


1 Introduction

The specific electromagnetic radiation produced by fast electrons moving in medium was
observed by P.A. Cherenkov in 1934 [1}. Tamm and Frank {2} considered the motion of
a point charge in medium with a constant electric permittivity. They showed that the
charge should radiate when its velocity exceeds the light velocity in medium. For the
frequency independent electric permittivity the electromagnetic strengths have é-type.
singularities on the surface of the so-called Cherenkov (ot Mach) cone {3-6]. This leads
to the divergence of the integrals involving the product of electromagnetic strengths. In
particular, this is true for the total flux of electromagnetic field (EMF). To avoid this
difficulty Tamm and Frank (see, e.g., Frank’s book {7]) made the Fourier transformation
of EMF and integrated the energy flux up to some maximal frequency we.

The goal of this treatment is to consider consequences arising from the uniform motion
of a charge in the nonmagnetic medium described by the frequency-dependent one-pole
electric permittivity

(1.1}

and its complex counterpart
(1.2)

These expressions are suitable extrapolations between the static case w = 0, e(w) =
¢ = 1 +w?/u? and the high-frequency limit w = o, e(w) = 1. In the usual interpreta-
tion wy, and wy are the plasma frequency w} = dwN,e?/m ( N, is the number of electrons
per unit of volume, m is the electron mass) and some resonance frequency. Quantum-
mechanically, it can be associated with the energy excitation of the lowest atomic level.
Our subsequent exposition does not depend on this particular interpretation of wy and
wp-

In what follows we shall use the quantity 8, = 1/\/1 +w}/wi. It plays a major role even
if the frequency dependence of ¢ is taken into account. In the absence of dispers{on it
coincides with the light velocity in medium. It is seen that 8. changes from 3, = 0 for
N >>1up to 8. =1 for N = 0. We refer to these limit cases as to optically dense and
rarefied media, resp.

Equations (1.1) and (1.2) are standard parametrizations describing a lot of optical phe-
nomena [8]. They are valid when the wavelength of the EMF is much larger than the
distance between the particles of medium on which the light scatters. The typical atomic
dimensions are of an order of @ = A/mca; a = e*/hc, m is the electron mass. This gives
A = c/w >> a or w << mcPofh & 5 10'sec™'. The typical atomic frequencies are
of the order wy = mc?/ha? 2 10¥sec™!. As w << wy, the physical region extends well
beyond wy. Forw >> wy, €{w) = 1, that is, medium oscillators have no encugh time to



be excited. Fotlowing the book [9] and review {10] we extrapolate parametrizations (1.1}
and (1.2) to all w. This means that we disregard excitation of nuclear levels and discrete
structure of scatterers.

In Eq. {1.1), elw) is negative for w? < w? < w? +w}. For the free electromagnetic

wave this leads to its space damping in this w region even for real e(w) (see, e.g., [9]).
For the EMF radiated by a moving charge the conditions for EMF damping are modified
(see sections 3 and 4).
Strictly speaking, Egs. (1.1) and (1.2) are valid for media with ¢; 2 1 {e.g., for gases). In
what follows we apply Egs. (1.1) and (1.2} to fictitious medium with 8, = 0.8, n = /& =
1/8. = 1.25. For such a value of the refractive index n one should use Clausius-Mossotti
{or Lorentz-Lorenz) formula [13]. However, as it was admitted in [14], the qualitative
predictions ate the same for both these representations of e. As our consideration Is pure
qualitative at this stage, we restrict ourselves to the ¢ representations (1.1) and (1.2).

We intend to consider the effects arising from the uniform charge motion in medium
with e{w) given by (1.1) and (1.2). Partly this was done by E. Fermi in 1940 [11].
He showed that a charged particle moving uniformly in medium with permittivity (1.1)
should radiate at every velocity. He also showed that energy losses as a function of the
charge velocity are tess than those predicted by the Bohr theory [12].

However, the following questions remained unanswered:

i. How the EMF strengths and energy flux are distributed in space? In particular, what
is their angular distribution?

2. How these distributions depend on the charge velocity? In particular, how the transi-
tion takes place from the subluminal regime to the superluminal one?

3. How the value of parameter the p defining the imaginary part of ¢ affects the erergy
losses, electromagaetic strengths, etc.? )

In this consideration we restrict ourselves to the classical theory of the Vavilov-
Cherenkov radiation with electric permittivity given by (1.1) and (1.2). It is suggested
that uniform motion of a particle is maintained by some external force the origin of which
is not of interest for us.

The plan of our exposition is as follows.

In section 2, necessary mathematical formulae are presented.

In section 3, we present in a manifestly real form the electromagnetic potentials and ficld
strengths for a charge moving uniformly in a dielectric with e(w) given by (1.1).

In section 4, we evaluate the energy losses as a function of the charge velocity for € given
by (1.1). This dependence shows that the moving charge radiates at each velocity. In
the same section, we demonstrate how the energy flux is distributed over the surface of
a cylinder coaxial with the charge trajectory. It is shown that for the charge velocity
greater than some critical one (we designate it as v.) the main contribution to the energy
flux comes from the space region where in the absence of w dispersion the Cherenkov cone

intersects the cvlinder surface. The rapid oscillations of the energy flux are observed in
this region. For v < v, this space region contributes practically nothing to the energy
fiux. This seems to be in conflict with the energy losses obtained earlier {14].

