


1 Introduction

In the papers [1, 2] the Inénii-Wigner contractions of the rotation algebra o(3) and
Lorentz algebra o(2,1) to the Euclidean algebra e(2) were considered. The two
separable coordinate systems on the sphere S, ~ O(3)/0(2) and the nine separable
coordinate systems on the two-sheeted hyperboloid Ly ~ O(2,1)/0(2) were related
to the four separable systems on the Euclidean plane E; ~ E(2)/O0(2). Here, we
consider the Inéni-Wigner contraction of the Lorentz algebra o(2,1) to the e(1,1)
one. In this case, the nine separable coordinate systems on the hyperboloid L,
are related to the nine orthogonal separable systems on the pseudo-Euclidean plane
E11. Our motivation for present investigation and the results to be expected were
discussed in detail in the articles {1, 2].

2 Separable coordinates on the hyperboloid L,

Consider the hyperboloid L,
uy—ul —ul=R% uy>0, R®>0, (1)

where u; (¢ = 0,1,2) are Cartesian coordinates in the ambient space E,, and R is
the radius of curvature of the two-sheeted hyperboloid L,. The isometry group of
Ly is O(2,1). We choose a standard basis K1, K,, M5 for the Lie algebra o(1,2) {3]

K=~ (uoauz + u2auo)> Ky =— (uoaux + ulauo) , My = (ulauz - u2au1) (2)



with commutation relations

[[(],]{2] = —M3, [1‘»43, [{1] = [X’Q, [[X’g, AMS] = [\'1. ({;)
The Laplace - Beltrami operator on L, has the form
[ .
Arp = ﬁ(hfqtlxg—MS?). (4)

Following the general method [4] (that has in particular been applied to the
hyperboloid [3]) we look for separated eigenfunctions of the Laplace - Beltrami
operator satisfying

RPALpU = (1 +1)0, 10 =205 U, ((,G) = Uin(G) Vi), (5)

where A = const and [, for principal series of unitary irreducible representations,
has the form

1 .
l=—§+zp, 0<p< oo (6)

Operator [ is a second order operator [5, 6] in the enveloping algebra of o(2, 1)
I =aK]+b(K Ky + KyKy) + cK2 4+ fM2+ (7)
d([(l 1M3 + M3[{1) + G(IX’QM;; + M:;[X’z)

(1 obviously commmutes with the Laplace-Beltrami operator). We list all coordinate
systems on the hyperboloid L; in which the Helmholtz equation (4) permits the
separation of the variables [4, 3, 5, 6] and corresponding integrals of motion / are
presented in Table 1. There are 9 such systems [4}, all are orthogonal, and they are
in one to one correspondence with O(2,1) conjugacy classes of operators I. In the
notation of coordinate systems we follow [5, 6].

3 Separable coordinates on the pseudo-euclidean
plane E, ;

Consider the Lie algebra e(1.1) in the basis [7]
=0, pp=0,, M= (0, +z0). (8)
Separated eigenfunctions of the Laplace operator A = p? — p? satisfy the equation
Abpy = k2 Py Xy = 4 Bp; Opu(l,2) = Bpp(1) Py, (2), (9)
where g = const and X is the second order operator
X=a M +b-(Mpi+pM)+c- (Mpy+pM)+d-p+c-pt 42 pipy. (10)

We list all orthogonal coordinate systems on the plane £y in which the Telmholiz
equation permits the separation of the variables and corresponding integrals of mo-
tion X are given in Table 2 [7]. There are 9 such orthogonal coordinate systems.
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4 The contraction of the Lie algebra

We shall use R~ as the contraction parameter and consider contraction from o(2, 1)
10 ¢(1.1). To realize the contraction explicitly, let us introduce Beltrami coordinates
on the hyperboloid L, by putting

Uy Up

yo=R—=1 yw=R- =R o

. 2 2 p2’ . 2 __ .97 p2
ey Vug—ui — R Uy uf —uf — R

The (2, 1) generators (2) can be expressed as

(11)

