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1 Introduction 

The speciflc electromagnetic radiation produced by fast electrons moving in medium was 

observed by P.:\. Cherenkov in 1934 [1]. Tamm and Frank [2J considered the motion of 

a point charge in medium with a constant electric permittivity. They showed that the 

charge should radiate when its velocity exceeds the light velocity in medium. For the 

frequency independent electric permittivity the electromagnetic strengths have 8-type 

singularities on the surface of the so-called Cherenkov (or Mach) cone [3-6]. This leads 

to the divergence of the integrals involving the product of electromagnetic strengths. In 

particular, this is true for the total flux of electromagnetic field (EMF). To avoid this 

difficulty Tamm and Frank (see, e.g., Frank's book (7]) made the Fourier transformation 

of EMF and integrated the energy flux up to some maximal frequency w0. 

The goal of this treatment is to consider consequences arising from the uniform motion 

of a charge in the nonmagnetic medium described by the frequency-dependent one-pole 

electric permittivity 

and its complex counterpart 

w~ 
<(01) =I+ w5 _ w2 

w' 
e(w)=l+ ' 'L .. 

w0 - w + t]X.<J 

(1.1) 

(1.2) 

These expressions arc suitable extrapolations between the static case w = 0, €(:.;) = 

€o = 1 + w'ffr..:'g and the high-frequency limit w =co, t:(w) = l. In the usual interpreta

tion w~ and (k.'o are the plasma frequency wl = 4rrNt-e2fm (Nt-is the number of electrons 

per unit of volume, m is the electron mass) and some resonance frequency. Quantum· 

mechanically, it can be associated with the energy excitation of the lowest atomic leveL 

Our subsequent exposition does not depend on this particular interpretation of u.·~ and 

w,. 
In what follows we shall use the quantity .Be= 1/ J1 + wifwfi. It plays a major role even 

if the frequency dependence of € is taken into account. In the absence of dispersion it 

coincides with the light velocity in medium. It is seen that 13c changes from .Be = 0 for 

N >> 1 up to f3c = 1 for N = 0. Vle refer to these limit cases as to optically dense and 

rarefied media, resp. 

Equations (1.1) and (1.2) are standard parametrizations describing a lot of optical phe

nomena [Sj. They are valid when the wavelength of the EMF is much larger than the 

distance between the particles of medium on which the light scatters. The typical atomic 

dimensions are of an order of a::::::: hfmca; Ct = e2 /he, m is the electron mass. This gives 

>. = cfw >>a or w << mc2et/h z 5 · 1018sec-1• The typical atomic frequencies are 

of the order wo::::::: mc2 jha2
::::::: 1016sec- 1. As w << w0 , the physical region extends well 

beyond wo. For w >> wo, t:(w):::::: 1, that is, medium oscillators have no enough time to 
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be excited. Following the book [9] and review (10] we extrapolate parametrizations (1.1) 

and (1.2) to all w. This means that ,..,.e disregard excitation of nuclear levels and discrete 

structure of scatterers. 
In Eq. (1.1), t:(w) is negative for w5 < w2 < w5 + w~. For the free electromagnetic 

wave this leads to its space damping in this w region even for real t:(~) (see) e.g., [9]). 

For the EMF radiated by a moving charge the conditions for EMF damping are modified 

(see sections 3 and 4). 

Strictly speaking, Eqs. (1.1) and (1.2) are valid for media with <o"" 1 (e.g., for gases). In 

what follows we apply Eqs. (1.1) and (1.2) to fictitious medium with {3, ~ 0.8, n ~ Fo = 
1/ !3t- = 1.25. For such a value of the refractive index none should use Clausius-).'[ossotti 

(or Lorentz-Lorenz) formula [13]. However, as it was admitted in [14], the qualitative 

predictions ai-e the same for both these representations of c. As our consideration is pure 

qualitative at this stage, we restrict ourselves to the c representations (1.1) and (1.2). 

\Ve intend to consider the effects arising from the uniform charge motion in medium 

with <(w) given by (1.1) and (1.2). Partly this was done by E. Fermi in 1940 [11]. 

He sho\ved that a charged particle moving uniformly in medium with permittivity (1.1) 

should radiate at every velocity. He also showed that energy losses as a function of the 

charge velocity are less than those predicted by the Bohr theory [12]. 

However, the follmving questions remained unanswered: 

I. Ho\v the E:\.fF strengths and energy flux are distributed in space? In varticular, what 

is their angular distribution? 

2. How these distributions depend on the charge velocity? In particular, hmv the transi

tion takes place from the subluminal regime to the superluminal one? 

3. How the value of parameter the p defining the imaginary part of c affects the energy 

losses, electromagnetic strengths, etc.? 

In this consideration we restrict ourselves to the classical theory of the Vavilov

Cherenkov radiation with electric permittivity given by (1.1) and (1.2). It is suggested 

that uniform motion of a particle is maintained by some external force the origin of which 

is not of interest for us. 

The plan of our exposition is as follows. 

In section 2, necessary mathematical formulae are presented. 

In section 3, we present in a manifestly real form the electromagnetic potentials and field 

strengths for a charge moving uniformly in a dielectric with c(w) given by (1.1). 

In section 4, we evaluate the energy losses as a function of the charge velocity for c given 

by (1.1). This dependence shows that the moving charge radiates at each velocity. In 

the same section, we demonstrate how the energy flux is distributed over the surface of 

a cylinder coaxial with the charge trajectory. It is shown that for the charge velocity 

greater than some critical one (we designate it as vc) the main contribution to the energy 

flux comes from the space region where in the absence of w dispersion the Cherenkov cone 
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intersects thf' cylinder surface. The rapid oscillations of the energy flux arc obsf'rn~d in 

this region. For v < rc this spacr n~gion contributes practically nothing to the rnNgy 

fiux. This ser-ms to lw in conflict with the energy losses obtained earlier [1-lj. 

This inconsistency is di~cussed in section 5. l"sing the \\"KB approach as a rough PSI im;Hc 

we show that for v < t"c main contribution to the energy losses comes from the spacr 

region sufficiently remote from the onr mentioned abo\·e and lying behind a moving 

charge. :\ posteriori we confirm this by direct calculations presented in sect. 6. In thP 

same scctiou, we use these rC'sults .a..<> a hinr for the explanation of experiments discussed 

recently in [15-1i]. 

