


1. Introduction

Interactions of physical fields of the extended supergravity ($G%): graviton gmn, grav-
itino %2 and the abelian gauge field A have firstly been investigated in the framework
of the formalism that takes into account equaiions of motion for the proof of local super-
symmetry {1, 2. The problem of auxiliary fields of SG} has been solved in refs. (3, 4).
We shall consider a version of the Einstein N = 2 supergravity with 40 boson and 40
fermion field components. It should be noted that the component tensor calculus of SG2
leads to very tedious calculations in constructing interactions with matter supermultiplets
and analyzing quantum properties of the theory. So various superfield approaches to the
study of the extended supergravity have been developed intensively in parallel with the
component analysis [5, 6, 7, 8, 9].

A geometric approach to the superfield description of 5G? has been proposed in the
method of harmonic superspace (H$S) {10]. Analytic prepotentials of SG} appear in
a decomposition of the invariant harmonic derivative A** in terms of the operators of
partial derivatives in HSS, We have shown in [12] that harmonic superfield constraints
of zero dimension in SG? can be solved in the special flat coordinates by analogy with
the solution of the corresponding harmonic constraints of the nonabelian supergauge
theery [11, 13, 14). Using this solution the authors of ref. [15] have solved all superfield -
constraints of SG2 and constructed the superfield action nonlinear in prepotentials. The
conformal N = 2 supergravity and alternative versions of the extended Einstein SG have
also been studied in HSS (186].

Effectiveness of superfield formulations in supersymmetric theories is mainly connected
with simplification of quantum calculations. It should bé underlined that a procedure of
H8§-quantization of the extended supergravity seems us technically more complicated
than the quantization of Yang-Mills theory in HSS {11). First of all, SG7 has several an-
alytic prepotentials analogous to one matrix prepotential of the gauge theory. Besides, in
refs. [10, 15}, the gauge symmetry of the classical formalism of the extended supergravity
has been considered, and the additional background supersymmetry of perturbative ex-
pansion of the SGZ action in degrees of the gravitational constant « has not been discussed
there. We know from the formalism of quantization of the superfield N = 1 supergravity
(18, 19] that the background supersymmetry is very important in constructing superfield
Feynman rules. This work develops the investigation of the background-supersymmetry
problem in the harmonic formalism of SG? started in {17},

In sect. 2, we discuss a connection between different bases of differential operators
in the background HSS and show that gravitational superfields depending linearly on
the spinor nonanalytic coordinates 8~ (linear harmonic superfields) naturally arise in ‘the
covariant basis. Analytic prepotentials of a holonomic basis [10] can be treated in this
approach as coefficients of the §~-decomposition of background linear superfields; so they
have nonstandard transformations with respect to the background supersymmetry.

Note that the use of an analytic compensator [15] guarantees only the background
supersymmetry without the central charge in the SG7 action, but the formal covariance is



hidden after the shift of this compensator superfield on the flat part manifestly depending
on spinor coordinates. -

In sect. 3, we consider a solution of the analyticity condition in $G? which guarantees
the covariance with respect to the background supersymmetry with the central charge
(B-covariance). Alternative possibilities of choosing uncenstrained superfield variables in
the harmonic superspace are studied. In particular, we discuss the solution of the SG3
constraints in HSS corresponding to the representation of linear gravitational superfields
through the unconstrained harmonic spinor superfield of dimension d = 5/2. In a special
gauge this solution can be expressed in terms of the harmonic-independent spinor prepo-
tential, which has been considered earlier while describing the linearized supergravity in
the ordinary superspace [9). B-covariant solutions of the SGF constraints are discussed
in sects. 4 and 5.

Sect.6 is devoted to a discussion of terms in the harmonic SG? action quadratic in the
vector and scalar superfields. The structure of these terms is similar to the structure of
the action in N = 2 gauge theory [17). Note that the quadratic action has an additional
global symmetry. B-covariant decomposition of the $G? action in & can be constructed
by an iteration method taking into account the gauge invariance.

In ref.{15], the nonlinear action of SG? has a form of the action for an analytic com-
pensator in which the flat part manifestly depending on spinor coordinates is separated.
This representation allews one to prove the gauge invariance; however, it does not possess
the manifest B-covariance.

In sect.7, we discuss the alternative harmonic formalism of the linearized SG2, in
which spinor prepotentials of dimension d = 3/2 determine the dual invariant harmonic
derivative A=, a spinor component of the torsion with d = —1/2 vanishes identically, and
equations of motion are equivalent to the dynamical analyticity condition (zero-curvature
representation ). This formalism is constructed by analogy with a dual formulation of the
N =2 Yang-Mills theory [21]. We hope that superfield methods will help us to study the
quantum structure of N = 2 supergravity.

In Appendix, the definitions and notation of the basic derivatives in the flat H5S and
some other useful formulae from refs. [10, 11] are written down.