N t M T
‘%5”1 =m ﬁﬁ(fpl*'lpz), —f5ﬁ2:p2+ﬁ(tpl+ng),
—Ky =M = tp, + zpy. (12)

The commutators of the o(2,1) algebra (3) in new operators (12) take the form

, M m) = g, (me, M) =y (13)

[, 7o) =

SIS

so. that for B — oc the o(2,1) algebra contracts to the ¢(1,1) one. The o(2,1)
Laplace-Beltrami operator (4) contracts to the e(1, 1) one:
2
2

M
ALB:wf—wg—l—ﬁ—»A:pl—pg. (14)

5 Contractions of coordinates on L; to coordi-
nates on pseudo-euclidean space F

5.1. Equidistant coordinates on L, to pseudo-polar ones on £, ; plane.
For Beltrami coordinates (11) we have:

yo = Rcoth 7y coshmy, y, = Kcothr sinh 7. (15)

I

Taking the limit B — oo, 71 — 2% + % and putting

cothm = tanh% ~ B (16)
we see that Beltrami coordinates go into pseudo-polar ones on F;; plane
yo — t =rcoshry, y — T =rsinh7y, (17)
where 0 < 7 < 00, —00 < Ty < oo. For the integral of motion we get
Igg = K2 — Xpg = M~ (18)
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5.2. Pseudo-spherical coordinates on I, to Cartesian coordinates on I
For Beltrami coordinates (11) we have

1
Yo = Rcotht , Y1 = Rcoto. (19)
cos

Taking the limit # — oo, 7 — i7/2, © — I and putting

th ! t o i 20
co ~ — : ~ — 2
i ik ‘o R’ (20)

we see that Beltrami coordinates go into Cartesian ones
Yo—t, m — . (21)
In the limit B — oo for the integral of motion we get

[S 1”612 2 e ¢
I = 3 —p; ~ Xc. (22)
5.3. Horicyclic coordinates on L, to cartesian on £, plane
For variables # and § we have

R
F=— g (23)
Ug — Up Ug — Uy
In the limit R — oo we get
. R t+z . R
~ e = ~ — . 24
ey YR VeI, (24)

Beltrami coordinates go into Cartesian ones
yo— 1y oz (25)
For the integral of motion we have:

[HO_l

T = Bt M)’ = (e )’ ~ X (26)

5.4. Elliptic coordinates on L; to elliptic coordinates on £, plane.
For elliptic variables py; (see Table 1) we have

pro—a; 1 113—'1Lf+a2—a;; ﬁ‘l n
ay — ay 2 R? a; —az \ R?

1 ug—qtf+a2—ag u_?)_] 2_‘1(1,2—(1,;;ﬁ‘ (27)
2 R? a, — ay \ R? a; — ay 2

5.4a. Putting

I))"‘ I)z
= . (28]
1y — ay 1y — (14

and writting coordinates as
= osh? = Tainh? ¢ (¢
pr =y —(ay —ag)cosh® . py = ay + (a, — ay)sinh?®( (29)

in the Hmit /2 — oc we obtain that Beltrami coordinates go into elliptic coordinates
Tvpe Ton the I, plane

yo = 1= Dsinhycosh (. yy — o = Deoshypsinh ¢, (30)

where 20 s the focal distance. Tor the integral of motion in the contraction limit
we obtain

D? D2 e 2 2_2 2 2 2 - .
pll.; = F(J\I:j +sinh” fRG) =M+ D% — M2+ D Py = X (31)
5.4b. Putting
n? d?
= (32)
ay —a,  ay—a,
and writting coordinates as
pL=az + (ay —ag)sinhy, py = ay + (ay — ay) sinh? ¢ (33)

in the limit /7 = oo we obtain that Beltrami coordinates go into elliptic coordinates
Type I on the I, plane

yo — L =dcoshycosh(, wyy — & = dsinhysinh (. (31)

where 2d is the focal distance. lor the integral of motion in the contraction limit

we obtain
: 2
—12« *—~i(M2+sinhsz\'2)* M=~ 72— M2 — o 2p? = X, (35)
172 L= R2 3 s SRy )= Ty ! Py = g B
5.4c¢. As in previous case, using formulas (32), (27) and writting coordinates as

mo=ay — (ay —az)sin’ . py = a, — (g — ay)sin? ¢, (36)

we see that Beltrami coordinates in the contraction limit go into elliptic coordinates
Type I on the I9) ) plane

o = =dcosycos, ¥ — r = dsinysin (. (37)

