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In the present note we discuss some problems related to 
derivative analytioity relationswhich, under certain conditions, 
give point-to-point correlations between the real and the imagi
nary part of a scattering amplitude on the energy cut. In the 
case of the symmetric amplitude F s(s,t) , for instance, Bronzan 
et al( ' have derived the relation 
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( X being a real number), assuming that the imaginary part 
can be expanded in powers of Ins on the energy cut. Here 
F s(s,t) means the amplitude without poles and subtraction cons
tants, s and t denoting the usual Mandelstam variables. 

Suppressing higher branch points given by the unitarity 
condition, this derivation restricts severely the validity of 
the result to certain mathematical models. Indeed, it has been 
proved by Eichmann and Dronkers"' that relation (1) is exact
ly valid only on some class of entire functions of Ins. b'urtlier, 
Heidrich and Kazes'*' show that relation (1) is violated even 
in the energy intervals between two branch points. 

In the present note we examine the derivative analyticity 
relations in the asymptotic regime. 

Retaining only one derivative in (1), we obtain the follow
ing relation 
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which has been derived by Gribov and Migdal' ' in the Recce 
theory for the contribution of the Pomeron and its cuts. We 
shall show that relations of type (2) are, in the region of 
usyirptotic energies, an immediate consequence of the general, 
i.iodel-independent principles of the S-matrix theory provided 
that the high-energy limits (finite or infinite) of certain 
quantities are assumed to exist. 

The symmetric and the antisymmetric hadron-hadron elastic 
scattering amplitude will be denoted by F g(K,t) and F,(K,t), 
respectively, к being defined as (s-u)AM , where M is 
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the mass of the target particle. Further, we use the following 
notation for convenience: 

F a ( E ) a F g Д(Е,0), <5g(E) = | Im Fg(E) (the optical 
theorem), 
/>3,А<Е.*>= ffjs.i^t) ^ f>8 (E)Mf <B.O). 

Im P S i A(E,t) 
We recall the following general properties''' of Fo ,(b',t): 

(i) There exist two positive numbers, H(t) and t , such that 
F s j(E,t) are analytic functions of E in the upper half of 
the complex E-plane for /Ej>R(t) , provided that it/^t . 
Tbis region will be denoted by jg. . » 
( U ) №*)-**("***) " ' 
for every Ef ̂  and (t|<t0« 
(iii) Fg ,(E,t) on the energy cut have been obtained by regu
larizing the corresponding distributions and are continuous in 
the closure of $L . 
(iv) F s .(E,t) are polynomially bounded for |E/-»oO, Ef ̂  , 

iti<t;. 
(v) For the real values of E , Ffi ,(E,t) satisfy the Frois-
sart-Martin bound . 

\ЬЦ(*>*)/ЕШ\ <C<™4 

for any E > E,j (the bound for t ^ O being even stronger), 
(vi) 

Im Fs(E,t=0) S 0 for any E =» E 2 . 

These properties allow us to derive the following statements. 
Statement 1. Let Fg(E) be a function of complex E satisfying 
conditions (i) to (vi)^ Let further lim p a(E) exist and 

lim 0%(E) = «, . (3) 
f-.oo ° 

If the limit 
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lim -f- ~«Kf * (4) 

exists, then its value is 1 . 
In the remainder of the present paper, t is kept fixed 

in the interval -t Q < t £ 0 . 
The following statement includes both forward and non-for

ward scattering and allows Im F4(E,t)/ £ to tend to infini
ty or to zero. 
Statement 2. Let ]?s(E,t) satisfy the conditions (i) to (vi). 
Let Im Fg(B,t) not change the sign above some energy on the 
cut and the conditions 

\ fLbfi*) 4f\ * °° . for some % 

and 

lim 
£•-•00 Af^/f- (6) 

be satisfied. If the limit 

X *7Ъ &*\Р<(£>Щ 
iim ± т^гтг, ; --7TT7 ( 7 ) 