This inconsistencs' is discussed in section 3. Using the WHKB approach as a rough estimate
we show that for v < v, main coatribution to the energy losses comes from the space
region sufficiently remote from the one meutioned above and lying behind a moving
charge. A posteriori we confirmn this by direct calculations presented in sect. 6. In the
same section, we use these results as a hine for the explanation of experiments discussed
recently in [15-17].

In section 7, we analyze how the radiated energy flux and its space distribusion depend
on the value of the parameter p defining the imaginary part of e. It turns out that for
v < v, the radiated energy flux is damped much stronger than for ¢ > v.. Further, for
v > 1, the secondary maxima are attenuated much stronger than the main one. As a
result. for a sufficiently large p only the main maximum survives for ¢ > ..

Short account of the results obtained is given in sect. 8.

2 Mathematical preliminaries

Consider a point charge e uniformly moving in a non-magnetic medium with a velocity

v dirccted along the z axis. Its charge and current densities ave given by
(7, t) = ed(2)8(u)é(z = vt),  jo = vp.
Their Fourier transforms are
plk,w) = [p(f-'. t) oxp{i(EFw Wt d*Fdt = 2zed{w — kR, (ke = cplk. ).

In the {k,w) space the electromagnetic potentials are given by (see, e.g.. [18])

Bk, w) = 1?- :—2(—17);, Ak w) = 477,1}—%(———‘:-_3.-—6-. g =/, (2.0
- a I

Horo e(w) is the electric permittivity of medium. I this section. its frequency depen-
dence is chosen in a standard form (1.1). In the usual interpretation o and wy are the
plasma frequency w} = 4w N.c2/m ( N, is the number of electrons per unit of volume.
is the clectron mass) and some tesonance frequency. Quantum-mechanically. it can be
assoctated with the cnergy excitation of the lowest atomic level. Qur subsequent expo-
sition does not depend on this particular interpretation of wy, and wy. The static lienit
of e(w) 15 € = e{w = 0) = 1 + wi/wi. e(w) has poles at w = Fwy. Being positive for
w? < wi it jumps From +20 to —oc when one crosses the w? = w§ point: e(w) has zero at



w? = w} + w? and tends to unity as w ~ cc. Correspondingly.

(22)
has zero at w? = w} and a pole at w? = w? = w} +wj. As it has been admitted in
{10], the inclusion of w dependencies in e effectively takes into account the retardation
effects. The very fact that the light velocity in medium ¢, is less than the light velocity
in vacuum ¢ means that oscillators of medium react to the initial electromagnetic field
with some delay {see section 3, for details). The deviation of ¢, from ¢ is due to the
deviation of ¢ from unity. For the incoming plane wave and frequency-independent ¢ this
was clearly demonstrated in refs. [19-21]. At first glance it seems that ¢, will be greater
than ¢ for ¢ < I However, a more accurate analysis shows (9] that the group velocity of
light in medium is always less than c.

In the 7,¢ representation ®(7,t) and A(F,t} are given by

do kdk
N a [ A 0 L. I X

wult ¢ k2+°§§(1~[325)
kdk
AR dwe™ =i T Jiiks) 2.3
.(r ‘R'Cf ¢ k?.},_‘;’_;(l_BQe) U{ ﬂ) ( )

First, we take integral over & For this, we use the Table integral (sece, e.g., (22])

o0

kdk

/ mJo(kP) = Ko(ng), (2.4)
whete in the right-hand side the value of the square root, +/¢° corresponding to its positive
real part should be taken.

3 Electromagnetic potentials and field strengths

We write out nonvanishing components of the electromagnetic potential, field strength
and induction:

e T dw e T
- o — fa
= ) - e Kolkp), A, r._c_,{o dwe™ Kolkp),

(=] o
e ; dw
Hy=pD, = = [ doekki(ko), B, == [ = ek (kp),
—00 -0

oo

f dww(l ~ -—)e"“Kg(kp) D, =& f duws(1 = BRe)e® Kolkp), (3.1)

E. =
ny?

'.rr(:2

Here o = w(t — z/2), £ =(1- 3e)w?/v? Again, k in Eq.(3.1) means the value of
VE? corresponding to Rek > 0.

These expressions were obtained by Fermi {11}. Their drawback is that modified Bessel
functions K are complex even for real e (when 1 — 8% < 0). We now present Eqs. (3.1)
in a manifestly real form. This greatly simplifies calculations.

At first, we define domains where 1 — 8% > 0 and 1 — 5% < 0.

For 8 < 3. one has

] - B% > 0 for w? < w? and w? > w? and 1 — 8% < 0 for w? < w? < wj.

For 3 > 3, one gets

t— 3% >0 forw? >wland 1~ f% < 0for 0 <o? <uf.

Here w? = w2(1 ~ ¢€), € = 3*v2/B8%42, B} = 1/e. In what follows we shall - -

vefer to 3, as to the light velocity in medium. It turns cut that equations defining
electromagnetic potentials and field strengths are essentially different for 8 < f. and

8 > B.. For B < 8. one gets [14]:

/ f)— cos Ko+ - / —(sin aJy — cos Vo),

We o wp
A (R t) = ;Z—rg(f-%-[)a’w cos okl + Efa!w{sin ady — cos ) (3.2).

