trans-
formation with this generator plays the crucial role (for
thc Abelian case it has been pointed out in o8 )- The
longitudinal component is also of the Goldstonion type
but it is expressed in terms of Goldstonions 7, b,
()p (}Il b: ,... associated with generators Ql‘l‘ . « ().
172 n
Above we take the subgroup G’ be unbroken. If the
global symmetry under g° itself is spontaneously
broken, say, down to some subgroup H with generators
V%, we have to consider realizations in the quotient space

et

*Of course, it is not recessary to do so. One may
keep these fields but then they spontaneously acquire
mass through absorbing symmetrical combinations of
vector Goldstonion derivatives (i.e, the direct Higgs
phenomenon occurs). The resulting massive tensor iields
are not of the Goldstonion tylPe (they transform homo-
geneously, like other fields W(x) ), and, besides, their
masses are not related. Therefore they are extra fields
and are not of need for constructing invariant Lagrangiars.

** The statement of paper '*" that Goldstonions of
spin~>1/2 do not exist is based on two demands: 1) explicit
relativistic invariance and 2) the positive definiteness of
the metric in th> space of states. This statement does not
refer to any gauge theory because it is impossible to
fulfill there these both demands simultaneously.




K/L xH and, respectively, to use, instead of G(x,b)(6),
the quantity

G(x,b,£)=G(x,blexpti ¢’ 27}

where Z' are tho.se generators from (;° which do not
enter into H, ¢£! are relevant Goldstonions. In
this case our method reproduces automatically the

covariant derivatives vu¢'(x)  of fields £'(x) and the
covariant curls of fields b¢ (x) {in contrast to ihe
standard covariant strengths (14) i~cy transform non-
linearly, like v#'fi(x) ). Goldstonions connected with
generators Z‘# are no longer true ones since they can
acquire mass by the Higgs mechanism, i.e., by abscrbing
the Goldstonions ¢ (X). The only truc Goldstonions in
this case are those associated with generators V‘Z
These coincide with the Yang-Mills massless fields
corresponding to the subgroup H.

Up to row we considered internal symmetries. Ho-
wever a similar analysis can be performed also in the
case when the initial subgroup G 0 determines the space-
time symmetry. The difference is that in such 3 case
group K has no longer simple form of the semidirect
product K cx ¢,

4. Thus, any gauge theory is a theory of some spon-
taneously broken symmetry. Therefore the spontaneously
broken symmetry is mcre profound and general concept
than the gauge symmetry.

It should be emphasized once more that, frem the
formal point of view, the only difference between the
Yang-Mills theorics and, say, nonlirear chiral dynamics
lies in the fact that the former is nonlinear realizations
of infinite paramster groups(K) whereas the latier is those
of finite parameter group (SU, xSU, ). In this connection
it is natural to ask whcther the linear o -model of the
Yang-Mills theory exists, by anaiogy with the linear
SU,~ o-model. As the group K has tho infinite number
of generators its linear representations (if exist) will
be infinite-dimensional. Thereicre the relevant ¢ -mocel
will contain, parallel with the Yang-Mills fields, the



infinite set of resonances, in particular, the tensor Gold-
stonions b% , (n>2) which are no longer to be eli-
minated. (N'e believe that such a o-model could be
closely related to dual models of strong interactions.
Further, there arises the problem of restoration of the
symmetry under the group K athigh temperature/'%/ It is
interesting also to realize the connection between the

present approach and gauge theories on a lattice

N6/

All these questions will be examined elsewhere.
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