S-t>-° 
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exists,then its value is 1 . 
The proof is given in the Appendix. 
As a consequence, we find for the antisymmetric amplitude 

F.(E,t) the following result: 
Corollarar. Let FA(E,t) satisfy conditions (i) to (v) and 
let further 
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b) Im F,(E,t) not change the sign above some energy; 
o) 

d) 

If the limit 

I fl**fi(£'ii) *E J = °° for some EQ (9) 

lira I /»[FA№i)\\ » ° ° (Ю) 

-2- /$ffi<J/ 
l i m X "ЯС/Г ( 1 1 ) 

exists, then its value is 1, 

An interesting high-energy result can be obtained for 
the difference 

m i ) , ffa \Щ1>\ - /S«!J-*.#«W (12) 

which, provided that Pg(E (t) is sufficiently smooth and 
tends to zero, transforms into 

z эекЕ v £• J £ 

Statement 3. Let F.,(E,t) bo a function satisfying 4i) to 
(vi). Let Im P s(E,t) not change the sign above some energy 
on the cut and condition (5) be satisfied. If the limit 
lim D(E,t) exists then its value is 0. 

The proof is sketched in the Appendix. 
Similar theorems for the difference (13) and for F,(?;,t) 

can also be obtained; details will be published elsewhere. 
We should like to draw the reader's attention to some in

teresting differences among the statements derived. The symme
tric total cross-section <S"o(E) is required to tend to infi
nity in Statement 1. If <?s(E) approaches zero in the high-
energy limit, expression (*) is modified to (7) because (°я(Е) 
may be non-vanishing at E-* °° in this case' . In contra-
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d'stinction to this no explicit restriction is imposed on the 
high-energy behaviour of СГ^(Л) in Statement 3. 

Let us note that the results obtained have the form of 
high-energy limits and no a priori claim can be laid to their 
validity at finite energies. On the other hand, referring to 
the measurements of small-angle hadron-hadron scattering at 
the CEEN ISH and at Fermilab above 100 GeV (lab), one can infer 
that the available energies would be already appropriate for 
the numerical verification of the Statements presented. 

We are indebted to 0.Dumbra]s for stimulating discussions. 

AEEEHDIX 
firstly, we give the proof of Statement 3. Statement 1 is 

proved in an analogous manner. 
Since the limit (7) exists, the limit 

also exists because of l'Hopital's rule. The Cauchy theorem for 
ln(-F s(K,t))/ E implies / 6 , 7 / 

Ul Ь ftVj~ f-f*>****р{ф^ + С - f (Ъ*) 
E I - •„ , (45) 

where f(Zt) - T J ^ l b t C V ' Г 

0 
and С is a constant depending on К and t ( t fixed 
-t < t £ 0 ). Combining (14) with (15) and using (6) we easily 
лее that the limit (1*) is equal to 

(U (£, b) 

This limit can be found by using a method which is due to 
Vernov' . Indeed, it follows that 

J faait) <£ \ < w . ( 1 7 ) 
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for every E > EQ (note that E 0 must be sufficiently large^6'' 
and,obviously, K Q > max ( H(t),E1,E2) ). Consequently, (16) 
is equal to zero and (7) equals 1. 

We prove now Statement 3. Since lim D(E,t) is assumed to 
exist, it follows from (12) and (15) that 

ii- &.С£21*КУ1 
also exists and 

lim D(E,t) =•• - •£" lim 

To prove that lim D(E,t) = 0, let us assume that this limit is ?ove that lig D(E,t) = 0, J 
different from zero. Then the integral 

diverges and, because of the Froissart-Martin bound, also 

is divergent. Integrating by parts, we transform it to 

lim ^ A f / ' - f ^ ^ J . 
*в La 

lim 
£ 

But the divergence of this expression contradicts (17). Thus, 
lim D(E,t) = 0. 
£4oO 
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