In section i, we analyze how the radiated energy ftux and its space distribution dC'pcnd 

on the value of the parameter p defining the imaginary part of f. It turns out that fnr 

t~ < Vc the radiated energy flux is dampr.d much stronger than fort· > t'c· Further. for 

!' > Vc the secondary maxima arP attenuated murh stronger than the main one .. -\s a 

result. for a sufficiently )arge p only thr main maximum Sur\·ives for v > r,.. 

Short account of the results obtainC'd is giwn in sect. 8. 

2 Mathematical preliminaries 

Consider a point chargee uniformly moving in a non-magnetic medium with a w\ociry 

t' directed along the z axis. Its charge and current densities are gi\·en by 

p(r, t) ~ r6(.r)S(y)6(o- d), j, ~ Fp. 

Th('ir Fourier transforms arc 

p(k,w) ~ J PW t) exp[i(kf- '"t)]d3rclt = 2r.e6(,;- ki'). _io(f..·) ~ <"p(L.:). 

In the {f,:: ... :) space the elcct.romagnetic porrntials are given by (sN', ('.g .. [lS]) 

<~(k,w) ~ 4r. p(k,w) 
€ ~-, -crt 

A,(k,w) ~ 4;rU , 1:(k.~f d = ,-jc. 
"- -,:;f 

(~.1) 

Here f(~) is the e[ectric permittivity of medium. In this ~ertion. its fn•<pwury d('IH'tt

dence is chosen in a standard form (1.1). In the usual intcrprE.'tation _,_.,, and :.....· 0 an· tlw 

plasma frequency wl = 4;; N,.c2 Jm ( Nr is t.he number of electrons pC'r unit of volunw. 111 

is th(! electron mass) and some resonance frPqneur.v. Quant.um-HH'C"hani("a!ly. it t·an lH" 

<lSsociatec\ with the energy excitation of the lowest atomic ]('V<'l. Our :-:ubs('qll('!lf (":\]H!

sition docs not depew! on this particuhn interpretation of r...·1• am\ v..·\l· Tlw static limit 

of e:(w) is to= t(::....r = U) = 1 + wUw&. t(;.;;) has poles at w = ±'"'-'·n· B('ill!!, po~itin• f1>1 

'-<.1 2 < w~ it jumps from +co to -cc when one cros..-;es the w2 = v...•5 point; f(w) Ita.-; zt·rn at 
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JJ'
2 = w5 + w't and tends to unity as :.;.1 _,. oc. Correspondingly. 

,-'(w) = 1 
2 "'r. 

w& + :..;l- ;.,;2 
(2.2) 

has zero at w2 = wJ and a pole at v.P = w~ = wJ + w'[. As it has been admitted in 

[10], the inclusion of w dependencies in ! effectively takes into account the retardation 

effects. The very fact that the light velocity in medium Cn is less than the light velocity 

in vacuum c means that oscillators of medium react to the initial electromagnetic field 

with some delay {see section 5, for details). The deviation of en from c is due to the 

deviation of! from unity. For the incoming plane wave and frequency-independent ! this 

was clearly demonstrated in refs. [19-2lj. At first glance it seems that en will be greater 

than c for! < t. However, a more accurate analysis shows [9] that the group velocity of 

light in medium is always less than c. 

In the f, t representation <l>(i', t) and A(r, t) are given by 

<l>(r,t) =_::__I dw eiwi<-•M ~dk Jo(kp), 
r.v ! k2 + ~{1- (J2!) 

A.(r~l) = -"--ldweiw(<-</') :dk J0(kp). 
• ;rc k' + ;;,-(1 -if'<) 

(2.3) 

First, \Ve take integral over k. For this, we use the Table integral (see, e.g., [22j) 

00 

I kdk 

0 

k' + q,Jo(kp) = K0(pq), (2.4) 

where in the right-hand side the value of the square root .fill corresponding to its positive 

real part should be taken. 

3 Electromagnetic potentials and field strengths 

VVe write out nonvanishing components of the electromagnetic potential, field strength 

and induction: 

e joo dw •• <I> = - -e K 0 (kp), 
iTV ! 

-00 

00 

A,=-"-- I dwe'"K0(kp), 
7rC 

-00 

e loo . 
H• =3D,= - dwe'"kK1(kp), 

7rC 

e loo dw 
E, =- -e'"kK1(kp), 

trV € 
-00 

E, =- ie
2 

1
00 

dww(1- 3~ )e'" Ko(kp), 
7rC € 

-00 

-00 

. 00 

D, =..;I dww(1- 32<)e'"Ko(kp). 
1rV 

-00 

4 

(3.1) 

Here a= w(t- z/v), k2 = (1- 32<)c:2/v2 Again, kin Eq.(3.1) means the value of 

Vf2 corresponding to Rek > 0. 

These expressions were obtained by Fermi [11]. Their drawback is that modified Bessel 

functions K are complex even for real E (when 1- /32e < 0). \Ve now present Eqs. (3.1) 

in a manifestly real form. This greatly simplifies calculations. 

At first, we define domains where 1 - /32 € > 0 and 1 - {J2E < 0. 

For 3 < 3, one has 

1 - j32e > 0 for w2 < w~ and ().,'2 > w5 and 1 - /32
€ < 0 for w~ < w2 < wJ. 

For {3 > !3c one gets 

1 - {J2e > 0 for w·2 > w5 and 1 - {32e < 0 for 0 < w2 < wS. 
Here w~ = w5(1- e), € = ;32r 2 f.B;"f;, !3; = 1/eo. In what follows we shall. 

refer to f3c. as to the light velocity in medium. It turns out that equations defining 

electromagnetic potentials and field strengths are essentially different for {3 < f3c and 

{3 > 3,. For 3 < 3, one gets [14]: 

_ 2e lw, 1
00 

dw e lw'dw . 
<l>(r,t) = -( + )-cosaKo+- -(smaJo-cosaNo), 

iTV! V! 
0 wo w~ 

2 
We 00 ~ 

A,(i',t) = "~(~ + jJdwcosaK0 + ;1 dw(sinaJ0 -cosaNo) (3.2). 
0 WO We 

2
wcOO wo 

H¢(i', t) = _e (I+ l)wdwJI1- 3'<1 cos aK1 + .!'.. lwdw/11 - {J'<I(sinaJ, -cos aNt), 
iTCV CV 

0 - ~ 
We 00 wo 

2e I I 1 . • I 1 . E,="c'( + )(1- ,
32

)wdwsmaKo-c; (1- ,
3

,)wdw(Nosma+Jocosa), 
0 ~ ~ 

We 00 WO 

E, = 
2
e, (I+ l)dw"!.JI1 - 3'<1 cos aK1 + e, I dw"!.j11 - 32<l(sin aJ, -cos aNt). 