=— [ f..ddu) l—ﬁzc{cosaK1+——-[wdw\/ Il — Bel(sinad, — cosalNy),

1 .
— - ; 7 ,
E, = / f —5 Jwdwsin e Ko — u[(1 7 ),ad.u( aSina + Jycosa)

¢

i wo
E,= 2 + dw‘i 1 — F%|cos Ky + LA |1 — 82%](sinaJy ~ cos V1)
P ot € vt €
0 wo we

On the other hand, for 3 > S
wo

dw
O(F,t) = — —cos ake+ - /T(sin ady — cos aNp),
]

“1

(=] ]
AR ) = i——i [dwcos aKy+ —j- [dw(sin oy — cosalNy). (3.3)
Lo 0
% T e T
Hy(7 ) = -7;-:;1; wdwy /|1 — B2 cosaK, + -C;[wdw\fll — Bel(sin e, — cos Ny},

1 Jwdusin oKy — mdw(No sin o + Jycos o),
ﬁZ



rszdw |1 — 3Pejeos Ky 4-——]6,' '—\/‘1 — J2ef(sina; — cosaN|).

Here ¢« = w(t — z/v). The argument of all the Bessel functions is /|1 — 32¢jpw /v,

We observe that integrals containing usual {J. ¥) and modified (K') Besse! functions are
taken over space regions where 1~ 8% < 0 and 1 — 3% > 0, resp. Obviously. there is no
damping of the EMF radiated by a moving charge for 1 — 3% < 0 and there is damping
for 1 — 3% > 0.

The Fourier components of ® and E have a pole at w? = w? = «f +w?}. This leads
to a divergence of the integrals defining & and E. It turns out that only their non-
divergent parts (containing non-medified Bessel functions J, and IV, contribute to the
radiation (see the next section). The divergent terms containing modified Bessel function
K, describe the electromagnetic field carried by a moving charge. They become finite
when the compex electric permittivity (1.2} is used (see sections 6 and 7).

4 The radiated energy flux

We evaluate now the energy flux per unit length through the surface of a cylinder C,
(Fig.1) coaxial with the z axis for the total time of motion. It is given by

oo +o0
. 1
W= /opdt= - f opdz,
-0 -
¢, o o= ¢
o, =21pS, Sp= Z:(E % H), = _EEzHo- (1)

Substituting here £, and H,, given by (3.2) and (3.3} and taking into account that

o o0
[ dtsinwt cosw't =0, f dtsinwtsinw't = n[f{w — ') — 6w +w)],

[ dt coswieosw't = w{é(w — ') + 5w + )],

-

we get for energy losses per unit length

2
= —2 f wdw(l ). (4.2)
21
This expression was obtained by Tamm and Frank [2]. Inserting into it elw) given by
(1.1) we get
et L,

et f 1
W= et ]wd:.-;(l B :{373) = 2c232 2[ g In(1 - 8%)] (4.3)

whe

for 3 < 3, and

e T 1 . 2
W= [etel- ) = 53 g 3"32 7 el )
0

for 3 > 8.. Similar expressions were obtained by E. Fermi [111. The validity of E¢.{4.2]
i also confirmed by the results obtained by Sternheimer [23] (whose equations pass into
(4.2) in the limit p — 0) and Ginzburg [24].
e observe that only those terms in (3.2) and (3.3} which contain the usual Bessel
functions (J, and v,) and correspond to 1 — 3 < 0 region without damping contribute
to the radial energy flux for the total motion time. This permits us to avoid troubles
with the above-mentioned pole of 7! (at . = w;) which appears only in terms containing
modified Bessel functions in the damping region where 1 ~ B > 0.

For 8 — 0 the energy losses W™ tend to 0, while for 3 — 1 ( oni\ this limit was
considered by Tamm and Frank [2}) they tend to the finite value ﬂ—ﬂ-; In(+3).
In Fig. 2, we present the dimensionless quantity F = W/(e*l/c?) as a function of the
particle veloeity 8. The numbers at curves mean 3.. The vertical lines with arrows divide
each curve into two parts corresponding to the energy losses with velocities 8 < J. and
3 > B. and lying to the left and right of vertical lines, resp. We sce that the charge
uniformly moving in medium radiates at every velecity.
Exactly the same Egs. (4.2)-(4.4) are obtained if one starts from the complex €(w) given
by (1.2}, evaluates electromagnetic strengths and radial energy flux and then takes the
limit p — 0 in them. This is done in section 7

For frequency-independent electric permittivity {€ = ) the energy flux is infinite on
the surface of the Cherenkov-Mach cone. On the surface of C, it acquires the infinite
value at the place where C, is intersected by the above cone. Inside the Mach coue the
electromagnetic strengths fall as 72 at large distances and, therefore, do not contribute
to the radial fux.

