

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

98-82
E2-98-82

Ye.M.Hakobyan ${ }^{1}$, G.S.Pogosyan ${ }^{2}$

ON INTERBASIS EXPANSION
FOR ISOTROPIC OSCILLATOR
ON TWO-DIMENSIONAL SPHERE

Submitted to II International Workshop «Lie Theory and Its Applications in Physics», August 17-20, 1997, Clausthal, Germany

[^0]
1 Introduction

The present article is devoted to the oscillator system on the two-dimensional sphere $s_{1}^{2}+s_{2}^{2}+s_{3}^{2}=R^{2}$, which is also known as a Higgs oscillator [1]

$$
\begin{equation*}
V=\frac{\alpha^{2} R^{2}}{2} \frac{s_{1}^{2}+s_{2}^{2}}{s_{3}^{2}} \tag{1}
\end{equation*}
$$

where s_{i} are the Cartesian coordinates in the ambient Euclidean space and R is a radius of sphere. As a "flat" space partner [2], this is a superintegrable system and has the same properties as accidental degeneracy of the energy spectrum [1], separation of variables in more than one coordinate systems [3,4] and nontrivial realization of hidden symmetries [5] (see also [6]).

The aim of this paper is to describe of solutions to the Schrödinger equation for the potential (1) in three spherical systems of coordinates and to calculate the coefficients of interbasis expansion between the corresponding wave functions.

2 Quantum motion on two-dimensional sphere

The Schrödinger equation on the two-dimensional sphere has the following form:

$$
\begin{equation*}
H \Psi=\left[-\frac{1}{2} \Delta_{L B}+V\right] \Psi=E \Psi \tag{2}
\end{equation*}
$$

where $\Delta_{L B}$ is the Laplace-Beltrami operator

$$
\begin{equation*}
\Delta_{L B}=\frac{1}{R^{2}}\left(L_{1}^{2}+L_{2}^{2}+L_{3}^{2}\right) \tag{3}
\end{equation*}
$$

and L_{i} are the generators of the Lic algebra $o(3)$

$$
\begin{equation*}
L_{i}=-\epsilon_{i k j} s_{k} \frac{\partial}{\partial s_{j}}, \quad\left[L_{i}, L_{k}\right]=\epsilon_{i k j}, \quad i, k=1,2,3 \tag{4}
\end{equation*}
$$

For $V=0$ the separated eigenfunctions of the Laplace-Bcitrami operator satisfy

$$
\begin{equation*}
\Delta_{L B} \Psi=-\frac{l(l+1)}{R^{2}}, \quad I \Psi=k \Psi, \quad \Psi_{l k}(\alpha, \beta)=\psi_{l k}(\alpha) \psi_{l k}(\beta) \tag{5}
\end{equation*}
$$

where I is a second order operator in the enveloping algebra of $o(3)$

$$
\begin{equation*}
I=a_{i k} L_{i} L_{k}, \quad a_{i k}=a_{k i} \tag{6}
\end{equation*}
$$

The matrix $a_{i k}$ can be diagonalized to give [7]

$$
\begin{equation*}
I\left(a_{1}, a_{2}, a_{3}\right)=a_{1} L_{1}^{2}+a_{2} L_{2}^{2}+a_{3} L_{3}^{2} \tag{7}
\end{equation*}
$$

When all three eigenvalues a_{i} are different, the separable coordinates in (5) are elliptic [8]. If the two eigenvalues of a_{i} are equal, e.g. $a_{1}=a_{2} \neq a_{3}$ or $a_{1} \neq a_{2}=a_{3}$, or $a_{1}=a_{3} \neq a_{2}$ we can transform the operator I into the operators: $I(0,0,1)=L_{3}^{2}$, $I(0,1,0)=L_{2}^{2}$, or $I(1,0,0)=L_{1}^{2}$. Thus, the corresponding separable coordinates on S_{2} are the three type of spherical coordinates

