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1 Introduction 

Recently a lot of papers are devoted to the tensionless (null) strings and their application in 
different areas and different dimensions [1]. In connection with the above activity it is worth to 
consider again the question about the critical dimension of the null strings and more generally 
·null p·branes. There are two answers to this question in the literature. Most of the authors 
insist on the nonexistence of critical dimension for such objects [2], but some other receive 
opposite results [3]. In our opinion the reason is in the different approaches to the choice of the 
operator ordering. If one looks at the classical null string as a collection of particles moving 
under certain conditions and wants to keep this picture in the quantum case also, there is no 
reason to expect a critical dimension emerging. Therefore one adopts such operator ordering 
which supports this point of view. Jf one does not bother about previous particle interpretation 
but simply compares the appearance of the anomaly in the constraint algebras of the null and 
usual string upon quantization (with one and the same operator ordering), one sees that the 
non· trivial central terms arise independently of the string tension T. Then the existence of 
critical dimension for the tensionless string is not surprising at all. On the other hand, it can 
be shown, that in the quantum Virasoro algebra of the usual string the limit T --+ 0 can be 
taken consistently to obtain the null string gauge algebra with a vanishing critical dimension 
[·l]. So what is the correct answer to the question about the existence of critical dimension 
for the null string? In this article we propose a pure technical resolution of the problem. The 
right operator ordering is that, which can be applied to higher dimensions, i.e. to null p·branes 
too. In our case we find two such orderings and they lead to the absence of critical dimensions 
for the null p·branes (p;?: 1). 

Here we quantize a model of p-brancs [5] which initially do not describe null strings (when 
p = 1), because the constraints are second class. However, it turns out that at the quantum 
level the constraint algebra coincides with one of the tensionless string. Checking quantum 
consistency of the theory for four different operator orderings we find D = 26 for the critical 
dimension of the bosonic null string when "string· like" and Weyl orderings are applied. How· 
ever, we do not receive any condition on the space-time dimension when apj;ly "particle-like" 
and normal ordering. Investigating the case p > I, we observe that the first two orderings 
are forbidden by the Jacobi identity. Adopting the last two types of ordering) we reach to 
the conclusion that tensionless p- branes have no critical dimension for p > 1. Because these 
orderings also apply to the case p = 1, this conclusion is valid for all p = 1, 2, .... 

The paper is organized as follows. In section 2 we deal with the classical theory. With 
the help of the BRST charge, we construct BRST invariant hamiltonian and also give the 
corresponding Lagrangian. Then we solve the classical equations of motion and obtain the on­
shell expressions for the BRST charge Q and for the constraints. Assuming periodic boundary 
conditions, we rewrite all quantities in Fourier modes. Section 3 is devoted to the quantization 
of the model. We define the renormalized operators and investigate the anomalies in the 
quantum constraint algebra. As a result) we obtain the conditions for quantum consistency of 
the theory for different values of p. In section 4 we propose a supersymmetric extension of t.he 



model under consideration which can be used to describe tensionless super p-branes. Finally, 
in section 5 we give some comments and conclusions. 

2 Classical theory 

To begin with, we first write down the hamiltonian of the classical model of p- brancs with 
second class constraints [6) proposed in [5}. It can be cast in the form [7]: 

Ho = J d'a (.1°>,\o + .\'>,\,), a= l, ... ,p, (I) 

where ).0,).~ are Lagrange multipliers being arbitrary functions of the time paramct<~r T auJ 
volume coordinates 01 1 .•• , O"p • The constraints 1/;0 , '¢~ are defined by the equalities: 

'1/lo = P0
Po + T 2 

a,j3 = O,l, ... ,D- 2, 
t/Jc = TfoflP0 ()~x{J, 

'1o{J = diag(-1, 1, ... , 1) 

(2) 

Here x 0 and Po are canonically conjugated coordinates and momenta, a~ = 0 f8o 0
, T = con.~t. 

The algebra of the constraints (2) is given by the Poisson bracket relations 

{.Po(~), .Po( a,)) 
{.Po( a,), ;!>, (a,)) 
{;!>,(~),,;,(a,)} 

0, 

[.Po(~) + >Po(~) - 2T']8,o'(~- ~), 

[o:,;,(~) + o:>P.(~JJD,o'(~- ~). 

where the notation q_ = (ot. ... ,op) is used. It follows from here that the constraints are second 
class. 