The distributions of the radial energy flux o, = 27pS, on the surface of the cylinder
C, of the radius p = 10 (in units ¢/wo) are shown in Figs. 3 and 4 for the value
3. = 0.8 and different charge velocities 8. It is seen that despite the w dependence of
¢ the critical velocity . = 1//@ has stilt a physical meaning. Indecd, for 5 > 3, the
electromagnetic energy flux is very small outside the Mach cone exhibiting oscillations
in its neighbourhood. For 8 < 8. the radial flux diminishes and becomes negligihle for
2 < 0.4 (Fig. 4). This disagrees with Fig. 2 where for §, = 0.8 onc sces the finite value
of energy losses for 3 = 0.4. In the next section, we remove this incousisteney.
So far we considered the distribution of the EMF on the surface of C, at the fixed mowment
of time ¢. Since all clectromagnetic strengths depend on z and ¢ via the combination : —tf.
the periodic dependence of time should be observed at a fixed spatial point.



5 WKB estimates

For large values of p the radiation fick! (described by the integrals in (3.21 and (3.3
containing usual Bessel functions) can be handied by the WKB method. We closely
foliow Tamm's paper {23} (see also the review [26] and book [27] ). The electromagnetic
strengths and radial (i.e., in the p direction) energy fiow have sharp maxima on some
space surfaces. In the p, = coordinates these surfaces can be drawn (due to the axial
symmetry of the problem) by the lines. e refer to them as to trajectories. Different
trajectories are labeiled by the integer numbers m. For the electric penetrability taken
in the form {1.1), m runs from 1 to co. We make the notation 2 = 1-¢, € = 322322
The trajectories can be parametrized by the equation

e ” mels ) N
i U - A (XY

w—-z= ,
woéz?

OJ(}E-Is

We consider cases 3 > 3. and 8 < 3, separately.

5.1 Charge velocity 3 exceeds critical velocity 5.

It turns out that z2 < 0 for 3 > & In this case z runs in the interval § <z < 1. The
particular trajectory begins at the point z = 1 where vt — z = mwefwy and p = 0. The
slope of the trajectory is

(1 = 22z - a2)

/2
é—(z2-1)2 '

tan8 =

When z decreases both vt — z and p increase. For very small z

[ 3 7
vtz R2(E 1), p "”fﬁf\/s .y
&y €T

éx3 w

The asymptotic slope of the trajectory is

~ (6_2 - 1)—11"2_

P
tanf =
vtz G2

It is seen that the trajectory slope increases when j approaches 5 (Fig. 3).
Let v = ¢, i.e. the charge moves with the light velocity in vacuum. Then,

msac mTe

tmz = il = TG (1 - gt
VTS T ? 1:3:.00'6"%( =)

Eliminating z one gets

o = Bevelct ~ z)[l - (ﬁf_ﬂ)z/sism_

For large ¢t — z the trajectory is linear: p = Gcve(ct — z). For 8, — 0 the trajectory
approaches the motion axis.

Let 8 be slightly greater than 3.

=1+4, U<d<<i,

Ty

i.c.. charge moves almost with the Light velocity in medium. Then, in the limit §—-10

one gets
mav 2 mwuy
tt—z= ——{2-2z"). p= 5
wpd Wyl

- mrcBete (/2 +y2fd -1~ 92/2i3/2
Wy V2 -y/2+ 74

Here y = wp{vt — z)/mmcl.. At large distances one has:

(1 - 2H)¥2, (5.2)

Excluding 2 we obtain

wWote P)
0T (ut —
ammeh, (vt = 2)%

That is, 2 increases quadratically with the rise of vt — z.

5.2 Charge velocity 3 is less than the critical velocity A

For # < B, one has € < 1 and z? > 0. The trajectory parametrization coincides with
(5.1) when z is in interval V-3¢ -1 < 22 < 1. We refer to this part of trajectory as
to branch 1. For 8 < . and 1 — & < 22 < v — 3¢ — 1 the parametrization is given by
Eq.(5.1) in which m should be chanrged by m — 1/2. This part of trajectory is denoted
as branch 2. These branches are marked by numbers 1 and 2 in Fig. 6. It is seen that
p vanishes for z = z, and © = 1. The corresponding vi — z lie on the branches 1 and 2.
respectively, As the values of vt — 2 for which p = 0 are finite, the trajectories are closed
for 3 < B..
Let 3 be slightly less than F,, that is

i=1-4, 0<d<<],

i.e., charge moves with the velocity slightly lesser than the fight velocity in medium.
Then, parametrizations of vt — z and p are still given by (5.2) in which 2 changes in
the interval 36/2 < z2 < 1 for the first branch and in the interval 52 < 2 < 38/2 for
the second branch. This means that the first branch of the m trajectory for =03, — ¢
continuously passes into the corresponding m trajectory for 8=0.+6 o & — 0.
As to the second branch, in the limit § —» 0 it degenerates into the almost vertical
line. It begins at z = (m — 1/2)1rc,8/wo\/3 where p = 0 and terminates at z = (m —
1/2)7rc,64v/§/(3\/—3wo\/3) where p = 2(m — I/2)1rc;3"y/'(3\/_3wo§) (see Fig.6).