$$
\begin{array}{ll}
s_{1}=R \sin \theta \cos \varphi & =R \cos \theta^{\prime} \\
s_{2}=R \sin \theta \sin \varphi & =R \sin \theta^{\prime} \cos \varphi^{\prime}=R \cos \theta^{\prime \prime} \sin \varphi^{\prime \prime} \tag{8}\\
s_{3}=R \cos \theta & =R \sin \theta^{\prime} \sin \varphi^{\prime}=R \sin \theta^{\prime \prime} \cos \varphi^{\prime \prime}
\end{array}
$$

where $\varphi \in[0,2 \pi), \theta \in(0, \pi)$. The eigenfunctions of the three sets of operators $\left\{\Delta_{L B}, L_{i}\right\}$ are the usual spherical functions on S_{2} :

$$
\begin{equation*}
\Delta_{L B} Y_{l m_{i}}(\theta, \varphi)=-\frac{l(l+1)}{R^{2}} Y_{l m_{i}}(\theta, \varphi) \quad L_{i}^{2} Y_{l m_{i}}(\theta, \varphi)=m_{i}^{2} Y_{l m_{i}}(\theta, \varphi) \tag{9}
\end{equation*}
$$

Geometrically, the spherical coordinates (8) are connected with each other by rotation which may be expressed through the Euler angles (α, β, γ) in accordance with the relations [10]

$$
\begin{aligned}
\cos \theta^{\prime} & =\cos \theta \cos \beta+\sin \theta \sin \beta \cos (\varphi-\alpha) \\
\cot \left(\varphi^{\prime}+\gamma\right) & =\cot (\varphi-\alpha) \cos \beta-\frac{\cot \theta \sin \beta}{\sin (\varphi-\alpha)}
\end{aligned}
$$

Correspondingly, the spherical functions $Y_{l m}(\theta, \varphi)$ are transformed by the formulae [10]

$$
\begin{aligned}
Y_{l, m^{\prime}}\left(\theta^{\prime}, \varphi^{\prime}\right) & =\sum_{m=-l}^{l} D_{m m^{\prime}}^{l}\left(0, \frac{\pi}{2}, \frac{\pi}{2}\right) Y_{l, m}(\theta, \varphi) \\
Y_{l, m^{\prime \prime}}\left(\theta^{\prime \prime}, \varphi^{\prime \prime}\right) & =\sum_{m=-l}^{l} D_{m m^{\prime \prime}}^{l}\left(\frac{\pi}{2}, \frac{\pi}{2}, 0\right) Y_{l, m}(\theta, \varphi) \\
Y_{l, m^{\prime \prime}}\left(\theta^{\prime \prime}, \varphi^{\prime \prime}\right) & =\sum_{m^{\prime}=-l}^{l} D_{m^{\prime} m^{\prime \prime}}^{l}\left(0, \frac{\pi}{2}, \frac{\pi}{2}\right) Y_{l, m^{\prime}}\left(\theta^{\prime}, \varphi^{\prime}\right)
\end{aligned}
$$

where $D_{m_{1}, m_{2}}^{l}(\alpha, \beta, \gamma)$ - are the Wigner D-functions.

3 Higgs oscillator on the two-dimensional sphere

3.1 Solution to the Schrödinger equation

3.1 The oscillator potential (1) in the spherical coordinate (θ, φ) is

$$
\begin{equation*}
V=\frac{\alpha^{2} R^{2}}{2} \frac{s_{1}^{2}+s_{2}^{2}}{s_{3}^{2}}=\frac{\alpha^{2} R^{2}}{2} \tan ^{2} \theta \tag{10}
\end{equation*}
$$

and the Schrödinger equation (2) has the following form:

$$
\begin{equation*}
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial \Psi}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} \Psi}{\partial \varphi^{2}}+2 R^{2}\left[E-\frac{\alpha^{2} R^{2}}{2} \tan ^{2} \theta\right] \Psi=0 \tag{11}
\end{equation*}
$$