The integral of motion in the contraction limit is given by (35).
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5.5. Elliptic coordinates on /., to Cartesian on [, | plane
We make the special choice ay—ay, = ay—ay = a. Then vaviables &, are determined

by the formula

pra— @y ué -+ u.j 1 ,/" uf} + uj : | uf (38
Y I I Y
C'onsidering the limit # — oc we obtain
2t 1
[ A 4 _ G .
S Bns R EZ__' <] +2[{z> (;())

and Beltrami coordinates go into (‘artesian ones. The operator 1y goes into (arte-
slan one
I M2 )
==t X 10
[{2 /12 2 P2 ( )
5.6. Hyperbolic coordinates on L, to elliptic ones on /v, ; plane
The variables p; , are determined by lormula

P2 Az l uf) — uf |y ay 'uf] — u:j n
ay; — dy 2 R? a; — ay 2
1 ud —u? oy —ayud — ul : \ 42— a3 us (40
2 R? ay, —ay  R? ay — ay R
Putting
IR? d*
= ) (42)
ay —az  ay — ay
and writting coordinates as
Py = ag + (ay — as) cosh®n,  py = ag + (ag — ay) cosh? ¢ (43)

we see that Beltrami coordinates in the contraction limit R — oo go into elliptic

coordinates Type 11
yo — t = dcoshycosh(, y; — z = dsinhpsinh(. (44)
For the integral of motion in the contraction limit we obtain
Iy = K2 — Misin®~y — M? —d*p) = Xp. (45)

5.7. Semi-hyperbolic coordinates on [, to Cartesian coordinates on F;;
plane :

In this casc variables g 5 are determined by formulae

2.2 2
Hiz = U;;:l -7;?—22 + “});:] . (46)
In the contraction limit B — oo we have
i1 :i+ﬁ(ﬁiu)2. (47)
l'or Beltrami coordinates we obtain
yo—t, y1— (48)
The integral of motion in the contraction limit takes the form:
Isy = {K\, M3} — 2pypy = X¢. {(19)

5.8. Elliptic-parabolic coordinates on [, to hyperbolic ones on F,, plane
Choosing new variables ¢ 5 as

1 [ (uy —uy)? ul —u?
1.2=P1,2+a:§[ Iz +a R
L[ (uo —uy)? ul — R?)° ul
i5\/[ R T I (50)

In the contraction limit i ~ a — oo so that g ~ le we obtain

£ ~ =¥ £~ e (51)

bl

Beltrami coordinates in such limit go into hyperbolic coordinates of Type II

yo — ¢ =I(sinh(n — ) + €™), y — & = I(sinh(y — () — ™), (52)
For the integral of motion we have
. . 2 1 M? \
Ipp = aK2 + (K + M3)2 — % =+ () =Xy (53)
5.9. Hyperbolic-parabolic coordinates on L, to hyperbolic ones on £,

plane
This coordinate system is quite analogous to the previous one. In the contraction
limit B~ a — oo, and £ ~ 1% Beltrami coordinates take the form

yo — 1 = l(cosh(n = ¢) + ™),y — z = l(cosh(n — () — ™) (54)

and we have the hyperbolic coordinates Type III. For the integral of motion we
obtain

i M?
Iup = —aK? + (Ky + Ms)* — —ETP = -+ tp) = X[ (55)






Table 1: Separable Coordinate Systems on the Two-Dimensional Hyperboloid

C'oordinate Syvstem
[ntegral of Motion [/

("oordinates

[. Equidistant

iy = It cosh ry cosh 7,

1. € R uy = [eoshrsinh 7,
lo = N} 1y, = [{sinh
I, Pseudo-spherical g = L cosht
> 0.2 [0.27) uy = [sinhrcos o
1 = A\I‘ wy = [sinhmsinp

