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1. There exis ts a close analogy between the Goldstone 
fields and the gauge f i e l d s / l / . Goldstonions a r i s e ine­
vitably if a symmet ry is spontaneously broken (the Gold-
stone theorem / 2 - - 4 / ), so do gauge fields when a s y m ­
metry is localized (the Yang-Mills-Utiyama theo­
rem / , , r " ) . They both t ransform by relevant groups 
inhomogeneousiy. 

In the p resen t note we demons t ra te that this analogy 
is not accidental . Any gauge theory is proved to a r i s e from 
spontaneous breakdown of symmet ry subject to cer ta in 
infinite pa r ame te r group, the corresponding gauge field 
being the Goldstonion by which this breakdown is accom­
panied. Thus the Yang-Mills-Utiyama theorem turns out 
a par t i cu la r case of the Goldstone theorem. 

Our paper develops and genera l izes resu l t s of Borisov 
and one of the au thors (V.I.O.) '' who real ized that the 
gravitat ion theory is the theory of spontaneously broken 
affine and conformal symmet r i e s , the gravitation field 
h, t l. being the Goldstonion connected with proper affine 
t ransformat ions . To ours there is close in the spi r i t a lso 
the approach of F e r r a r i , P icasso " ' and Brandt, Ng " ' . 
They t rea t an Abelian gauge field (photon) a s the Gold­
stonion corresponding to the gauge transformation with 
l inear phase . 

Another approach was suggested recent ly by Cho and 
Freund ' . They deduce non-Abelian Yang-Mills fields on 
the N -dimensional compact group from the spontaneous 
breakdown of affine symmet ry in 4-t-N dimensions. Their 
approach is nonminimal for it r e q u i r e s ext ra dimensions , 
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is restricted to the non-Abelian case only, and leads to 
a lot of superfluous (scalar) Goldstonions along with 
the Yang-Mills fields. Our scheme is free of such troubles. 

2. The first statement is that any gauge transforma­
tion can be considered as a constant parameter transfor­
mation of some group К having the infinite number of 
generators. The commutation relations between these 
generators are defined uniquely by the algebra of the 
initial finite parameter group. We confine ourselves to 
gauge functions which are decomposable in the Taylor 
series near x =0 and consider first internal symmet­
r ies . 

The proof is as follows. We represent an element 
of some local symmetry group G (x) in the form 

gf(x) = exp|ia a(x)Q a!=explia a(0) Q u

 + i £ ± a" Q" 1,(1) 

where Q are the generators of the corresponding finite 
parameter group G° and 

V"'' . "i Л в" ." - а д. а в ( я ) 1 ж - 0 

Q° = x .. .x Q a (?) 

v 
Thus the gauge group G (x) (in some vicinity of x -0 ) 
is a particular realization of infinite constant parameter 
group К which is generated by operators Q" ...,Q" / l n ,.. 
together with Q" • The commutation relations between 
themselves and with the 4-momentum operator P - ""'<?.' 
can be written using their representation (2) 

[<r-»k'QLr»» i = i c X- - -><„ ( з ) 
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[P , Q a ] = - i ( S Q a +...+ S Q a , )J[n>2) 

(5) 

where C^j a r e the s t ruc tu re constants of the subgroup 
G°- The t ransformation proper t i es of Q" „ under 

G° and under the homogeneous Lorentz group L a r e 
obvious. Together with the Po incare group '? the group 
К forms the s e m i - d i r e c t product К = Kcx'l . Once the Lie 

a lgebra of К is found one can forget about par t i cu la r 
representa t ion (2) and regard this group a s given by i ts 
Lie a lgebra solely. 