Choosing the wave function according to

$$
\begin{equation*}
\Psi(\theta, \varphi)=\frac{Z(\theta)}{\sqrt{\sin \theta}} \frac{e^{i m \varphi}}{\sqrt{2 \pi}}, \quad m \in \mathbf{Z} \tag{12}
\end{equation*}
$$

after the separation of variables in equation (11) we come to the Pöschl-Teller - type equation:

$$
\begin{equation*}
\frac{d^{2} Z}{d \theta^{2}}+\left[\varepsilon-\frac{m^{2}-\frac{1}{4}}{\sin ^{2} \theta}-\frac{\nu^{2}-\frac{1}{4}}{\cos ^{2} \theta}\right] Z=0 \tag{13}
\end{equation*}
$$

where $\nu=\sqrt{\alpha^{2} R^{4}+\frac{1}{4}}$ and $\varepsilon=2 R^{2} E+\alpha^{2} R^{4}+\frac{1}{4}$. The solution of the above equation orthonormalised in the interval $\theta \in[0, \pi / 2]$ is

$$
\begin{align*}
Z(\theta) \equiv Z_{n_{r} m}(\theta)= & \sqrt{\frac{2\left(2 n_{r}+|m|+\nu+1\right)\left(n_{r}\right)!\Gamma\left(n_{r}+|m|+\nu+1\right)}{\left(n_{r}+|m|\right)!\Gamma\left(n_{r}+\nu+1\right)}} \\
\cdot & \left(\left.\sin \theta\right|^{|m|+\frac{1}{2}}(\cos \theta)^{\nu+\frac{1}{2}} P_{n_{r}}^{(|m|, \nu)}(\cos 2 \theta)\right. \tag{14}
\end{align*}
$$

where $P_{n}^{(\alpha, \beta)}(x)$ are the Jacobi polynomials [11] and the energy E takes the values

$$
\begin{equation*}
E_{n}=\frac{1}{2 R^{2}}[(n+1)(n+2)+(2 \nu-1)(n+1)] \tag{15}
\end{equation*}
$$

where n_{r} is a "radial" quantum number and $n=2 n_{r}+|m|$ is the principal quantum number. The degree of degeneracy of the energy spectrum, like the flat twodimensional oscillator system, is equal to $2 n+1$. Note also that in contraction limit when $R \rightarrow \infty$, we have $\nu \sim \alpha R^{2}$ and from formula (15) the energy spectrum for two-dimensional circular oscillator is restored [9].
3.2 In the second spherical coordinate $\left(\theta^{\prime}, \varphi^{\prime}\right)$ the potential (1) has the form

$$
\begin{equation*}
V=\frac{\alpha^{2} R^{2}}{2}\left(\frac{1}{\sin ^{2} \theta^{\prime} \sin ^{2} \varphi^{\prime}}-1\right) \tag{16}
\end{equation*}
$$

After the substitution

$$
\begin{equation*}
\Psi\left(\theta^{\prime}, \varphi^{\prime}\right)=\frac{1}{\sqrt{\sin \theta^{\prime}}} S\left(\theta^{\prime}\right) S\left(\varphi^{\prime}\right) \tag{17}
\end{equation*}
$$

we come to the system of differential equations

$$
\begin{equation*}
\frac{d^{2} S}{d \theta^{\prime 2}}+\left[\varepsilon-\frac{\Lambda^{2}-\frac{1}{4}}{\sin ^{2} \theta^{\prime}}\right] S=0 \quad \frac{d^{2} S}{d \varphi^{\prime 2}}+\left[\Lambda^{2}-\frac{\nu^{2}-\frac{1}{4}}{\sin ^{2} \varphi^{\prime}}\right] S=0 \tag{18}
\end{equation*}
$$

where A is the separation constant. Solving equations (18) we obtain

$$
\begin{equation*}
A=n_{1}+\nu+\frac{1}{2}, \quad \varepsilon=\left(n_{2}+A+\frac{1}{2}\right)^{2}=.\left(n_{1}+n_{2}+\nu+1\right)^{2}=(n+\nu+1)^{2} \tag{19}
\end{equation*}
$$

where $n_{1}, n_{2} \in \mathrm{~N}$ and the principal quantum number $n=n_{1}+n_{2}$, so that the energy spectrum is given by equation (15). The orthonormalized eigenfunctions $\Psi\left(\theta^{\prime}, \varphi^{\prime}\right)$ could be written as