r.v ! v ! 
0 WO We 

On the other hand, for 3 > 3, 

_ 2e 1
00 

dw e lwo dw . 
<l>(r,t) =- -cosaK0 +- -(smaJo- cosaNo), 

lTV ! V ! 
Wp 0 

00 wo 

A,(i',t) = 
2eldwcosaK0 +~1dw(sinaJ,-cosaNo). (3.3) 
7rC C 

Wp 0 

00 wo 

H•(r, t) = ~ lwdwJj1- 3'<1 cosaK1 + .!'.. lwdw/11- 11'<1(sinaJ,- coso.Nt), 
1rCV CV 

Wp 0 

2e loo 1 . e 1'"" 1 . E, = -
2 

(1- -
3

,)wdwsmaKo- 2 (1- -
3

,)wdw(Nosma +Jocosa), 
1rc ! c e 

Wp 0 
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Oe joo . . e ;"" " I 
Ep = --- dt...;·=-)\1- .32f..icosaK, + 2 d;,:.,•:::_v \1- .:J2tj(sino:J1 - cosa:.\"1). 

r.v2 t v t 
wo 0 

Here a= w(t- zjt). The argument of all the Bessel functions is Jll- J2f..jp..-;fu. 

\Ve observe that integrals containing usual (J. lv") and modified (K) Bessel functions are 

taken over space regions where 1 - {J2f < 0 and 1 - j32c > 0, resp. Obviously. there is no 

damping of the E?v[f radiated by a moving chmge for 1 - ,82f.. < 0 and there is damping 

for 1 - f3 2e > 0. 

The Fourier components of 1> and E have a pole at w 2 = r...,•j = &.•J + ~..<-{ This leads 

to a divergence of the integrals defining <P and £. It turns out that only their non~ 

divergent parts (containing non-modified Bessel functions Jf.l and J'v~ contribute to the 

radiation (see 1he next section). The divergent terms containing modified Bessel function 

KJJ. describe the electromagnetic field carried by a moving charge. They become finite 

when the compex electric permittivity (1.2) is used (see sections 6 and 1}. 

4 The radiated energy flux 

We evaluate now the energy flux per unit length through the surface of a cylinder C., 

(Fig.l) coaxial with the z axis for the total time of motion. It is giveu by 

+::>e 1 +::>e 

vV= I apdt=; I apdz, 
-::o -()0 

c - - c 
a,= 2;rpS,. S, =-(Ex H),= --E,H •. 

4;;- 4;r 
(·U) 

Substituting here Ez and H<:- given by (3.2) and (3.3) and taking into account that 

00 

j dtsinwtcosw't = O, 
00 J dtsinwtsin:Jt = n[o(w- w')- o(w + w')), 

-= -00 

00 

I dt cos:..Jt cosv . .:'t = n[S(JJ- w') + O(:.v + 0..1')], 
-oo 

've get for energy losses per unit length 

e
2 j 1 

IV= 2 wrfw(l- -{3
2

). 

c ' 
/3~(>1 

(~.2) 

This expression was obtained by Tamm and Frank [2J. Inserting iz1to it c(w) given by 

(1.1) we get 

e
2 ;"'~> 1 e2 ;..;~ 1 2 

W = C' w<L(1- ,,1,) =- Zc'J'72 [1 + 
13
,tn(1- {3 )] 

w0 
C C 

(~.3) 

6 

~-

for 3 < .3c and 

2 V.:(l 2 2 

1\' = ~ j w<L(1- ,~2 ) = e
2
;;

0
[-

3
,t_, + J';,_,2 ln(":;)] 

0 I c 'c 

(n) 

for B > (jc· Similar expressions were obtained by E. Fermi [11]. The validity of Eq.(-L2) 

is also confirmed by the results obtained by Sternheimer [23] (whose equations pass into 

(4.2) in the limit p--> 0) and Ginzburg [24]. 

We observe that only those terms in (3.2) and (3.3) which cont<~in the usual Bessel 

functions (Jjl. and N,..) and correspond to 1- .62€ < 0 region without damping contributP 

to the radial energy flux for the total motion time. This permits us to a,·oid troubles 

with the above· mentioned pole of C 1 (at:..;= :...·3 ) which appears only in terms containing 

modified Bessel functions in the damping region where 1 - {Jl€ > 0. 

For /3 --l- 0 the energy losses H. tend to 0, while for .3 --l- 1 ( only this limit was 
f1w'l 

considered by Tamm and Frank [2]) they tend to the finite value 2ci;JP-r·l ln{:·;). 

In Fig. 2, we present the dimensionless quantity F = l-t'/(e2:. • .:5fc2 } :.S ~a function of tht• 

particle velocity {3. The numbers at curves mean ,Be. The vertical lines with arrows dividC' 

each curve into two parts corresponding to the energy losses \Vith velocitil's j3 < J,. and 

/3 > f3c and lying to the left and right of vertical lines, resp. WC' S('C that thC' charg(' 

uniformly mo~ring in medium radiates at every velocity. 

Exactly the same Eq_s. (4.2)-(4.4) are obtained if one starts from the complex €(.:....:} giwn 

by (1.2), evaluates electromagnetic strengths and radial energy flux and then takC's tlw 

limit p --l- 0 in them. This is done in s()ction 7. 

For frequency-independent electric permittivity (c = €0 ) the energy flux is infinite on 

the surface of the Cherenkov-Mach cone. On the surface of Cp it acquirPs th(' infinite 

value at the place where Cp is intersected by the above cone. lnsiclr thE' ~lach coul· thr 

electromagnetic strengths fall as r- 2 at large distances and, therefore, do not contributt' 

to the radial flux. 

The distributions of the radial energy flux ap = 2rrpSP on the surface of thC' rylindN 

CP of the radius p = 10 (in units cjw0 } are shown in Figs. 3 and 4 for tlH' valur 

f3c = 0.8 and different charge velocities /3. It is seen that despite the '"'-' d<'prndl'ncr of 

€ the critical velocity (jc = 1/ Fo has still a physical meaning. lndC'cd, for !3 > J,. the 

electromagnetic energy flux is very small outside the Mach cone exhibiting oscillation:-: 

in its neighbourhood. For f] < (jc the radial flux diminishes and brcomcs nrgligihlt• f01 

/3 :S 0.4 (Fig. 4). This disagrees with Fig. 2 where for f3r:: = 0.8 onr sres thl' finit.t- valtw 

of energy losses for {3 = 0.4. In the next section, we remow this in<"ousist.C'ney. 