Introducing the hamiltonian ( 1 ), one has to check the consistency conditions [6] 

{,Po,Ho) "'0 {>,)., Ho) "'0, 

where ::::;l denotes weak equality, i.e. equality up to constraints. In the present case thcst~ 
conditions are 

()~)..0 = 0 00 ).~ = 0. 

One of the methods for quantization of dynamical systems with second class constraints 
consists in passing to a system with first class constraints only !SJ, and then perform the 
quantization. To achieve this in our case, we enlarge the initial phase space with a ucw 
canonical pair (xD-hPD- 1 ). This allows for transition from initial constraints (2) to the new 
ones ]9],!JOJ: 

'Yo = Jl'p,. = P
0

Po + Ph-l 
<r~ = TfswP"8cx" = 'l1o(JP0 8~x(J + PD-l8cXD-l· 

<po and <p~ obey the Poisson bracket algebra 

{'!'o(~),'f'o(a,)) 

{ 'i'o(a, ), 'i'o( a,)) 
{'f',(~),'f',(a,)} 

0, 

l'i'o(~) + 'i'o(~)J8,6'(~- ~), 

[C;'Pb(~.!) + Ctr..;.,(o2)]8cb"(~- £1), 

2 

(3) 

which means, that they are first class quantities. The corresponding hamiltonian is 

H = J d'a (P0 'i'o + P''f',)· 

The Dirac consistency conditions 

{'f'o,H}"'O {'!'.,H) "'0, 

do not place any restrictions on the Lagrange multipliers 11°, J14
• 

~ow, two notes are in order. The first one is that at any moment one can return to the 
initial dynamical system by dimensional reduction. The second is, that the algebra (3) of the 
constraints r..;o,'Yc coincides with the tensionless limit of the usual p-brane ones [11]. That is 
why our conclusions about the critical dimensions, arising after quantization, will be also valid 
for the tensionless branes. 

Following the BFV-BRST method for quantization of constrained systems [12}, we now 
introduce for each constraint <po, "Pc a pair of anti commuting ghost variables ( 17°, Po), ('7° 1 P~) 
respectively, which are canonically conjugated. Then the BRST charge is [13] 

Q = J d'a{'i'ory0 + ,,ry' + Po[(8,ry')ry0 + (8,ry0 )ry'J + P,(D,ry')ry') 

and it has the property 

{Q,Q},.=O 

where {.,.},e. is the Poisson bracket in the extended phase space (x",p,.; 7]
0

, P0 ; '7~, Pb)· 
In the new phase space, the constraints are given by the following brackets [14]: 

"' l'o 

'" 1', 

{Q, Po),,= 'i'o + 2P,8,ry' + (D,Pob' = 'i'o + 'i'~', 
{Q, P,),, = 'i'• + 2Po(8,~0) + (8,Po)ry0 + P,D,ry' + P,(D,ry') + (D,P,)ry' = 'i'• + ,:' 

and they are first class. The BRST invariant hamiltonian is [12] 

H, = {Q,x),, {Q,H,),, = 0, 

where x is arbitrary, anticommuting, gauge fixing function. We choose 

X= A0 J d'aP0 +A' J d'aP., A0,A~- const 

and obtain: 
H,= J d'a[A 0'i'~o'+A''i'~'']. ( 4) 

Let us note that additional set of canonically conjugated ghosts (710, P0
), (7]~, P~) must be 

added if we wish to write down the corresponding BRST invariant Lagrangian. If so, Q <.nd 
x have to be modified in the following fashion [12, 14} 

Q = Q + j d'a(MoP' + M,Po), 
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x = x + j d"u[>Jo(x' + ~M0)+ >],(x' + ~M')J, 

where M0 , M" are the momenta, canonically conjugated to J1. 0 and p." respectively, x0 and x" 
are gauge fixing conditions [15] for I{Jo and c.p0 , p1 and p2 are parameters. All this results in 
the Lagrangian density (8.,. = BjQ;): 