$$
\begin{equation*}
\Psi_{n_{1} n_{2}}\left(\theta^{\prime}, \varphi^{\prime}\right)=\frac{1}{\sqrt{\sin \theta^{\prime}}} S_{n_{2}}^{A}\left(\theta^{\prime}\right) S_{n_{1}}^{\nu}\left(\varphi^{\prime}\right) \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{n}^{\prime a}(\varphi)=\frac{\Gamma(a+1) \Gamma\left(n+a+\frac{1}{2}\right)}{\Gamma(n+a+1)} \sqrt{\frac{(n+a+1 / 2) n!}{\pi \Gamma(n+2 a+1)}}(\sin \varphi)^{\frac{1}{2}+a} C_{n}^{a+\frac{1}{2}}(\cos \varphi) \tag{21}
\end{equation*}
$$

and C_{n}^{λ} are the Gegenbauer polynomials [11]. Finally, note that the operator characterizing the separation solutions in this coordinate system is
$J_{1} \Psi_{n_{1} n_{2}}=\left(\frac{\partial^{2}}{\partial \varphi^{\prime 2}}-\frac{\nu^{2}-\frac{1}{4}}{\sin ^{2} \varphi^{\prime}}\right) \Psi_{n_{1} n_{2}}=\left[L_{1}^{2}-\left(s_{2}^{2}+s_{3}^{2}\right) \frac{\nu^{2}-\frac{1}{4}}{s_{3}^{2}}\right] \Psi_{n_{1} n_{2}}=-A^{2} \Psi_{n_{1} n_{2}}(22)$
3.3 For the potential (1) in the coordinate system $\left(\theta^{\prime \prime}, \varphi^{\prime \prime}\right)$ we lave

$$
\begin{equation*}
V=\frac{\alpha^{2} R^{2}}{2}\left(\frac{1}{\sin ^{2} \theta^{\prime \prime} \cos ^{2} \varphi^{\prime \prime}}-1\right) \tag{23}
\end{equation*}
$$

The orthonormalized solution to the Schrödinger equation (2) have the following Corm:

$$
\begin{equation*}
\Psi_{l_{1} l_{2}}\left(\theta^{\prime \prime}, \varphi^{\prime \prime}\right)=\frac{1}{\sqrt{\sin \theta^{\prime \prime}}} S_{l_{1}}^{\nu}\left(\varphi^{\prime \prime}+\frac{\pi}{2}\right) S_{l_{2}}^{B}\left(\theta^{\prime \prime}\right) \tag{24}
\end{equation*}
$$

where $l_{1}, l_{2} \in \mathrm{~N}$, the principal quantum number $n=l_{1}+l_{2}$ and the constant $B=l_{1}+\nu+\frac{1}{2}$. For the energy spectrum we come to expression (15) and the wave function $S_{n}^{a}(\theta)$ is given by formula (21).

The additional operator describing this solution and separation is

$$
\begin{equation*}
J_{2} \Psi_{l_{1} l_{2}}=\left(\frac{\partial^{2}}{\partial \varphi^{\prime \prime 2}}-\frac{\nu^{2}-\frac{1}{4}}{\cos ^{2} \varphi^{\prime \prime}}\right) \Psi_{l_{1} l_{2}}=\left[L_{2}^{2}-\left(s_{1}^{2}+s_{3}^{2}\right) \frac{\nu^{2}-\frac{1}{4}}{s_{3}^{2}}\right] \Psi_{l_{1} l_{2}}=-B^{2} \Psi_{l_{1} l_{2}} \tag{25}
\end{equation*}
$$