So far we considered the distribution of the Er.·IF on the surface of Cp at t.hr fixrd nwnu•nt 

of timet. Since all electromagnetic strengths depend on z and t via tiH' combinat.iou :; -d. 

the periodic dependence of time should bP observed at a fixed spatial point. 
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5 WKB estimates 

Fo:- large ,-alues of p the radiation field (dcsc:ribed by the integrals in (:3.:21 and (.3.3) 

containing usual Bessel functions) can be handled by the \VKB n1ethod. \\.f' closely 

follow Tamm 's paper [2.5] (see also the review [26] and book [27] ). The electromagnetic 

strengths and radial (i.e., in the p direction) energy flow have sharp maxima on some 

space surfaces. In the p,:; coordinates these surfaces can be drawn (due to the axial 

symmetry of the problem) by the lines. \\"e refer to them as to trajectories. Different 

trajectories are labelled by the integer numbers m. For the electric penetrability taken 

in the form (1.1), rn runs from 1 to cc. \Ve make the notation x; = 1- €, € = /J2"";,2 /.'3'!.7}

The trajectories can be parametrized by the equation 

• m;ccB
1
. 2 'J 

vt- z = -.-· '- (x - 1)·. 
"'-''ot:x3 

p = m":·B·; (1- x')'i'(x'- x;)'i'. 
:.JoEx3 

\\·e consider cases (3 > .Be and j3 < f3e separately. 

5.1 Charge velocity {3 exceeds critical velocity {3, 

(5.1) 

It turns out that x; < 0 for f3 > l3c. In this case x runs in the interval 0 < x < 1. The 

particular trajectory begins at the point x = 1 where vt- z = m-;;cj:..J0 and p = 0. The 

slope of the trajectory is 

(1 _ x2)3l2(x2 _ x~)l/2 

tan B = •t • ( , )' (- xw - 1 

\\'hen x decreases both vt - z and p increase. For very small x 

m1r'c:3 _ 
ot-z--_-· (<-1), 

WoEX3 

m;rcfJ/ .j; _ l. 
P - --.-,· 

woa· 

The asymptotic slope of the trajeCtory is 

" P (.B' )-112 tanu=--"-' ---:--1 . 
vt - z .a~ 

It is seen that the trajectory slope increases when j3 approaches .Be (Fig. 5). 

Let 1,; = c, i.e. the charge moves with the light velocity in vacuum. Then, 

Eliminating x one gets 

vt - z = m1rc 
wox3' 

m.-rc 
P = --{3 -y (1- x2

)3i 2 
x3wo e c . 

P = {J,,,(ct- z)[1 - ( mrrc )'I'J'I'
wo(ct-z) 

For large ct- z the trajectory is linear: p = .Be'Ye(ct- z). For f3e --t 0 the trajectory 

approaches the motion axis. 

8 

Let .B be s!ightly greater than f3e: 

€=1+6, 0<1<<1, 

i.e .. charge moves almost with the light velocity in medium. Then, in the limit 0 --t 0 

one gets 
mrrv (? ') 

~·t - :: = -- ~ - X • 
_ m1rv~r ( 1 _ x2f/2_ 

p - WoX2 

Excluding x we obtain 

WoX 

mr.cf3,·1, [yj2+y'J4- 1 - y2 j2J312 

p= 
wo y'+2-yJ2+y2 j4 

Here y == w0 (vt- z)jm-;rc.f3e. At large distances one has: 

w,,, ( )' 
p- --- vt-z . 

4mrrcBe 

That is, p increases quadratically with the rise of vt- z. 

5.2 Charge velocity {3 is less than the critical velocity {3, 

(5.2) 

F'or {3 < f3c one has l < 1 and x; > 0. The trajectory parametrization coincides with 

(-5.1) when xis in interval v'4- 3€- 1 < x2 < 1. \Ve refer to this part of trajectory as 

to branch 1. For !3 < !3c and 1- i < x2 < J4- 3€- 1 the parametrization is given by 

Eq.(5.1) in which m should be changed by m- l/2. This part of trajector.v is denoted 

a.<> branch 2. These branches are marked by numbers 1 and 2 in Fig. 6. It is seen that 

p vanishes for x ::= Xc and x = 1. The corresponding vt- z lie on the branches 1 and 2. 

respectively . .-\s the values of vt- z for \vhich p:::;: 0 are finite, the trajectories are closed 

for /3 < .Be-
Let ;3 be slightly Jess than f3e, that is 

<=1-o, 0<5<<1, 

i.e., charge moves with the velocity slightly lesser than the light velocity in medium. 

Then, parametrizations of vt - z and p are still given by (5.2) in which x changes in 

the interval 36/2 < x2 < 1 for the first branch and in the interval b/2 < x 2 < 3r5/2 for 

the second branch. This means that the first branch of the m trajectory for j3 = .ae - r5 

continuously passes into the corresponding m trajectory for (3 = f3e + 0 J ... 0 --t 0. 

As to the second branch, in the limit 8 -t 0 it degenerates into the almost vertical 

line. It begins at z = (m- 1/2)7rc{J/wo../J where p = 0 and terminates at z = (m-

1/2);rc{J4../2/(3V3wo../J) where p = 2(m- l/2)7rcf31/(3./3w05) (see Fig.6). 

Let € -)- 0. This may happen when the charge velocity is much less than the light 

velocity in medium. Howeve'"' this condition may be also fulfilled when ,B z f3e ~ 1, but 
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3c is much closer to 1 than 3. This is possiblr~ because of the A/ factors in t!w ddb!tion 

of e. In both ca:-leS one has 
m::-r 

1:t - z .....,. --, p __,. 0. 
: ... :a 

This means that radiation flux is concentrated behind the chargl' on the motion axb. 

The WKB approximation breaks at the neighbourhood of x = :rm = ( /--1 - 31- lJi-'2 . 

This value can be- reached only for S < 3c. The values of z and p at thosr points arc 

( ) . 
4rnr.c.3 l + J 4 - 31 - 2 

vt- z . ......, . 
' o:ol ( J 4 - 3i - 1 )312 · 

P:-
rnccc3-, (i + ~- 2) l/2 (2 - ~)'12 

cooi (v>~-3i-1)'!2 

for the branch 1. For the branch 2, m should be changed by m - 1/2. The slope of the 

line Cm (strictly speaking, it is a cone rather than thr line, but in thr (p. z) plane it looks 

like a lin(' (Figs. 7 and 8)) passing through the discontinuity points is given Ly 

In particular, 

ta:: 0 ~ 'f (2- .;:r=3<)'i' 
4 (v4- 3i _,_,_ 2J'i' 

tanO- ~J3 _ w~·f ff)r 

1 -, - ' tan B ""' ---;::::--;:::: for E -7 1 
2 .. ./".2v'd 

i-tO and 

(i~ 1-S. 6 << 1). 