~ L Horicyelic uy = R+ 52+ 1)/2y
g> 0.0 ¢lR uy = RG24+ 52— 1)/2g

Lo = (K + My)?

uy = Rir/y

IV. Elliptic®
Uy <ty < pp < ayp <
[;; = M* 4 sinh? Jh?

ul =1 py - ay

ub = Rp — ay

ui= R¥Yp, —a

Gy — (ax)tty — dy

(ay — ay)(ay — uy

) — ay

V. Ilyperbolic”
2 < Uy < ay < ay < g
1y = [\'f — sinzqu\lvq2

ay — ay

—_—— == ==
2
=
~

) )/ )" )
) 2)/ It )
) [lar — a2)( )
up = [ (p) — ay) [lay —ay)(ay — ay)
“12 = *(p) — ay) 2)/ 3)( )

( ) 2)/ ) )

2 _
us; = Re(p) —ay (ay — ay)lay — ay

VI Sermi-Hyperbolic
jiia >0

lon = '{[\'1-, :\'Ir;}

ug — iy = By/(1— i)
wo + 11y = Ry/(1+ vy )(1 — o)

u; = R/t

VIIL. Elliptic-Parabolic
—a Ty <0<y

Iip = (N + My)* + K}

ug +uy = R{a® — /)1/)2)/\/41,3(/)‘ +a)(p2 + a)

g —uy = By/(py + a)(py + a)//a

Uy — i[f‘/ﬂ]ﬂz/(l

VIIL Hyperholic-Parabolic
pe < —a <0< p

Iyp = (K + My)? — K2

—mp2)/at (py+ a)(pa + a)
up = uy = iRy/=(p1 + a)(pa + a)/Va
1Ry/pipa/a

g+ uy = —i1R(a®

Uy

IX. Semi-Clircular-Parabolic
&g >0

[5‘('[) = {[\’] . [\’2} + {[\,2, A{';}

2 232
4
Ug — If‘-z—(f +8n 7]) +
_ &)t —d
u; = [1) 8 7
2 2

_ =&
uy = It €7

4} Parameter [ is determined by relation: sinh® f = (a; — ay)/(az — a3) = k2/k* (k2 + k* = 1).

"rAngle 5 is determined by the formula: sin? v = (ay — a3)/(ay; —agz) where 27 1s the angle between

two focal lines.
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Table 2: Orthogonal Separable Coordinate Systems on the pseudo-Fuclidean

planc [7)

Coordinate Svstem

Integral of Motion X

Coordinates

. Cartesian, type | Xeo= pipy /

£
I1. Pseudo-polar Xy =1/ = rcoshn,
r> . —oc <y < 1= rsinhry,

I Parabolic type 1.
v >0, —oc <u < oo

)= {pa. M)

— L2 2
l=S(u? 4 r?)
]

e

I

IV. Parabolic type 11.
—00 < 1,( < o0

\,, = {p, \I}
{l’z ”}

(= m)?

V. Hyperbolic type 1.

—~o0 < 1,{ < oo

A\',], = M2 {pp,

— L couh 2=C 3 n+C
=5 (cosh % 4 sinh 12

v L enelh 1
&= 5 (cosh 5 sinh

VI. yperbolic type 11.
—o0 < 1,( < o0

X)=
FE(py + p2)?

I'=1(sinh(y — ¢) + ¢*)
ro= /(sinh(l/ — () et

VIL Hyperbolic type 1.
—00 < 1],( < oo

\flll \[2
_/2(1’1 +m)?

=1 (('()sh(l/ - )+ (mr+<)
= [(('()SI](I] - () - (-n+C>

VI Elliptic, type L.
—oc < 1,( < 0o

Xl=nmzy D?p}

L= D sinhycosh ¢
r = Dcoshysinh ¢

IX. Elliptic, tvpe TLIHIL
(1) —co<np<o0, (20
(0 <y<27r,0<C <

X =M - d*p}

() 1 = dcoshicosh
= dsinhysinh ¢,
(11) 1 =dcosyeos(

o= dsinysin ¢
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