3.2 Algebra

If we take the constant of motion in the form

$$
\tilde{J}_{3}=L_{3}, \quad \tilde{J}_{1}=L_{\mathrm{I}}^{2}-\alpha^{2} R^{4} \frac{s_{2}^{2}}{s_{3}^{2}}, \quad \tilde{J}_{2}=L_{2}^{2}-\alpha^{2} R^{4} \frac{s_{1}^{2}}{s_{3}^{2}}
$$

we have the Hamiltonian

$$
H=-\frac{1}{2 R^{2}}\left[\tilde{J}_{1}+\tilde{J}_{2}+\tilde{J}_{3}\right]
$$

and the commutator relations

$$
\begin{align*}
& {\left[\tilde{J}_{1}, \tilde{J}_{2}\right]=\left\{L_{1},\left\{L_{2}, L_{3}\right\}\right\}+2 \alpha^{2} R^{4}\left(\frac{s_{2}^{2}-s_{1}^{2}}{s_{3}^{2}}+\frac{2 s_{1} s_{2}}{s_{3}^{2}} L_{3}\right)} \\
& {\left[\tilde{J}_{1}, \tilde{J}_{3}\right]=-\left\{L_{1}, L_{2}\right\}-2 \alpha^{2} R^{4} \frac{s_{1} s_{2}}{s_{3}^{2}}} \\
& {\left[\tilde{J}_{2}, \tilde{J}_{3}\right]=\left\{L_{1}, L_{2}\right\}+2 \alpha^{2} R^{4} \frac{s_{1} s_{2}}{s_{3}^{2}}} \tag{26}
\end{align*}
$$

where $\{$,$\} is the anticommutator. To close this algebra, we use the redefined oper-$ ators

$$
\begin{equation*}
S_{1}=\tilde{J}_{3}, \quad S_{2}=\tilde{J}_{1}-\tilde{J}_{2}, \quad S_{3}=\left[S_{1}, S_{2}\right] \tag{27}
\end{equation*}
$$

and derive the following relations:

$$
\begin{align*}
S_{3} & =2\left\{L_{1}, L_{2}\right\}+4 \alpha^{2} R^{4} \frac{S_{1} S_{2}}{s_{3}^{2}} \tag{28}\\
{\left[S_{3}, S_{1}\right] } & =4 S_{2}, \quad\left[S_{3}, S_{2}\right]=\frac{4 H S_{1}}{R^{2}}+8 S_{1}^{3}+4\left(4 \alpha^{2} R^{4}-1\right) S_{1} \tag{29}
\end{align*}
$$

Thus, the operators S_{1}, S_{2}, S_{3} a generate nonlinear algebra, the so-called cubic.or Higgs algebra.

4 Interbasis expansions

Let us now consider interbasis expansion between two spherical wave functions

$$
\begin{equation*}
\Psi_{n_{1}, n_{2}}\left(\theta^{\prime}, \varphi^{\prime}\right)=\sum_{m=-n}^{n} W_{n_{1} n_{2}}^{m} \Psi_{n, m}(\theta, \varphi) \tag{30}
\end{equation*}
$$

To calculate an explicit form of the expansion coefficients $W_{n_{1} n_{2}}^{m}$ it is sufficient to use the orthogonality for the wave function on one of the variables in the right-hand
side of (30) and to fix, at the most appropriate point, the second variable that does not participate in integration. Rewrite the left-hand side of (30) in the spherical coordinates (θ, φ) according to the formulae

$$
\cos \theta^{\prime}=\sin \theta \cos \varphi, \quad \cos \varphi^{\prime}=\frac{\sin \theta \sin \varphi}{\sqrt{1-\sin ^{2} \theta \cos ^{2} \varphi}}
$$

Then, by substituting $\theta=\frac{\pi}{2}$ and taking into account that

$$
C_{n}^{\lambda}(1)=\frac{\Gamma(2 \lambda+n)}{n!\Gamma(2 \lambda)}
$$

we obtain an equation depending only on the variable φ. Thus, using the orthogonality relation for the function $e^{i m \varphi}$ upon the quantum number \dot{m}, we arrive at the following integral representation for the coefficients $W_{n_{1}, n_{2}}^{m}$:

$$
\begin{gather*}
W_{n_{1} n_{2}}^{m}(\nu)=\frac{(-1)^{\left.\frac{n-\mid m}{2} \right\rvert\,}}{2^{\nu+1} \pi} \sqrt{\frac{\cdot\left(n_{2}\right)!\left(n_{1}+\nu+\frac{1}{2}\right) \Gamma\left(n_{1}+2 \nu+1\right)\left(\frac{n+m}{2}\right)!\left(\frac{n-m}{2}\right)!}{\left(n_{1}\right)!\Gamma\left(n+n_{1}+2 \nu+2\right) \Gamma\left(\frac{n-m}{2}+\nu+1\right) \Gamma\left(\frac{n+m}{2}+\nu+1\right)}} \\
\cdot \frac{\Gamma\left(n_{1}+\nu+\frac{3}{2}\right) \Gamma(n+\nu+1)}{\Gamma\left(n+\nu+\frac{3}{2}\right)} I_{n_{1} n_{2} m}^{\nu} \tag{31}
\end{gather*}
$$

where

$$
\begin{equation*}
I_{n_{1} n_{2} m}^{\nu}=\frac{1}{\sqrt{2 \pi}} \int_{0}^{2 \pi}(\sin \varphi)^{n_{1}} C_{n_{2}}^{n_{1}+\nu+1}(\cos \varphi) e^{-i m \varphi} d \varphi \tag{32}
\end{equation*}
$$

To calculate the integral $I_{n_{1} n_{2} m}^{\nu}$ it is sufficient to write the Gegenbauer polynomial $C_{n_{2}}^{n_{1}+\nu}(\cos \varphi)$ and $(\sin \varphi)^{n_{1}}$ as a series in terms of the exponents. After integration we obtain

$$
\begin{aligned}
\int_{0}^{2 \pi}(\sin \varphi)^{k} C_{n}^{\lambda}(\cos \varphi) e^{-i m \varphi} d \varphi & =\frac{(-1)^{\frac{n-m}{2}} 2^{\lambda-k+\frac{1}{2}} \pi \Gamma\left(\lambda+n+\frac{1}{2}\right) k!}{n!\Gamma\left(\lambda+\frac{1}{2}\right) \Gamma\left(\frac{n+k-m}{2}+1\right) \Gamma\left(\frac{k-n+m}{2}+1\right)} \\
& \cdot{ }_{3} F_{2}\left\{\left.\begin{array}{cc|}
-n, & -\frac{n+k-m}{2}, \quad \lambda \\
-\lambda-n+1, \frac{k-n+m}{2}+1
\end{array} \right\rvert\, 1\right\} .
\end{aligned}
$$

The introduction of (32) into (31) gives us the interbasis coefficients in the closed form

$$
\begin{align*}
W_{n_{1} n_{2}}^{m}(\nu) & =(-1)^{\frac{|m|-m-n_{1}}{2}} \sqrt{\frac{2\left(n_{1}+\nu+\frac{1}{2}\right)\left(n_{1}\right)!\Gamma\left(n_{1}+2 \nu+1\right)}{\left(n_{2}\right)!\Gamma\left(n+n_{1}+2 \nu+2\right) \Gamma\left(\frac{n-m}{2}+\nu+1\right) \Gamma\left(\frac{n+m}{2}+\nu+1\right)}} \\
& \cdot \sqrt{\frac{\left(\frac{n+m}{2}\right)!}{\left(\frac{n-m}{2}\right)!}} \frac{\Gamma(n+\nu+1)}{\Gamma\left(\frac{n_{1}-n_{2}+m}{2}+1\right)}{ }_{3} F_{2}\left\{\left.\begin{array}{c}
-n_{2},-\frac{n-m}{2}, n_{1}+\nu+1 \\
-n-\nu, \frac{n_{1}-n_{2}+m}{2}+1
\end{array} \right\rvert\, 1\right\} . \tag{33}
\end{align*}
$$