Let § — 0. This may happen when the charge velocity is much less than the light
velocity in medium. However, this condition may be also fulfilled when 8 = 3, = 1, but



3. is much closer to 1 than 3. This is possible because of the v factors in the definition
of £&. In both cases one has
mrr
vl -z =
0
This means that radiation flux is concentrated behind the charge on the motion axis.
The WKB approximation breaks at the neighbourhood of £ = x,, = (V1 - 38 - 1)¥2

This value can be reached only for 3 < 3.. The values of z and p at those poims are

dmred €+ /4 -3~ 2
wof [V —3é—1)¥Y

mweds (€ + 4 = 3F = 2)V22 - JTT3EP?

(V4 -3¢ —1)37

for the branch 1. For the branch 2, m should be ¢changed by m — 1/2. The slope of the
line Cy, {strictly speaking, it is a cone rather than the line, but in the (p. 2} plane it looks
like a line (Figs. 7 and 8}) passing through the discontinuity points is given by

v {2 - /1388

tanf = = .
4(VI-3it+i-2)2

, o p—=0

{uf—z) ~

- ’;J[)é:

In particular,

33
tan g ~ -%7? for £ =40 and

~r

PO S S
tan 57_2--:‘ for é=1 (é=1-~4, d&<<l).

That is, the slope of G, line tends to zero for sinall charge velociny and becontes large as
3 approaches F.. The meaning of this line that on a particular trajecrory {whicl itself
is the line where field strengths ace maximal) the field strengths become iafinite as one
approaches the point ai which the WKDB method breaks.

On the surface of the cylinder €, (see Fig.1) the field strengths have maxima at those
points where C, is intersected by the trajectories. Among these maxima the most pro-
nounced (i.c.,of the greatest amplitude) are expected to be those which lie near the point
at which C, is intersected by €, {despite the WKB approximation breaking on it}. In
what follows we shall use this fact as a tool for the rough estimation of the position where
the radiation intensity is maximal. This will be confirmed by exact calculations).

Some of the trajectories corresponding to 3, = 0.8, 8 = 0.4 are shown in Figs. 7
and 8. It foilows from them that there are no trajectories intersccting the surface of the
cylinder C, of the radius p = 10 in the interval =100 < z < 0 treated in Fig. 4. This
means that there should be no radial energy flux there. The inspection of Fig. 8 tells

us that for p = 10 the energy flux begins to penetrate the C, surface at the distances
z < —200.

10

6 Numerical results

To verify WKB estimates we evaluated the distiibution of the energy losses o, on the
surface of C, {Fig. 9). [t is seen that the main contribution comes from the region in the:
neighbourhood = ~ —-300. This o, distribution consists, in fact. of many peaks. Its fine
structure in the small = interval is shown in Fig. 10,

The question arises how the trajectories behave for other charge velocities . It follows
from Fig. 5 that for § > 3, the trajectorics are not closed, i.e. they go to infinity as ¢
tends to —oc. The slope of the trajectories tncreases as 3 approaches .. This reflects
the fact that for 5 = J. EMF of the charge moving uniformly in non-dispersive medium
differs from zero only in the infinitely thin layer normai to the charge velocity {6},

Since for 3 > 3. the trajectorics intersect the C, surface at small values of z. one shoubld
expect the appearance of the energy flux there. In Figs. 11 and 12 we present the results
of exact (i.c.. not WKB) calculations of the intensity distribution for 8 = 0.99 and 0.8,

resp. We observe that for 3 > 3. the main intensity maximum lies approximately at
I = —Zy, Z F P — 1. ie., at the place where in the absence of the w dispuersion
(e= e = 5(0) 3= 1/60 ) the Cherenkoy singular cone intersects Che

For # < . the trajectories are closed (Figs. 6.7, 8 and 13). As J decreases, the

Lrajectoties approach the motion axis. In this case, the €, surface is intersected by the

trajectories with large m at larger negative z values (compared to the 3 > o case) and
the intensity maxima should also be shifted to the targe negative 3. This is Hiustzated
by Figs. 0 and 14 where the intensity speetra are shown for 3 = 0.4 and 0.6, vesp.
Consider now the distribution of the radiation Hux on the surface of the aphere S { instead
on the cyiinder surface, as we have done up 10 now). From Figs. 7 and 8 based ow the
WKT estimates and nureerical results presented in Fig. 9 it follows that for J < 4, the
raddial radiation flux is confined to the narrow cone adjusted to the negalive 2 se 1i-axis
(Fig. 15). Its solution angle §; ¢q aals approximately J degeees for Je =08 and == 0.4
This gives a clue for the explanation of experttnents discussed in (15-17L In them for
the electron moving in a gas with a fived energy the radintion inteusity was measured
as a function of the gas prossure. The gas pressure P is related to its density N, by the
well-known thermodynamic relation : PV = &N, T, where 17 is the fixed gas volune. 7
its temperature and k is the Boltzmann constant. The quantities Ne. Wi oand Jeoused in
section 2 are connected with Ny as follows:

2 2 2 wil
=Ny Z, wip = daNe Jm, 3= 53
wiy + i
Here Z is the atomic number of gas. Let the gas pressure, at which 3. = 4. be eqgural
to pe. In the experiments quoted above a sharp reduction of the radiation intensity was

observed for the gas pressure p = p,/100. To this pressure corresponds € << 1 desplte

11



the fuct that J = 3 = 1 (this is possible becanse of the 5 fuctors in the detlnition of &
Wi asseclate this reduction with the natrowing of the radintion cone {xee Fig. 15t

We ronclude that despite the o dependence of €. the critical velocity 3, = 1/ /¢ suili
conserves its physical meaning. thus. separating closed (3 < 4 and unclosed (. > 3,)

trajeciories.