Lx. = L + LoF + LaH, 

where 

L = (I/4~0)(8,x- p'8,x)', 

the gauge fixing part is 

LaF = -
2
1 

(8,p0
- X0 )(8,po- Xo) + -

2
1 

(8,p' - x')(8,p, - x.) 
P1 Pz 

and the ghost part is 

LaH = -/J,ifoa.,.,o- a.,,(l.a.,.,o. + JL0[28.,7]o8o.TJ(l. + (8o.8.,7fo)TJ(I] 

+p'[28,>J,8,~' + (8,8,>J,)~' + 8,>7,8.~· + 8,>f,8·~· + (8,8,>J,J~'J 

+ J d" u' { >fo(o')[{ "''' x'( u') },.~0 + { "'" x'(u')},.~"] 
+>J, ( u')[ { "''' x' ( o')} ,;~0 + { "''' x' (a')} ,,~·n. 

Let us now go back to the hamiltonian picture. The hamiltonian ( 4) leads to eq,Jations of 
motion with the following general solution for the bosonic variables [5} 

and for the ghosts [13] 

x" = y"(•) + 2g(7)p"(r), 

p., = p.,(~). 

~' = ('(r) + g(7)8.~'(r), 
Po = Po(r), 

~· = ~·(f), 
P, = II, (r) + g( 7 )8,Po(;:). 

Here y", p", (0
, P0 , TJ 0 and TI 0 are arbitrary functions of the variables Z0 

, 

zo. = Ao.T +qo. and g(7) = A0
7. 

On the solutions (5) the BRST charge Q takes the form [13] 

Q5 = j d"z{¢0(
0 + ¢.~· + Po[(8.~')(0 + (8,('h'J + 11.(8,~')~'}, 

where ~ = p2 (~) , <P" = p.,(~)8ay"(~). Now the constraints are 

¢~"'(;;.) = {Q5 ,Po(r)),; ¢;"'(;:) = {Qs,ll,(;:)),,, 

• 

(5) 

and they arc connected with "h"', ~;"' by the equalities 

<r>~"'(r) = ¢~"'(~) ·.p~ot = o~"'{£) + g(;)8a6~ot(£). 

From now on, we confine ourselves to the case of periodic boundary conditions \\"hen our 
phase-space variables admit. Fourier series <'>:pam;ions. Let us denote the Fourier compon<'uls 
of y".p",(0 ,P0 ,1]" and Da with xJ;.pj;,c!..bi,C~ and IJ0 ,!_ respectively. For the Z('l'O mod('s of p" 

and x", we introduce I he notatioTis - -

P" = (2r.)"pQ 
_, " 

"- - x,. 
q - (2')' -

Then we have the following uon-zcro Poisson hrackcts: 

{P",q"}.,~ 

{11i, x~}pb 
{c,,b,),; 

{i'~,llb.?J_}pb 

"" -~ ' 
-i1]1'"6!:.+?J..!.!• 

-iii!.+?!·~· 

-ilib6!:.+!!.·~· 

The Fourier expansions for the constraints 6h"1 and ¢~" 1 are 

Here 

where 

¢~"1 (z) = -
1
- """ C1

"
1
e-i!'.!.E: - (2r.)P L.., ~!!!. 

"'"'() 1 I: ¢ z = -- J)fof (-i!!!..O. 
0 - (2r.)P . "·!!.!. . 

!!!.EZP !!!_EZP 

c:;:~ = i{Q8,b!!.}.,b = c'1. + c~h n:~~ = i{Q~)"·!!.}rc = IJ"·!!. + n;;~!!. 

Qs 

c!!. 

D"·!!. 

CKh 

D'' "·'1. 

L {[C, + (l/2)C~']c_, + [D,,, + (1/2)/J:~~Jc~"). 
!!.EZP 

(2r.)" L P!F"·!!.-.1:.• 
!_EZP 

- L (n,- k,)p!_x"_,_,, 
!_EZP 

L<no.- k,)II!!.Hc:._!i., 
!:_E?.P 

L J(n.,- ka)b!!.+!.L!. + (/i~nb -/i~k")/lr.~HC"~!i.J 
!_EZ" 

(6) 

(i) 

('l 

Using expressions (6) t.o (8), one obtains that the alg<·hra of th<' total J!,l'lll'ralors (i') is 

given by 

{C~"~,c~~}pb 

{C~ct, JJ~~~}pb 

{ /):~~. D~~~}pb 

0, 

-i(nn- m .. )c;~~!!l· 

-i(fi~llb- 6bn1n)J)~~~+!!.!.' 
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3 Quantization 