The interbasis coefficients $W_{n_{1} n_{2}}^{m}(\nu)$ could also be expressed in term of the ClebschGordan coefficients for $S U(2)$ group, analytically continued to the real values of their arguments. Using the formula for the Clebsch-Gordan coefficients $C_{a, \alpha ; b, \beta}^{c, \gamma}[10]$

$$
C_{a, \alpha ; b, \beta}^{c, \gamma}=\delta_{\gamma, \alpha+\beta} \sqrt{\frac{(a+\alpha)!(b-\beta)!(c+\gamma)!(c-\gamma)!(2 c+1)}{(a+b-c)!(a+b+c+1)!(a-\alpha)!(b+\beta)!}}
$$

$$
\frac{\sqrt{(a-b+c)!(c-a+b)!}}{(-b+c+\alpha)!(-a+c-\beta)!}{ }_{3} F_{2}\left\{\left.\begin{array}{c}
-a-b+c,-a+\alpha,-b-\beta \tag{34}\\
-a+c-\beta+1,-b+c+\alpha+1
\end{array} \right\rvert\, 1\right\}
$$

and following the property of the polynomial hypergeometric function ${ }_{3} F_{2}$

$$
{ }_{3} F_{2}\left\{\left.\begin{array}{cc}
a, & b, \tag{35}\\
d, & e
\end{array} \right\rvert\, 1\right\}=\frac{\Gamma(d) \Gamma(d-a-b)}{\Gamma(d-a) \Gamma(d-b)}{ }_{3} F_{2}\left\{\left.\begin{array}{c}
a, b, e-c \\
a+b-d+1, e
\end{array} \right\rvert\, 1\right\} .
$$

We can rewrite the formula (34) in the form

$$
\begin{aligned}
C_{a, \alpha ; b, \beta}^{c, \gamma}= & \delta_{\gamma, \alpha+\beta} \sqrt{\frac{(2 c+1)(b+c-a)!(b-\beta)!(c+\gamma)!(c-\gamma)!}{(a+b-c)!(a-b+c)!(a+b+c+1)!(a+\alpha)!(a-\alpha)!(b+\beta)!}} \\
& \frac{(2 a)!(c-b+\alpha)!}{(c-b+\alpha)!(c-a-\beta)!}{ }_{3} F_{2}\left\{\left.\begin{array}{c}
-a-b+c,-a+\alpha, b-a+c+1 \\
-2 a, c-a-\beta+1
\end{array} \right\rvert\, 1\right\}(36)
\end{aligned}
$$

By comparing equations (36) and (33) we finally obtain

$$
\begin{equation*}
W_{n_{1} n_{2}}^{m}(\nu)=(-1)^{\frac{|m|-m-n_{1}}{2}} C_{\frac{n+\nu}{2}, \frac{\nu+m}{2} ; \frac{n+\nu}{2}, \frac{\nu-m}{2}, ~}^{n_{1}+\nu, \nu} \tag{37}
\end{equation*}
$$

The inverse expansion of (30), namely

$$
\begin{equation*}
\Psi_{n m}(\theta, \varphi)=\sum_{n_{1}=0}^{n} \tilde{W}_{n m}^{n_{1}}(\nu) \Psi_{n_{1} n_{2}}\left(\theta^{\prime}, \varphi^{\prime}\right) \tag{38}
\end{equation*}
$$

immediately follows from the orthogonality property of the $S U(2)$ Clebsch-Gordan coefficient. Thus, the interbasis coefficients in expansion (38) are given by

$$
\begin{equation*}
\tilde{W}_{n m}^{n_{1}}(\nu)=(-1)^{\frac{|m|-m+n_{1}}{2}} C_{\frac{n+\nu}{2}, \frac{\nu+m}{2} ; \frac{n+\nu}{2}, \frac{\nu-m}{2}}^{n_{1}+\nu, \nu} \tag{39}
\end{equation*}
$$

and may be expressed in terms of the ${ }_{3} F_{2}$ function through (33).
Using the same method we could calculate the coefficients of the interbasis expansion for the wave functions (24) and (12). We have

$$
\begin{equation*}
\Psi_{l_{1} l_{2}}\left(\theta^{\prime \prime}, \varphi^{\prime \prime}\right)=\sum_{m=0}^{n}(-1)^{n+\frac{m}{2}} W_{l_{1} l_{2}}^{m}(\nu) \Psi_{n m}(\theta, \varphi) \tag{40}
\end{equation*}
$$

where the coefficients $W_{l_{1} l_{2}}^{m}(\nu)$ are given by formulae (33) or (37) by replacing the quantum number $n_{i} \rightarrow l_{i}$.