6.1 Estimation of non-radiation terms.

Up to row, when evaluating o, we have taken into account only those terms in £ and f
which contribute to the encrgy losses, Le., to the W given by Eq. {4.1;. They correspond
to the terms of £ and A containing the usual (non-modified) Bessel feactions (see Eus.
(3.2) and {3.3)). However, we cannot use Eqs.{3.2) and (3.3) to evaluate terms with
modified Besse! functions as their contributios to £ is divergent. Instead. the following
trick is used. We find E and H for the complex eiectric permittivity (1.2}, They are
finite for the non-zero value of parameter p defining the imaginaiy part of ¢{.). The
corresponding formulac are collected in section 7. Then, we tend the parameter p defining
the imaginary part of € to zero. We expect that for sufficiently small p we aet the values
of £ and H which adequately describe the contribution of the rerms with modified Besset
functions. There is another approach {28 in which the electric strength £ is not singular
(except for the charge motion axis) even {or real ¢, It turns out that electromagnetic
strengths evaluated according to the forinulae of section 7 are indistinguishable from
those of Ref. {27] when the parameter pis of an owder of 1077 =107 thonnits Wy Inowhat
fotlows, by the words ™ terms with modified Bessel functions are taken into account™ we
mean that the calculations are made by means of formulae presented in section 7 for
p=107%

When the terms with modified Bessel functions are taken into consideration. the
characteristic oscillation of o, appears in the neigbourhood : = 0 (Figs. 16 and 17},
Approximately, for 3 < f3, it is described by the following expression:

2.,
L R gt 247 Pz
’, S e o

corresponding to the energy flux carried by the uniformty moving charge with the velocity
3 < 3. in medium with a constant € = ¢5. As we have mentioned, the terras in (3.2) and
{3.3) containing modified Bessel functions do not contribute to the total encrgy losses
{4.2). I particular, this is valid for o} given by (6.1):

oG

[ odz=0

—o0

(due to the antisymmetry of ). Forz >> pand p >> zlcr; falls as p?/2"% and z/p*, resp.
For f = 0.4 we estimate the value of the term (6.1} in the region z = 300 where o, has

12

maximum (see Fig. 9). 1t turns out that o, = 6- 10%and o) = 5+ 10712 there, ie., the
consribution of g} relative to o, is of an order of 10-7 and, therefore, it is negligible.
For 3 = 0.6 we see in Fig. 14 the o, distribution evaluated via Egs. (3.2) and {3.3) In
which the terms with modified Bessel functions are omitted. Comparing Fig. 9 with 16
and Fig. 14 with 17 we conclude that they coincide evervwhere except for the z = 0
region where the term (8.1} is essential.

For 8 > 3. the contribution of the terms involving modified Bessel functions in {3.2) and
(3.3) is very small. This illustrates Fig. 18 where two distributions ¢, with and without
inclusion of the above-mentioned terms are shown for § = 0.8. They are indistinguishable

on this figure and look like one curve. The same is valid for larger charge velocities.

7 The infiuence of the imaginary part of €

So far, we evaluated the total energy losses per unit length (1) and their distribution
along the z axis (,) for the pure real electric permittivity given by (1.1). Equation (1.2)
is a standard parametrization of the complex electric permittivity ({29, 30]). For the
chosen definition (2.3) of the Fourier transform the causality principle requires p to be
positive.

We write out electromagnetic potentials and field strengths for the finite value of a
parameter p defining the imaginary part of €. Since ¢(—w) = ¢'{w), the EMF can be

written in a manifestly real form

oy
o= 2e j[(e,’lcosa — ¢t sina) Ry — (7 cosa+ e sin o) Ko|dw,
nv H
% 7 . .
A, = — fdw(cos a Ky — sinaky,),
e 3
o0 .
Hy = 2 /wdw{rf + (f)”“[cos(g + )k — sin(%) +a) K,
wre
2
o5 2 -1
E, = "‘iz fwdw{[msa(fr" _ §%) - sinae Ky + [sinafert — °) + cos o JKor
* U
)

7 2 s ¢ ¢
E,= 2 /wdw(az + 634 (e cos o — € sina)(cos S K —sin oK)=
o

Lo, -
—(¢7 cos o + € ' sin o) (sin EA" + cos %Ku)l- (7.1

Here we put

Ko = ReKo(%v‘l - pB%), Ko = meu(%vl - (%),

13



K, = ReKﬂ%Jl Z5%), Ku= Imx.(f’g—’\/l ~ 3%).