That is, the slopr of C, litH' tends to zNo for small charge n~locity and IH'<"Otllt':-. lar).'..~' as 

J approaches .3'-'. The meaning of this liuc that on a particular trajectory (whil"h itself 

is thf) lin~ where field stn•ngth.s ar(' maximal) t.he field strength~ IH~cOl!H' infinit.(• as one 

approaches the point at wh!ch ttlc \\'l\:8 rnethod breaks. 

On the surface of the cylinder CP (sec Fig.l) the field strengths have maxima ai tho~c 

points where Cp is intersected by the trajectories .. ·\mong these m<txima t.h<' most pro~ 

nounr.:ed (i.e., of the greatest amplitude) are expected to be thos<~ which lie near the point. 

at which Cp is intersected by C,11 (despite the \-VKB approximation breaking on it). In 
what follows we shall usc this fact as a tool for the rough estimation of thP positiou where 

the radiation intensity is maximal. This wil! be confirmed by exact calculation~). 

Some of the trajectories corresponding to .3c = 0.8, S = 0.4 arc shown in Fig~. 7 

and 8. It follows from them that there arc no trajectories intersecting the surface of the 

cylinder Cp of the radius p = 10 in the ·inter\"al -100 < z < 0 treated in Fig. -i. This 

means that there shou!d be no radial energy flux there. The in~pect.ion of Fig. 8 tells 

us that for p = 10 the energy flux begins to penetrate the Cp surface at the distances 

z s -200. 

10 

6 Numerical results 

To w•rify \\'I\:I3 estimates we evaluated the dist.tibution of the energy losses a,., on the 

surface of Cp (Fig. 9). It is seen that the main contribution comes from the region in t!w· 

neighbourhood ::""' -300. This ap distribtltion consists. in fact. of mauy peaks. Its fine 

structure in the small .: intcn·al is shown in Fig. 10. 
The question arises how the trajectories behave for other chargP wloritirs /]. It follow:; 

from Fig. 5 that for .U 2: Be the trajectories arc not closed, i.e. they got\) infinity as :: 

tends to -::x:. The slope of the trajectories increases as .B approachf's 3c· This refit'crs 

the fact that for 3 = .Jc E:..IF of riH' charge moving uniformly in non-dispersive nwdiu:n 

differ~ from zero only in the infinitely thin layer normal to the chargr n'locity [6]. 
Since for f3 > 3c the trajcrtorics intersect the Cp surfar<' at small valurs of z. OIH' should 

expect the appearance> of the energy flux thC>rc. In Figs. ll and 12 we present the results 

of exact (i.e., not \-VKI3) calculations of the intensity distribution for /3 = 0.99 and 0.8. 

resp. We observe that for /3 > .3c the main intensity maximum lies approximat('ly at 

:: = -Zc, z'-' = pJ fJ - 1. i.e., at the place where in the absC'nce of the ;.,.,· dbJH'r~ion 

(E = to= t(O) . .3Z = 1/t:o) the Cher('nkov singular cone intersect~ CP. 
For j} < 3c the trajectories art' dosed (Figs. 6. 7, 8 and t:J). As J dcrn•ast':->. thl' 

trajectories apprvach thr motion a-xis. In this C<\..'\C, the Cp surfacr is intcrs!'rtt•d b_\· the 

trajectories with large mat larger negative z nllUl'S (compared to the .J > d.- c<l~t') and 

the intensity maxima should also be shifted to the large ncgatin• ::. This is i!lu.-.t:<th'd 

by Fil!:S. 0 and 11 \Vherl' the intcnsit..v spectra are shown for :3 = O.·l and O.G. resp. 

Consider now the distribution of the radiation tiux 011 the smface of the :'p!H'rt' S ( inst\'i\d 

on the cylinder surfaC'~, a.s we haVl' doll\' up to now). From Fig~. 7 nnd 8 bas('d (lit tb• 

\\'I\:8 <'Stimates and numerical result~ prrscnted iu Fig. 9 it follows that for_J < .J,. thl' 

radial radiation flux is confined to the uarrow cone adjusted t.o the ut•gati\·t•:: sl'mi-<t:-:i;..; 

(Fi~. 15). Its solution a.ng,le Oc cqaals approximately 0 <kgrt'CS for J,. = 0.8 aud .1 c-: 0.-L 

Thi~ gives a clue for the explanation of exprrim('nt.s discuss<'d in [15-17]. In tht'Ill. f,lr 

the electron moviug in a gas \vith a fixrd rnergy the radiation inU'll:'it_\· was llll'<1:'1lt"t'd 

a...c; a function of the ga ... ') pn':.;surc. The ga .. s pressure Pi~ related to it:-; den~it_, . .\"~1 !>y thl' 

wel!-known thermodynamic relation : rv = k.VgT, wiH'rC' \. is the fixl'd ~il~ \'Oill!llt'. T 

its temperature and k is the Bolt.zmanu constant. The quant.iries ..\',. . ..._'f. and ,J,. ll:-.t·d ill 

scct.ion 2 arc connected with N9 a..;; follows: 

lv'r = N'J · Z, '-"·i. = ·i::-!.V,.c2 /m. 
' w,. ,, --- ..• ,. 

.J; = u.:J + u.:i. 

Here Z is the atomic number of ga..'>. Let t.IH' gas pressml'. at whil'h ;'-J,. = .i. IH' t<qt:;d 

to Pc· In the experiments quoted above a sharp rNluctilm of t.h<' radiation intt·n~it_\· \\"<1."' 

observed for the gas pressure p::::::: p,./100. To this ptTSSUfl' corn'.sponds i << l dt·:-;pif(' 
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the fact that J :=:::: 3,. :=:::: 1 (this i:-> possibk lwc:albP (,(" r!Jt' 1 f<lctrJr~ ~n ti:,· ddi<:irio:t of f). 

\\"e ass(;ciate this reduction with the narrow:n~ ()r th\' nvli:tt~,,n rnnf• (."Pi"' Fi.;.;. t.~,;_ 

\\"p rc,nclude that dcspitf' rhr· ..,_· depende:Kf' qf f. thf' critical velm·ity .i, :::: 1/ viiS std! 

consen·cs its physical meaning. r.hus. Sf;paratitlg c]c,sed (.3 < .. f~) <tnd uuclospd (.3 > J,.) 

trc\jectorics. 