Going to the quantum theory according to the rule i{.,.}pb _. (anti)commutator, we define 
Q5 by introducing the renormalized operators (o,.3a- const) 

C~01 = Cr:.. + ct - o6!!..Q Dial -D +Dgh -:30 "·!!.- "·!!. O..!!. • a !!.·Q (10) 

and postulating [13] 

Q5 = L '{[C, + (1/21Ct- ao,.,]c_, 
!!.EZP 

+[D •. ,+ (1/2)Dt~- ,1,<,.,]<~,} ,, 

where: ... : stands for operator ordering and in C!!., ... , D~~ operator ordering is also assumed. 
Let us turn to the question about the critical dimensiOns which might appear in the model 

under consideration. As is well known, the critical dimension arises as a necessary condition 
for nilpotency of the BRST charge operator. In turn, this is connected with the vanishing of 
the central charges in the quantum constraint algebra. Because of that, we are going to find 
out the central terms which appear in our quantum gauge algebra for different values of p 
(the most general form of central extension, which is compatible with the Jacobi identities is 
written in the Appendix). 

We start with the case p = 1, which corresponds to a closed string. In this case a= b = l 
and one defines the operator ordering with respect to p~,, ... ,c_, and p~, ... ,C,,(n > 0), so 
that 

p~" I o >= ... = <-" I o >= o < o I p: = ... =< o I c" = o. 

We call this ordering "string -like". L'sing the explicit expressions for the constraints (8), 
one obtains that central terms appear in the commutators iD,, Dm], [D~h, JJ~h) and they are 
respectively 

c = (D/6)(n 2
- 1)no"+m.o c'' = -(1/3)(13n2

- 1)no"+m.O· 

Therefore, the quantum constraint algebra has the form 

0, 

( n - m )C~~m + 2cm6n+m.o, 

[C~01 ,C::1 J 
[C~ot, D~1 ] 

[D~ot,D~t) (n- m)D;o:m + (1/61[(D- 26)n2 + (12/1- D + 2)]n6Mm.O· 

This means that the conditions for the nilpotency of the ERST charge operator Q5 a.re 

(D- 26)n 2 + (12,1- D + 2) = 0 Q = 0, 

which leads to the well known result D = 26, (J = 2. Obviously, this reproduces one of the 
basic ff!aturcs of the quantized tensionful dosed bosonic string- its critical dimension. 

Going to the case p > 1, one natural generalization of the creation and annihilation oper­
ators definition is 

' P;) 0 >o= 0, c < o I P~!l = o, for L"· >o 
c=l 

6 

;-

l 
l 

and analogously for the operators x~, ... , C~. However, it turns out that such definition does 
not agree with the Jacobi identities-for th€ quantum constraint algebra (except for p = 1). 
That is why, we introduce the creation ( +) and annihilation (-) operators in the following 
way [13] 

p; = {1/h)(p~+ + P~;), ... ,c~ = (!/J2)(S+ + ~;) (11) 

and respectively new vacuum states 

p~- I vac >= ... = c;_- ! vac >= 0 < vac! p~+ = ... =< vac I c;_+ = 0. 

This choice of the creation and annihilation operatOrs corresponds to the representation of all 
phase-space variables pv, ... , cc as sums of frequency parts which are conjugated to each other 
and satisfy the same equation of motion as the corresponding dynamical variable. 

By direct computation one shows, that with operator product defined with respect to the 
introduced creation and annihilation operators (11) (we shall refer to as "normal ordering"), 
the central extension of the algebra of the gauge generators (10) does not appear, i.e. a= 
0, {30 = 0. Consequently, the BRST charge operator Qs is automatically nilpotent in this case 
and there is no restriction on the dimension of the background space-time for p > 1. 