3. Our main resu l t is the following Theorem. 
The gauge theory associated with the gauge local 

group G (x) can be obtained by the Nambu-Goldstone 
realization 2 , 1 0 / of the symmetry under the group K. the 
subgroup G°x )' being the vacuum stability subgroup. 3y 
this procedure the gauge field turns out to be Goldstonion 
corresponding to the generator Q^' • 

The most natural and d i rec t approach to the Nambu-
Goldstone real izat ion of a symmet ry i s the nonlinear 

' I I I 2 / real izat ion method thoroughly worked out in ' . A L ­II i 2' о j 
cording to " • " we have to p a r a m e t r i z e the quotient 
space К G° < L by the fields t>« (x) b , " . . . , , ( x ) -
quantum numbers of which coincide with those of the 
gene ra to r s Q ", ... Q" , and then we have to consider 

the left action of the group ^ in the quotient space: 

G(x,b) =e i V " 4 U 2 . п Т Ь А » м Л . - * п ^ ( x . b b G C x . b V ' ' ' ' k K 

(6) 
We a r e in teres ted only in the action of the group К 
because the Poincar» group ac t s on fields and on x in 
the s tandard way. 
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It follows from (6) that the fields b£ (х),...Ь^ ^ (x). 
transform inhomogeneously: ' " " 

Q H : 5 b " = a a

+ 0 . a ( x , b ) ; (0?(х,Ь)=-С£ Ь^ х а у ) 

Thus, these fields are Goldstonions . Other fields <P(") 
transform by the representations of stability subgroup 
G° but with parameters-functions U a(x,k): 

Ч " ( х ) ^ 1 1 , В ( , Д > < ? Ч " Р ( х ) . (8) 

Under the stability group all the fields 
ЧЧх),Ь а(х),...Ь а (х)... 

transform according to their representations in this group 
linearly and homogeneously. 

The invariant Lagrangians are written down in a stan­
dard way and they involve fields V(\), covariant deri­
vatives DУМ and the Goldstonion covariant deriva­
tives v b " .u ' 1 2 ' • T n e covariant derivatives are 

/ I1 ,12' 
determined following general prescriptions of : 

G~'(x,b)d>G(x,b)=iP +i I -i-v• b° 0 ° + i C i a 0 " 
P P n>l n! P f i - ^ n ^ i w / P V ' 

(9) 
О р Ф(х) - (^ + 1 0 ^ ) ¥ ( х ) . (10) 

Due to a specific structure of the group К they involve 
Goldstonions polynomially and one can easily find their 
explicit form: 

v; w =^/* ) + b >-^;X ( 4 ( x ) - aw 
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DpV(x)=(d + i b ° ( x ) Q ° )ф(х). (12) 

For brevity we do not write covariant derivatives of 
b a ( n > 2 ) . 

It is important that the symmetric and antisymmetric 
parts of V p b " : 

V. b" д Ьа

+д Ьа

 + 2Ь" , (13) \Р )i\ р ц II р рц 

v , ь" = <э ь а -а ь " - с " ъРъг (14) 
\р р \ р ц it р fiy р Ц V > 

transform independently of each other. Covariant quan-
titiesVr b"| and D M' do not contain Goldstonions 
with more than one vector index. We see , therefore, that 
the invariant Lagrangians can be constructed out of 
V b" , D f and 4» only: 

\p p\ l> 

(K> (LxG ) lp p] P 

Further, \ | Ь | coincides exactly with the covariant 
Yang-Mills field strength and the couplings of the Gold-
stonion b<{ (x) to other fields 4'(x) are identical with 
the couplings of the Yang-Mills gauge field . Thus, we 
can identify b"(x) with this gauge field. 

Finally, the tensor Goldstonions b" (n>_2) turn 
" I ' " n 

out to be unessential. One can eliminate them in a cova­
riant manner by means of the inverse Higgs phenome­
non l ' V, Namely, they all can be expressed in terms of 
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b" (x) and its derivatives by equating to zero the sym­
metric parts of covariant derivatives V b" (n > 1)*. 