6.1 Estimation of non-radiation terms. 

l'p to now, when e:,a.!uating crP we have taken int•) acrount only tho:-;r• tl'rms iu £ ;u:d Ii 

which contribute to the energy lo;;scs, i.e .. to thP W given by Eq. (-Lt). They cotT\'spond 

to the terms of£ and J! co:1taining the usun! (nou~modifit•d) [ksscl ft:::cti01:s (~el' Eqs. 

(:3.2) and (3.3)). However. we cannot usc Eq~.(3.2) and (3 .. 3) to C'\·aluate tcm:~ wirh 

modified Bessel functions as their cont.ribntior: to E is divergent. Instrad. the folhwing 

nick is used. \\"e find .£ aud fi for the cotnplcx rirctric pPrmit~idty (1.:2). TlH•y arc 

finite for the non-zero value of parameter p ddlning the im<\gina;y part of((~'). The 

corresponding formulae are collr!Cl!~d in section/. Then, \\·e tend the parr.metrr p (\('lining 

the imaginary part oft to zero. \Vc expect that for sufficiently small p we gN thl~ value~ 

of E and li which adequately descrihe the contribution of the terms with modifiNI 81'.<;.-;e! 

function:.. There is anorher approach [28j in which the f'lcct.ric strength £is nor :;ing;ula:· 

(exrcpt for the charge motion axis) even for real (. It turn.s uut that. elr('tromag.n('ti(' 

strf'ngtbs evaluated an:ordit1g to the formuiae of s~ction 7 are indistingubhabie from 

thnse of Ref. (:27] when the paramNcr pis of an order of lO .. c, --l0-'1 in Ill! it:~ .... \
1
. In \\·hat 

follows, by the word::> .. tr~rms with modified Bessel functions an• takrn into aceo:mt" \\'f' 

mean that the calculation::> arc madr~ by means of forrnulae pr~"'sentf~d ill section i' [()r 

p= w-~. 

\\'lwn the terms with modified Bessel function~ <1.re taken into considerat.iou. the 

characteristic oscillation of flp appears in the neigbourhood :: = 0 (Figs. lG and 17). 

.\pproximately, for f3 < f3c it is described by the following expression: 

1 __ c/3c
2 

r _ 3'~/ ') 2 p2z 
<J,- z,o '1 

· .a, [z' + p'(1- !3'!.3z)J3 (6·1l 

corresponding to the energy flux carried by the uniformly moving charge with the velocity 

/3 < 3c in medium \Vith a constant t: = t:o. As we have mentioned, the terms in (3.2) and 

(3.3) co1:taining modified Bessel functions do not contribute to the total energy losses 

(·L2}. In particular, thi£> is valid for cr~ given by (6.1): 

00 

J cr~dz = 0 
-00 

(due to the antisymmetry of crp)· For z >> p and p >> z,cr~ falls as p2jz5 and zjp\ resp. 

For /J = 0.--t we estimate the value of the ternt (6.1) in the region z = -300 where crp ha..c;; 
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maximum (see Fig. 9). It turns out that crp ~ 6. 10-5 and cr! ~ 5 · 10-12 there, i.e., the 

contribution of cr~ relati\'C to crP is of an order of lQ-7 and, therefore, it is negligible. 

For 3 = 0.6 we see in Fig. 14 the O'p distribution evaluated Via Eqs. (3.2) and (3.3) in 

which the terms with modified Bessel functions are omitted. Comparing Fig. 9 with 16 

and Fig. U with 1 T we conclude that they coincide everywhere except for the z = 0 

region where the tt:rm (6.1) is essential. 

For ,3 2: !3c the contribution of the terms involving modified Bessel functions in (3.2) and 

(3.3) is very small. This illustrates Fig. 18 where two distributions crp with and without 

inclusion of the above-mentioned terms are shown for fj = 0.8. They are indistinguishable 

on this figure and look like one curve. The same is valid for larger charge velocities. 

7 The influence of the imaginary part of E 

So far, ,.,..e evaluated the total energy losses per unit length (tV) and their distribution 

along the z axis (flp) for the pure real electric permittivity given by (1.1). Equation (1.2) 

is a standard parametrization of the complex electric permittivity ([29, 30]). For the 

chosen definition (2.3) of the Fourier transform the causality principle requires p to be 

positive. 

\Ve write out electromagnetic potentials and field strengths for the finite value of a 

parameter p defining the imaginary part oft. Since e( -;.v) = t"(u .. :), the E?vlF can be 

written in a manifestly real form 

2e Joo 
<P = - [(e; 1 cos a- ti 1 sin a)l\or - (ti 1 cos a+ t; 1 sin c.:)Ko,]d;.v, 

r.v 
0 

Az = 
2
e Joo d:.u(cosaKor- sinaKo,), 

7rC 
0 

H• = ~ Joo wdw(a2 + b2
) '''[cos( -

2
9 + a)K1, -sin( '?.

2
. + a)K1,]. 

7<TC 
0 

2 00 

Ez = --
2 
J wdw{[cosa(t; 1 

- /J2) -sin at:i 1]Koi +[sin a(t; 1 
- {32

) +cos aei 1JI<or }, 
'T.t' 

0 

Ep = ~ Joo :..:d:.u·(a2 + b2 )
114[(e; 1 cos a- ei1 sina)(cos P.Ktr- sin ~Kti)-

r.v 2 2 

Here we put 

0 

( -1 -1 · )( . ¢ '-' ¢K )] 
- ti cos a+ tr sma sm 2ntr +cos 2 ti . 

fX" r;--;;;;: 
Ko, = ReKo( -v 1- f32<), 

v 
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Ko; = ImKo(fX" V1- {32<). 
v 

(7.1) 



:I 

. ~t 

' 

{JV-' r;--;:;:;: 
K 1, = ReK,(-v1-iJ2<), 

v 

.· .. ~.~ --·~·· ~·-- ~---·----~--·-----"-'--... 

K 1, = ImK 1(P''" /1- 62<). 
v 

Further, t, and ti are the real and imaginary parts of~· 

-..:L(;.JJ- w2) p. . .::·:..·L 
€, = 1 + ( 2 ')' , 2. €i = ( ' ')' ,-2. 