The impossibility to introduce a string- like operator ordering when p > 1 leads to the 
problem of finding those operator orderings which are possible for p = 1 as well as for p > 1. 
First of all, we check the consistency of the (already used· for p > 1) normal ordering for 
p = I. It turns out that it is consistent, but now critical dimension for the null string does 
not appear. The same result - absence of critical dimension for every value of p, one obtains 
when uses the so called particle -like operator ordering. Now the ket vacuum is annihilated 
by momentum-type operators and the bra vacuum is annihilated by coordinate-type ones: 

p; I 0 >M 
c < 0 I X~ 

b~ I 0 >M= b, I 0 >M= 0, 

c < o Is =c< o I c, = o Vn. E zv. 
Further, we check the case when Weyl ordering is applied. Now it turns out, that in the null 
string case (p = 1) this leads to critical dimension D = 26, but for the null brane (p > 1) this 
ordering is inconsistent, as was the string - like one. 

As a final result, we have four type of operator orderings checked. Two of them are valid 
for the string as well as for the brane and then we do not receive any critical dimension. The 
other two type of ordering give critical dimension D = 26 for the string and are not applicable 
for the brane. Our opinion is that the right operator ordering is the one applicable for all 
p = 1, 2, .... In other words, our viewpoint is that neither null strings nor null branes have 
critical dimensions. The same point of view is presented in [16]. 

Let us spend some more words about the impossibility to introduce at p > 1 an operator 
ordering which at p = 1 gives critical dimension. This is connected with the fact that the 
constraint algebra, as is shown in the Appendi~, does not possess non-trivial central extension 
when p > 1 (see also [7], {16]). As a matter of fact, the string critical dimension appears 
in front of n3

, i.e. in the non-trivial part of the constraint algebra central extension, which 
can not be taken away by simply redefining the generators D,, in contrast to the trivial part 
....., n. Because of the nonexistence of non-trivial central extension when p > 1, any critical 
dimension arising is impossible in view of the Jacobi identities. Therefore, if the quantum null 
brane constraint algebra is given by (up to trivial central extensions) 

rc~~.c:;.tJ = o, 

7 
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[ c;:~, n:~~l = 

1n::~. Dl~~J 
(n.,- m.,)C~~!'l' 

(b~nb- 8bm.,)D~~~+!'l' 

then the latter has no critical dimension and exists in any D-dimensional space-time, when 
embedding of the p + 1- dimensional woridvolume of the p-brane is possibie there. 

Finally, we pay attention to the fact that in every one of the p subalgebras (at fixed a) of 
the constraint algebra, one can obtain non-trivial central extension and consequently - critical 
dimension (see Appendix). For example, taking string -like or Weyl ordering, one derives 
D = 25 + p, which appears to be critical dimension for the tensile p- brane !J 7], [16]. However, 
the considered quantum dynamical system is described by the full constraint algebra, where 
only trivial central extensions are possible. --

4 Supersymmetrization 

It turns out that the model described in the previous sections can be generalized to include 
also spinorial degrees of freedom. This generalization is not straightforward, but the resulting 
dynamical system may be viewed as generated by its bosonic part, which in terms of constraints 
is equivalent to a system with Poisson bracket relations, given by (9), i.e. equivalent to the 
null bosonic brane. This new model possesses space· time supersymmctry and is characterized 
by the following classical first class constraints 

{To(Q:1), To(Q:,)} 
{To(Q:1), T,;'(Q:,)) 
{T0 (Q:1 ),T,A(!e,)) = 

{T:(!e1), T1
8(Q:,)) 

{T:(!1:1),T.f(!1:,)} = 
{T,;'(Q:1 ), Tf(Q:,)) 

0, 

0, 

]To(Q:1) + To(!1:,)]8,.5'(!1:1 - !1:,), 
oA"Jo:T."(!e,) + •:r:(!1:,)]8,.5'(!1:, - Q:,), 
oA8]T,;'(Q:1 ) + T,;'(!e,)]8,.5'(!1:,- Q:,), 
-2i6AB Po~To(£1 )bP(g_1 - £ 2), 

Po/) = ppq~{J' 

(12) 

Comparing the above equalities with the spinning string and superstring constraint alge­
bras, we conclude that they can be regarded as possible tensionless limit of the super p-brane 
case. However, this supersymmetric model will be considered in detail in a separate paper. 
Here we only note, that Poisson brackets in (12) give the naive version of the constraint 
algebra. Actua1ly, there is a set of generators with which (12) must be enlarged. 