The last interbasis expansion between two spherical wave functions (24) and (17) can be constructed by using equations (40) and (38)

$$
\begin{equation*}
\Psi_{l_{1} l_{2}}\left(\theta^{\prime \prime}, \varphi^{\prime \prime}\right)=\sum_{n_{1}=0}^{n} U_{l_{1} l_{2}}^{n_{1}}(\nu) \Psi_{n_{1} n_{2}}\left(\theta^{\prime}, \varphi^{\prime}\right) \tag{41}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{l_{1} l_{2}}^{n_{1}}(\nu)=(-1)^{l_{2}+\frac{l_{1}+n_{1}}{2}} \sum_{m=-n}^{n}(-1)^{\frac{m}{2}} C_{\frac{n+\nu}{2}, \frac{\nu+m}{2} ; \frac{n+\nu}{2}, \frac{\nu-m}{2}}^{l_{1}} C_{\frac{n+\nu}{2}, \frac{\nu+m}{2} ; \frac{n+\nu}{2}, \frac{\nu-m}{2}}^{n_{1}+\nu, \nu} . \tag{42}
\end{equation*}
$$

Finally, note that direct methods of calculation of the coefficients in expansion (41) give us the hypergeometrical function ${ }_{4} F_{3}$ from the unit argument.

Acknowledgment(s)

The authors thank V.M.Ter-Antonyan and L.G.Mardoyan for interesting discussions. One of the authors (G. P.) thankful to the Organizers of the II International Workshop "Lie Theory and its Application in Physics" for financial support and very kind hospitality.

References

[1] P.W.Higgs. Dynamical Symmetries in a Spherical Geometry. J.Phys A12, 309, 1979.
[2] L.G.Mardoyan, G.S.Pogosyan, A.N.Sissakian and V.M.Ter-Antonyan. Elliptic Basis for a Circular Oscillator. Nuovo Cimento, B 88, (1985), 43;
[3] C.Grosche, G.S.Pogosyan, A.N.Sissakian. Path Integral Discussion for Smorodinsky - Winternitz Potentials: II. The Two - and Three Dimensional Sphere. Fortschritte der Physik, 43, 523, 1995.
[4] E.G.Kalnins, W.MIller Jr. and G.S.Pogosyan. Superintegrability and associated polynomial solutions. Euclidean space and sphcre in two-dimensions. J.Math.Phys. 37, 6439, 1996
[5] D.Bonatos, C.Daskaloyannis and K.Kokkotas. Deformed Oscillator Algebras for Two-Dimensional Quantum Superintegrable Systems; Phys. Rev. A 50, (1994),
3700 .
[6] Ya.A.Granovsky, A.S.Zhedanov and I.M.Lutzenko. Quadratic algebras and dynamics into the curvature space. I. Oscillator. Teor. Mat. Fiz. 91, 207-216, 1992; Quadratic algebras and dynamics into the curvature space. II. The Kepler problem. Teor. Mat. Fiz. 91, 396-410, 1992.
[7] P.Winternitz, I.Lukac, and Ya.A.Smorodinskii. Quantum numbers in the little groups of the Poincaré group. Sov. J. Nucl. Phys. 7, 139-145, (1968).
[8] J.Patera and P.Winternitz. A New Basis for the Representation of the Rotation Group. Lamé and Heun Polynomials; J.Math.Phys. 14 (1973) 1130
[9] S.Flügge. Practical Quantum Mechanics, V1, Springer-Verlag, Berlin-Heidel-berg-New York, 1971
[10] D.A.Varshalovich, A.N. Moskalev, and V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1988).
[11] A.Erdélyi, W.Magnus, F.Oberhettinger, and F.Tricomi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vols. I and II.

Received by Publishing Department on April 3, 1998.

[^0]: ${ }^{1}$ yera@thsun ljinr.ru
 ${ }^{2}$ pogosyan@thsun1.jinr.ru