~·0 - ~.r ¥ -!- p-.•. : · ;..:;o - w· + p-..,..· 

t;:- 1 = €,/(€; + tf}, ti 1 = -ti/(t; + tf); ex= j.l(t- z/v); 

u.-'J - w2 
/32 

13
2 2 2~' a = 1 - - wL (w6 - w2)2 + p w 

? 2 wp 
b = (3·:..-·L ( ... .!5 _ w2)2 4- p2w2 

¢ 1 a )'i' 
cos-= ,;(1+ ~b' ' 

2 v2 va-+u-
.<!>_lb( a 1 •2 

SUI-2 - "'-(b( 1 - ~) ' . 
v2 va2 +b2 

The energy flux per unit length through the surface of a cylinder of the radius p coaxial 

with the z axis for the whole time of charge motion is defined by Eq.(4.1). Substituting 

Ez and Hrp given by (7.1) into it one gets 

~ 

W = j f(w)dw, 
0 

where 

/( ) 2e'p '( 2 b')'i·l{( ,, [( ,. ,, )[( -I (32) . 9 -I ¢1 
w' =--3 w a+ l\Qr tr+l\Oil"I.Ji €, - Sln--€i COS--

1iV 2 2' 

-(K"K,,- I\,,K,,)[(r;'- ;32
) cos¥+ <i 1 sin ¥1}. (7.2) 

CmJsider now the limit p-+ 0 . 

Let 1 - {32€ > 0 in this limit, then (see section 3): 

sin~-+ 0, cos~-+ 1, €i-+ 0, £i 1 -+ 0, Koi-+ 0, Kli-+ 0 

and, therefore, /('-'-') -+ 0 while electromagnetic potentials and field strengths coincide 

with those terms in (3.2) and (3.3) which contain modified Bessel functions. 

On the other hand, if in this limit 1 - .82 £ < 0, then: 

sin~-+ 1 (for p > 0), cos¥-+ 0, ti-+ 0, ti-t-+ 0, 

To 1i. il" To 

Kor ---t -2No, Ko, ---t -2Jo, A1r-+ -211, [(li ---1- 2_N1, 

where the argument of the Bessel functions is pt.;IJil- ,62 £1. Substituting this into (7.2} 

and using the relation 

Jv(x):\"v+l(x)- Nv(x).!v+l(x) = _2_ 
nx 
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one arriW.'S at 
e2

....; 1 
/(~·) = - .. (1- -). 

c< £3 2 

This in turn leads ton· rxat:tiy coinciding with (-t.2).(-L3) and (-L-l). Electromag;nrric 

potentials and fidd strrngths (7.1) roincidr with the terms in {3.2) and (3.3) contc\ining 

usual Besst'\ functions. 

:\ow W(' intc~~:d to clarify how thr value of the parameter p affens on the radintcd 

cler:trO!Hagnetic field. For this \Ve evaluated Op for ,~1 = 0.-1 on the surf<v::c of cylindPr 

Cp. p = 10 for three different values of parameter p (in units ...... ·o): p::::: w-3 (Fig. 10· 

p = w-2 and p = 0.1 (Fig. 20). \\'c obsf'n·e that for p = 10-:~ the int<'nsit.v amplitn(J.

is approximately twice times less titan for p = 10--t (Fig. 16). For p = w·-2 and p = 0.1 

all oscillations of Op on the uegativr :: srmi-axis arc washed out whilP tlw valui' of the 

term corresponding to the modified Bl'Sse\ functions in (3.2) and (3.J) rrmains almo:>t 

the same. In Figs. 21 and 22 therE' ar<' givf'n distributions of the radiat('d rnergy on tiH' 

surface of Op for iJ = 0.8 aud ;3 = 0.99 for thn'e different values of p ::::: 10-3
. 0.1 and 

l. \\·e note that with a ri:-;r of p thr o~cillations for 3 < ;J<' are dampt'd tnuch ~trung.~·r 

than for 3 2: /Jc· For example, for p = 10-2 and ,3 = 0.99 the values of rhc main maxin!<l 

only slightly reduce (Fig. 22) whilt· for 3 ::::: 0.4 and thr samP p t.l\t' o:->ci!lations of th(' 

radiation intrm;ity complPtdy disappear (Fig. 20) . 

:\nothN ob~cn·atinn is that secondary maxima are damped much strougl'r lhan tht- m:,in 

oaP. This is rasily reallzec\ within th(' po!ariza.tion form<:dism. In it. a iw.wing d:ii:·~\· 

creates a time-dependl'llt polarization soutTP which, in tlw absrnct' of damping. osrilla!·':

with tlh' frN{l:enc:y .j. .... ·J + ... ..:~. Thl' oscillating polarization result~ in tlH' app(·;u·ann· ,,f 

secondary electromagnetic wn.vf•s which \)L•ing added an· manifr~t(•d as ll!clxim<~ of ti\c 

potentials. field strengths, and intensities. ThP di~tributio:1 of til{' pohrizm0n :-:oun·(' f..,r 

thP. d~x_:tric: pNmitt.ivity (1.2) is giwn b~· [l.tj 

dit.fi= ~6(x)O(y) .. , _,,.:I_ . rxr<--p(f-z/u)/2]·sin[~+-=T-=-·;;·2 ;'-I(t- ~.'· 
,. V"'o ~ ~'1. - P1 ;.1 

\I _:_\) 

for:;< d and cin·P = 0 for z > "1Jl (this equation is rt>!at1'd to thr """·X+ .... "f --J/2 _1.1 > i' 

case). As a re~ult of positivity of p, tht• \·a\ue of polarization f> at th<' ntomt>nl r is ddil!cd 

by tiu' values of the elcctri<' field E in prrcccding tim{'::-; (causality principl<'). It ftlllnw:-. 

from {1.3) th;:\t for largt• Iwgat.ivc val\les of z th<' polarization sourn· i~ snp:n·t'S:'\'d !n!:cil 

stronger than for;; vahH'S dtJ:'if' to thC' current charge pusition. 

The po:->it.iou of the first ltl<\Ximum approximately coiwidf's with tlH· position tlf tiw 

singular ~lo.ch COI!C iu the ah:-cncc of d:spNsion. 