5 Comments and Conclusions 

In this paper we pres~nt the results on the quantization of the restricted p-brane [5] reported 
in [13). On the other hand, we investigate the connection between the appearance of critical 
dimensions and different operator orderings for p = 1, 2, .... 

The quantization of the restricted p-brane in [13] is alternative to the one given in [10]. 
The latter is based on a previous work [9] on the quantization of the restricted string and treat 
asymmetrically the constraints p"O.,x,_ = 0 for a= 1 and a= 2,3, ... ,p. In [13] and here, we 
consider all these constraints on equal footing. 

8 

The observation, that there is an operator ordering which is valid Vp E Z+ and another 
one, which is admissable only for p = I !J3], leads to the problem of finding those orderings 
which are possible for every positi,·e integer value of p. \Ve applied here four types of operator 
orderings and we establish that two of them (normal ordfring and particle -like ordtring) 
are admissabic Vp E Z+, but the other two (string -likf and Wcyl ordering) are admissable 
only for p = 1. The fact, that the latter two orderings lead to appearance of critical dimcnsion, 
and the former two do not, is a consequence of the constraint algebra property to ha\'(' non­
tri\·ial central extension only for p = 1. On the other hand, the obtained nontri,·ial rcntra] 
extensions of the Virasoro type for some of it subalgebras, provide an explanation why the 
nit ical dimensions D = 25 + p, p = I, 2, ... [17],[1 6], rc-derived also here, can <'lnt~rgc. Howen'r. 
our claim is, that the critical dimensions appearing in the subalgebras, must not be> considercd 
a:; StH'h for the given model as a whole. The model is reprcsented by the full constr<~int <~lg(•bra. 
which docs not possess non-trivial <'Cillral extension for p 2:: 2. 

Sin<:e after BFV-BRST quantization our constraint algebra coinrides with the null tension 
limit of the usual p-brane algebra [11], we deduce that the upper conclusions ar<' \'alid for 
t.h<' tensionless p-bran~s also. This h•ad us to the proposition of thc rul<': tlw right opC'rator 
orderings in the case of null string (p = I) ar<' those, which are admissabl<' in 1 Itt• p > I cast• 
too. 
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Appendix 

Here we briefly comment on the possible central extensions of th<' algchr<~. gin•11 hy tlw 
commutators: 

0, ]A,, A,J 
]A,, Bo,,J 

[B.,,!l,B6.!!!] 
(na - ma)A!.!.-+!!!.• 

(8~Tlb- 8~m.,)/Jc.::.+!!! (n.b= 1,2, .... p). 

To begin with, we modify the right band sides of the upper <'qua]ili<'s in 1-ht• following way: 

]A,, A,J 
[A!!.,B"·!!!.J 

[B.,,!l,li&.!!!.J 

d(!h!!!) 

(n.,- m0 )A!!+!!!. + d.,(n.,m,), 
(8~n6- ~;ma)Bc.!.!.+!?l +dab(!!_.!!.!.). 

Checking the Jacobi idC'nlit.ics, involving th(' triplets (A, A, J3). (A. JJ. JJ) t~ml 
shows that there an• only trivial solutions for d(!!,.m), da(!!,!!.d <Hid d,h(!!._.!!.!.). 

d(!!,m,) = 0 daC!!.m) = (u.,- m.,)/(!1. + !!.!.). 
dn~(!l,!!!} = (C:nb- D;ma)9r{!! + !!!}, 
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(IJ./J. lf).mw 
:\t~ml'ly. 

k· .. 

(. 



where f,ga are arbitrary functions of their arguments. In particular, there exist the solutions 

da(!ldl!.) = 2cmab!!.+m..Q o = const, 

dab(!l, m.) = (Panb + f3bna )cS!!.+m..Q Pa = canst, 

which might appear because of the operator orde~ing in A!!. and Ba.!!.· However, there arc p 

subalgebras with non-trivial central extensions (no summation over a): 

[A,, A,) 
[A,,B,,,] 

[Ea.!!., Ea.!!!_) 

0, 

(na- ma)A!!.+!!!. + (qan~ + ra)nacS!!.+!!!.·Q• 

(na - ma)Ba.!!.+!!!. +(san~ + ta)na6!!.+!!!..Q• qa.ra,Sa,la- cons/. 

When p =I, there is one such subalgebra and it coincides with the full algebra. 
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