If I ' . -C 1 
For instance: V. b " = 0 . b a = - 4 ( 3 Ь ' ^ Ь " ) 

\p И pp 2 p ii ii p 
Thus, there is one essential, "true" Goldstonion b" 
which coincides with the Yang-Mills canonical field. 
All other Goldstonions are merely certain functions of 
this field and its derivatives. Note that the inhomogeneous 
term a" in Eq. (7) can result only from the transversal 
part of field Ь'Д and not from the longitudinal part. 
Therefore in fact just the transversal, physical component 
of Ь " is the Goldstonion ** connected with generator 
Q" • Correspondingly, just the invariance under the trans­
formation with this generator plays the crucial role (for 
the Abelian case it has been pointed out in ' •" ). The 
longitudinal component is also of the Goldstonion type 
but it is expressed in terms of Goldstonions <> b';', , 
д О b " , . . . associated with generators Q" ...Q" (n^2). 

P P P P t P 2 / ' , • • / ' , , ' 

Above we take the subgroup G be unbroken. If the 
global symmetry under G ° itself is spontaneously 
broken, say, down to some subgroup H with generators 
V", we have to consider realizations in the quotient space 

* Of course, it is not necessary to do so. One may 
keep these fields but then they spontaneously acquire 
mass through absorbing symmetrical combinations of 
vector Goldstonion derivatives (i.e , the direct Higgs 
phenomenon occurs). The resulting massive tensor fields 
are not of the Goldstonion type (they transform homo­
geneously, like other fields Ччх) ;, and, besides, their 
masses are not related. Therefore they are extra fields 
and are not of need for constructing invariant Lagrangians. 

** The statement of paper that Goldstonions of 
spin "1/2 do not exist is based on two demands: 1) explicit 
relativistic invariance and 2) the positive definiteness of 
the metric in thj space of states. This statement does not 
refer to any gauge theory because it is impossible to 
fulfill there these both demands simultaneously. 
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K/LxH and, respectively, to use, instead of G(x,b)(6), 
the quantity 

G(x ) b , f )=G(x ,b )exp | i e i Z i | 
where Z 1 are those generators from G ° which do not 
enter into H, £ ' are relevant Goldstonions. In 
this case our method reproduces automatically the 
covariant derivatives V>£'(x) of fields f'(x) and the 
со variant curls of fields b" (x) (in contrast to the 
standard covariant strengths (14) LKay transform non-
linearly, like \^,£'(х) ). Goldstonions connected with 
generators Z '̂  are no longer true ones since they can 
acquire mass by the Higgs mechanism, i.e., by absorbing 
the Goldstonions €' (*)• The only true Goldstonions in 
this case are those associated with generators V ^ 
These coincide with the Yang-Mills massless fields 
corresponding to the subgroup H. 

Up to now we considered internal symmetries. Ho­
wever a similar analysis can be performed also in the 
case when the initial subgroup Q ° determines the space-
time ^symmetry. The iifference is that in such a case 
group X has no longer simple form of the semidirect 
product К с х f . 

4. Thus, any gauge theory is a theory of some spon­
taneously broken symmetry. Therefore the spontaneously-
broken symmetry is mere profound and general concept 
than the gauge symmetry. 

It should be emphasized once more that, from the 
formal point of view, the only difference between the 
Yang-Mills theorias and, say, nonlinear chiral dynamics 
lies in the fact that the former is nonlinear realizations 
of infinite parameter groups(K) whereas the latter is those 
of finite parameter group (SU2 xSU2 ). In this connection 
H is natural to ask whether the linear о -model of the 
Yang-Mills theory exists, by analogy with the linear 
SU 2 - о -model. As the group К has th-э infinite number 

of generators its linear representations (if exist) will 
be infinite-dimensional. Therefore the relevant <> -model 
will contain, parallel with the Yang-Mills fields, the 
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infinite set of resonances, in particular, the tensor Gold-
stonions Ь" „ n (n>_2) which are no longer to be eli­
minated. We believe that such a a-model could be 
closely related to dual models of strong interactions. 
Further, there arises the problem of restoration of the 
symmetry under the group К at high temperature /,r'{ It is 
interesting also to realize the connection between the 
present approach and gauge theories on a lattice' 
All these questions will be examined elsewhere. 
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