Although the polarizatio!l formalism !cuds to tht' same rxpr<'ssions {3.2).(3.J) I"Pt rh.· 

e!t~(·tromagnetic l'Otl'nt.ial~ and ti.f'!d strf'ngt.hs, it pn'st•uts aHothn. lltott' physicaL pt'l!t: 

of vit•w on the nature of the Vavi!ov-Chrrcnkov radin.tion. 
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The total energy losses per unit length ~r (in units e2:....,•5/c2 ) and the total number 

of emitted photons :V (in units e2'..J.·o/ftc2 ) a.;; a function of charge velocity 3 = rjr. for 

3c = 0.8 and different values of pare shown in Figs. 23 and 24. In most thr cas('s u· and 

.V decrease with the rising of p. The sole exception the origin of which remains undear 

for us is the intersection of N(.3) curveti corresponding top= 0.1 and p = 1 (Fig. 2-!}. 

The corresponding ~..v· densities (l\' = J f(:..;)rL.) and;\'= J n(u .. )d.:..i) are shown in Figs. 25 

and 26. 

8 Conclusion 

\Ve briefly summarize the main results obtained: 

1. \Ve confirm the famous Fermi's result that a charge uniformly moving in medium with 

frequency·dependent polarizations (1.1) and (1.2) radiates at ·each velocity. \Ye prove 

that w dispersion oft results in a rather complicated space distribution of E).lF. In par· 

ticular, the distribution of the radiation exhibits rapid oscillations behind the moving 

charge which differ drastically below and above some critical charge velocity ·vc which 

:· ~ depends on medium properies and does not depend on the frequency. For v < Vc the 

major contribution to the radiation flux comes from the distant region of space lying 

.:: 
behind the moving charge. The mathematical reason for this is that tines of maximal 

radiation intensity are closed for t' < Vc and unclosed for v > Vc-

2. We analyze how the imaginary part of dielectric permittivity affects the space dis· 

tribution of the energy radiated by the uniformly moving charge. It turns out that the 

switching on the imaginary part of(. results in a considerable reduction of the intensity 

radiation for v < Vc and in the attenuation of secondary maxima of the radiation intcrtsity 

for v > Vc-

\\'e believe that. results obtained in this paper may be useful for the analysis of the 

experiments recently discussed in [15·17]. 
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Figure L Schematic presentation of the Cherenkov cone for a constant electric permittiv· 

ity. The radiation field is confined to the surface of the cone, the field inside the cone does 

not contribute to the radiation. On the surface of the cylinder Cp the electromagnetic 

field is zero for z > -zc and infinite at z = -Zci Op means the radial energy flux through 

the cylinder surface. 
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Figure 2: The radial energy losses per unit length (in units e2w5/c2
) as a function of 

,6 = v J c. The number of a particular curve means the critical velocity !3c-
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Figure 3: The distribution of the radial energy flux (in units e?.u.-·5Jc3 j on the surfacC' of 

the cylinder Cp, z is in units c/:..;0 . The number of a particular curve mean:; ,3 = 1.:/c. 
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Figure -1: The same as in Fig.3, but for .6 < /3,. 
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Figurr 5: Space distribution of thP m = 1 trajectory for charge \"f•\ocitics j '2: Jc. Th<' 

s\opt' of the trajectory incrpases a.s d approaches {jc· 
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Figure G: Space distribution of thP m = 1 and m = 2 trajPcturiP:; for .ic = O.S nnd 

/3 = 0.709. The trajcctoriPs for /3 <.de- arf' dmil'd (in contrast with tlw .f ~ .i,. ('i\SP :-~!ttl\\' !I 

in Fig. 5). :\mnlwrs 1 and 2 mc<tn the branch('S of a particular trajcrtor_, .. 
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Figure 7: Space distribution of the selected trajectories for .3c = 0.8 and 3 = 0.4. 
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Figure 8: The same as in Fig. 7 but for the different z interval. 
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Figurr 9: Thr distrib11tion of the radial energy flux (in units e2v.-·6/c3
) on the surfat:e of 

the cylinder Cp for ,3 = 0.-1; z is in units c(..:0 . It is st>en t.hat the main contribution 

comes from larg~ negative z. 
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Figure 10: Fine structure of the radial energy flux shown in Fig. 9. 

21 



' ' 

,.,~ 10 
X 

o" 

~-,. 0.8 
~-" 0.99 

p" 10 

-200 

Figure 11: The distribution of the radial energy flux (in units e2w~fc3) on the surface 

of the cylinder Cp for .Be = 0.99: z is in units cj0.10 It is seen tha.t the main contribution 

comes from the small negative values of z. 
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Figure 12: The same as in Fig. 11 but for (J = 0.8. The radial energy flux is distributed 

in a greater z interval. 
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Figure 1.5: For the charge velocity f3 below some critical f3c the radial energy flux is 

confined to the narrow cone attached to the moving charge. For f3c = 0.8 and .6 = 0.4 

the solution angle Oc ~5°. 
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Figure 16: The same as in Fig. 7, but with the inclusion of the non-radiating term 

corresponding to the electromagnetic field carried by a moving charge. 
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Figure 17: The same as in Fig. 16, but for the charge velocity {3 = 0.6. 
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Figure 18: For f3 = f3c the energy flux distributions with and without non-radiating term 

are practically the same: they are indistinguishable on this figure. The same is hold for 

/3 > /3,. 
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Figure 19: The switching on the imaginary part off (p = w-3) reduces the oscillation 

amplitude approximately by a factor of 2 compared to that for p = w-4 (see Fig. 16). 

The non-radiating term is practically the same as in Fig. 16. 
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Figure 20: The radial energy flux for p = w-~ and p = lo-t. The oscillations completely 

disappeared, but the value of the non-radiating term remains practically the same. 
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Figure 21: Shows how the inclusion of the imaginary part of f affects the energy flux 

distributiOtL The numbt~r of a particular curve means the parameter p. The dwrge 

velocity is {3 = 0.8. 
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Figure 22: The same as in Fig. 21 but for the charge velocity ;J = 0.99. Comparin~ thi:-; 

figure with Figs. 18.21 we oh<icrvc that the switching on the imaginary part of ( ;tfrtT!s 

lessrr for larger J]. 
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Figure 23: Shows how the inclusion of the imaginary part oft affects the total energy 
losses }V per unit length. The number of a particular curve means the parameter p; 
Wand pare in units e2wUc2 and wo, resp . 
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Figure 24: The number of quanta emitted in the radial direction per unit length (in units 
e2w0 jhc2) as a function of the charge velocity f) for different values of the parameter p. 
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Figure 25: Spectral distribution of the energy losses (in units e2w0 jc2

); w is in units w0 . 

The number of a particular curve means the parameter p. 
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Figure 26: Spectral distribution of the emitted quanta (in units e2J1ic2 

); w is in units 
w0 . The number of a particular curve means the parameter p. 
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