Further, ¢, and ¢; are the real and imaginary parts of w

PPN C kU =L
’ (W~ +p2? 7 (g W) Rt
t=e¢f(+ ), ' =—af(e ) a=mwt—2/v);
2_ .2
a=1- 8%~ %2 wy — W b= g%? wp _
5 L 2D + phu? 8 w"’(w?, — %)t + pls?

coséﬂ—iﬂ(1+—a-- 511‘9=Li(1_#a_)11’2
2 V2 Ve + ot ! 2 /20 Vai + b

The energy flux per unit length through the surface of a cylinder of the radius p coaxial

)1/2

with the z axis for the whole time of charge motion is defined by Eq.{4.1). Substituting
E. and H, given by (7.1) into it one gets

where

2¢? ; :
fl) = #%wz(az + 62)1/"{(A’0,K1, + KK )[{est - 39 sing - ¢ cos %!—

(KoK — Ko Kul(e7! = 52)cos§ + b sin %]}. (7.2)

Cousider now the limitp = G .
Let 1 — 3% > @ in this limit, then (see section 3):

sing—ﬂ), cos%—:»l, € — 0, ei“—>0, Ky =0, Ky =0

and, therefore, f() — 0 while electromagnetic potentials and field strengths coincide
with those terms in (3.2) and (3.3) which contain modified Bessel functions.
On the other hand, if in this limit 1 — 8% < 0, then:

sin%s—n(forp:-o), cos%—)O, 60, =0,

2

+ . I . . - . -
where the argument of the Bessel functions is p%l\/il — [%|. Substituting this into (7.2)
and using the relation

I(Or - "%Nﬂv Ko — —%Jﬂs 1\-]r - "'g'-][, I(l;’ — N-h

JATYN (2} = NA) () = _;2;

14

one arrives at o
ety 1

fly = =5 (1= =),

This in turn leads to 31" exactly coinciding with (4.2),(4.3) and {4.4}. Electromagnetic

potentials and field strengths {7.1) coincide with the terms in {3.2) and (3.3) containing
usual Bessel functions.

Now we intend to clarify how the value of the parameter p affects on the radiated

clectromagnetic field. For this we evaluated 6, for 3 = 0.4 on the surface of cyiinder
C,. p = 10 for three different values of parameter p (in units wp): p = 1073 (Fig. 19
p=10" and p = 0.1 (Fig. 20). W observe that for p = 1073 the intensity amplitide
is approximately twice times less than for p = 107 (Fig. 16). For p = 10~% andl p = €1
all oscillations of o, on the negative z semi-axis are washed out while the value of the
term corresponding to the modified Bessel functions in {3.2) and (3.3) remains almost
the same. In Figs. 21 and 22 there are given distributions of the radiated energy on the
surface of o, for 3 = 0.8 and 3 = 0.99 for three different values of p = 107% 0.1 and
1. We note that with a rise of p the oscillations for 3 < 3. are damped much stronger
than for 3 > 5. For example, for p = 1072 and 8 = 0.99 the values of rhe main maxina
onrly stightly reduce {Fig. 22) while for 3 = 0.4 ang the same p the oscillations of the
radiation intensity completely disappear {Fig. 20).
Another observation is that secondary maxima are damped inuch stronger than the main
one. This i easily realized within the polarization formalism. In it a woving chiarae
creates a time-dependent polarization source which, in the absence of damping. osciltats
with the frequency V’w'g 4w}, The oscillating polarization results in the appearance of
seconcdary clectromagnetic waves which being added are manifested as maxima of the
potentials. field strengths, and intensities. The distribution of the polatization souvee Lr
the electrie permittivity {1.2) is given by [14]

2

divl = ;d;r)é(y)w——————ﬁ*_w___‘ ,:;;____2/ 1 exp i =plf — zfue)f2} - sinlyfuf 4w - A - 20
wg +wi — P/

ey
for = < vi and deef = 0 for z > vt {this equation is related to the S N T O
case), As a result of positivity of p, the value of polarization £ at the woment ¢ is defined
by the values of the electric field £ in preceeding times {causality prineiple}. Lo follows
frome (7.3 ) that for large negative values of = the polarization source is suppressed nueh
stronger than for z values close to the cuerent charge pusition.

The position of the first waximum approximately coincides with the position of the
singular Mach cone in the absence of dispersion.

Although the polarization formalism lfeads to the same expressions (3.2).(3.3] for the
electromagnetic potentialy and feld strengths, it presents another. more physical. pou

of view on the nature of the Vavilov-Cherenkov radiation.
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The total energy losses per unit length 3 (in units e*w/c?) and the total mumber
of rmitted photons ¥ (in units elun/he?) as a function of charge velocity 3 = v/¢ for
3, = 0.8 and different values of p are shown in Figs. 23 and 24. In most the cases 117 and
v decrease with the rising of p. The sole exception the origin of which remains unciear
for us is the intersection of N(3) curves corresponding to p = 0.1 and p = 1 (Fig. 24).
The corresponding w« densities (117 = f f(w)dw and v = [ n(w)dw) are shown in Figs. 25

and 26.

8 Conclusion

We briefly summarize the main results obtained:
1. We confirm the famous Fermi’s resuit that a charge uniformly moving in mediumn with
frequency-dependent polarizations (1.1) and {1.2) radiates at each velocity. We prove
that w dispersion of ¢ results ir a rather complicated space distribution of EMF. In par-
ticular, the distribution of the radiation exhibits rapid oscillations behind the moving
charge which differ drastically below and above some critical charge velocity v, which
depends on medium properies and does not depend on the frequency. For v < % the
major contribution to the radiation flux comes from the distant region of space lying
behind the moving charge. The mathematical reason for this is that lines of maximal
radiation intensity are closed for v < v, and unclosed for v > .
2. We analyze how the imaginary part of diefectric permittivity affects the space dis-
tribution of the energy radiated by the uniformly moving charge. It turns out that the
switching on the imaginary part of ¢ results in a considerable reduction of the intensity
radiation for ¥ < v and in the attenuation of secondary maxima of the radiation intensity
for v > ve. .

We believe that results obtained in this paper may be useful for the analysis of the

experiments recently discussed in [15-17].
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Figure 1: Schematic presentation of the Cherenkov cone for a constant electric permittiv-
ity. The radiation field is confined to the surface of the cone, the field inside the cone does
not contribute to the radiation. Ou the surface of the cylinder C, the electromagnetic
field is zero for z > —z and infinite at z = —2; &, Means the radial energy flux through
the cylinder surface.

F(p)

0.0% [

1€-3

Figure 2: The radial energy losses per unit length (in units e*wf/c?) as a function of
8 = v/ec. The number of a particular curve means the critical velocity ..
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Figure 3: The distribution of the radial energy flux (in unis e*w}/c: on the surface of Figure 5: Space distribution of the m = 1 trajectory for charge velocities 3 > Je. The
the cylinder C,, z is in units ¢/wo. The number of a particular curve means 3=x/c slope of the trajectory increases as 4 approaches 8.
T T T T T .
p.=08 J
p=10 T
0
z
-1 T T T T T
100 -30 -60 -40 20 0
z Figure 6: Space distribution of the m =1 and m = 2 trajectories for 3. = 0.8 and
3 = 0.799. The trajectories for 3 < #. are closed (in contrast with the .4 2 4. case shown
Figure 4: The same as in Fig.3, but for 8 < 4. in Fig. 5). Numbers 1 and 2 mean the branches of a particular tfrajectory.
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Figure 9: The distribntion of the radial energy flux (in units elwd/c?) on the surface of
the cylindec €, for ;3 = 0.4; z is in units ¢jwo. It is seen that the main contribution
comes from large negative z.

Figure 7: Space distribution of the selected trajectories for 3. = 0.8 and 3 = 0.4.
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Figure 8: The same as in Fig. 7 but for the different z interval. -305 300 -295

Figure 10: Fine structure of the radial energy fiux shown in Fig. 9.
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Figure 11; The distribution of the radial energy flux (in units e%3/¢>) on the surface rujectory e : :
of the eylinder C, for 8. = 0.99: 2 is in units ¢/wy It is seen that the main contribution the trajectorias are grouped near the » axix. This shifts the maximum of the enerpy flux
comes from the small negative values of z. distribution to larger negative &

Pigure 130 The bebaviour of the m = 1 trujectory for g=04and J=06 For 3 <3
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i
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400 300 200 00 a
; z
Figure 12: The same as in Fig. 11 but for 5 = 0.8. The radial energy flux is distributed Figure 14: The same as in Fig. 7. but for the charge velocity J = 0.6.
in a greater z interval.
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Figure 15: For the charge velocity /3 below some critical S; the radial energy flux is
confined to the narrow cone attached to the moving charge. For 3, = 0.8 and § = 0.4
the solution angle 8. == 3°.

T T T ¥
-400 -300 -200 -100 ¢
z

Figure 16: The same as in Fig. T, but with the inclusion of the non-radiating term
corresponding to the electromagnetic Reld carried by a moving charge.
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Figure 17: The same as in Fig. 16, but for the charge velocity § = 0.6.
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Figure 18: For § = (3. the energy fRux distributions with and without non-radiating term
are practically the same: they are indistinguishable on this figure. The same is hold for

8> L.
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Figure 19: The switching on the imaginary part of € (p = 107°) reduces the oscillation

amplitude approximately by a factor of 2 compared to that for p = 107 (see Fig. 16)
The non-radiating term is practically the same as in Fig. 16.

0
z
Figure 21: Shows how the inclusion of the imaginary part of € affects the energy flux
distribution. The number of a particular curve means the parameter p. The charge
velocity is 8 =0.8.
T ol 1] T T T
4 o 20 T T r
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T 1 ¥ T T
400 -300 <200 100 0
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Figure 20: The radial energy flux for p = 1072 and p = 10", The oscillations completely
disappeared, but the value of the non-radiating term remains practically the same

Figure 22: The same as in Fig. 21 but for the charge velocity 3 = 0.99. Comparing, this
lesser for larger 3
26

figure with Figs. 18-21 we observe that the switching on the imaginary part of ¢ affrets
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Figure 23: Shows how the inclusion of the imaginary part of ¢ affects the total energy
losses W per unit length. The number of a particutar curve means the parameter p;
W and p are in units e?wf/c* and wy, resp.

Figure 25: Spectral distribution of the energy losses (in units efwg/c?); w is in units wp.
The number of a particular curve means the parameter p.
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Figure 24: The number of quanta emitted in the radial direction per unit length (in units Flgu’Ir‘; 2 S;la)ectr:;l dIStrtl'builon . th:n:fﬂl:t:fcliequaﬂﬁe(tz e
ewo/hc?) as a function of the charge velocity 3 for differeat values of the parameter p. Wor T RUlberof & partictar e ’ :
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