2 FLAT BACKGROUND HARMONIC
SUPERSPACE

.It is convenient to consider superfields with a real central charge in the harmonic
superspace HSS5(Z) [10] with the coordinates u¥ and ‘

2:4 =('rjn 7, 9p+$ §ﬁ+1 g, éﬂ_) y {2.1)
where " are the SU(2)/U(1) harmonics , z3, is a special coordinate associated with the

central charge Z, and m, y, i are vector and spinor indices of the Lorentz group SL(2,C).
The analytic subspace ASS{Z) is defined by the coordinates

((2) = (3% ) = (a7, §°%), (2:2)

2

where { describes 4-dimensional analytic coordinates, and the notation fit = (5. m} and

i = (i, ft} is introduced. N .
An introduction of the fifth coordinate is connected with a geometric interpretation

of the central charge, and superfields can only have the cyclic dependence on 2%

0 §—i 2.3)
6:3‘@_124)‘ ) (

The galige supergroup of the extended supergravity ASGY is defined quite natura.ll_\' using

the transformations of the analytic coordinates =}’ {10,
The basic infinitesimal parameters of the gauge transformations do not depend on

v, 87,00
S27 = AT (2.1)
50°* = AH((,u) . (2.5)
Harmonics do not transferm in ASG? , and transformations of spinor coordinates with

the charge —1 depend on all //55(Z) coordinates besides A
S5 = (a7 0F 0 u) . {2.6)
A local gauge transformation of the general scalar superfield &(z.4. u) in ASG}
68 = —AQ (2.7)
is defined by the transformation operator A that includes the analytic operator A
A=deXat, A= AA 4 AT (2.8)

Gauge transformations of superfields preserve the Grassmann analyticity and the

cyclicity condition {2.3)

(62,0 =0, [0%A]= (OIN)OE, [d.A]=0. (2.9)
s 1 ¢ ”
The local gauge transformations of analytic superfields have the form b= =

" The differential operator A in eq.{2.8) is given in the holonemic basis, 1.e.,in a form
of decomposition in terms of partial derivatives a3 Gravitational prepotentials of SG
have also been defined in this holonomic basis as coeflicients of the A-invariant harmonic

diflerential operator
M+ A+ - nt gt 210
At = g+ 4 1,[m++a,¢:_l+ N )(3; + i dﬁ . (2.10)
Fnll gauge variations of these prepotentials have a very simple form

S AN IR o AR (2.11)



Commutator of two full variations can be calculated very simply in virtue of the invariance
of the operator A*+

(5, 8 HM+ = AYAM(1,2) (2.12)
AF(1,2) = A0F LA 0F (2.13)
NE=(1,2) = AR — A NF (2.14)

where # = (/, i) and the differential operators A and A (2.8) are used.
We shall use the following gauge for the nonanalytic gauge transformations [10}:

I (2.15)

The matrix of induced tangent transformations is covariantly independent of harmonic
variables in this gauge A++3$/\;" = 0.

The conditien (2.15) corresponds to the following gauge of the nonanalytic prepoten-

tial: . ~
Ho =i (2.16)

In ref. [10}, a flat limit of gravitational superfields is defined and a possibility of
expansion in terms of the gravitational constant x with respect to this limit is discussed.
We shall consider the flat superspace HSS(Z) as the background classical superspace of
N = 2 supergravity. The background supersymmetry with the real central charge will be
denoted by a symbol BZ(Z), and the background superfields will be called B-superfields.
Gravitational and matter superfields and the interaction in any degree in & should be
covariant under B2(Z} in this approach.

It should be underlined that the holonomic basis of HSS(Z) is noncovariant with
respect to B3(Z), and the corresponding prepotentials H™*+ (2.10) cannot be treated as
B-superfields.

In ref. [12], the real coordinates have been used in H55({Z)

2= (2%, 2™, 8, B (2.17)
and the B-covariant decomposition of the invariant analytic operator has been considered
A* =gt £ G, [DE,GY) =0, G = kM8, = RS (2.18)

This representation is useful for studying an jterative solution to the harmonic equa-
tions of 5G2; however, it also uses the holonomic bases 8, and 8% noncovariant with
respect to BF(Z). Gauge transformations of the prepotentials A+ and AM*++ can readily
be obtained from the transformations (2.11) by using the relations

Rmet = gt = f{med 4 0igF gm gt , RN — pECHe) , Rt = ; (2.19)
fort = pEtd = Jeer 4 i(d+)2 - i+, REket = o k= pates) (2.20)

Note that these prepotentials have a dimiension d = 1 and 1/2, they do not contain flat
parts and are proportional to the constant x.
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It is convenient to study component stuff of the analytic prepotentials in the physical
W Z-gauge [10]

ATt = [ ~2i0% 0BT R (2) + (FF )20 ug g7 (24) +

H(OFV U PN (z,) + (BT P VR (2A)] (2.21)
R = k[i0* 08T Ag(za) + (6428 F ug pt(z) +

HOF O ug ph(za) + (01 ug g S¥0(za)] {2.22)
REUD = (B VOF(B¥* () +iC* (x4)] + (B7)°0% e (M +iN)(za) +
FTEN gz 0] + (872 (8* Yup €4 (200} - (2.23)

Here h™, ¥7* and A, are physical fields, and other components play a role of auxiliary

fields. _

In Appendix, we consider two bases of B-covariant differential operators:' 1) D =
(8**, 8-, Dy,) in the coordinates u¥, z* and 2) D* = (D, D=, D) in the.: co-
ordinates (2.1). Corresponding to these bases,decompositions of G** and other objects
of differential geometry will automatically be covariant with respect to the background

supersymmetry. ]
Define now gravitational B-superfields G*** in the basis Dy

A+ = D¥ L GPHOA - GRHI D (2.24)

Superfields G™** can be written in terms of the analytic prepotentials of the holenomic

basts

Ot = R 2:0- ™R 4+ Zih(”’amgd , (2_25)
¥t = R = 04(67 AU 21(G-h+ (2.26)
GO = pBEy (2.27)

By definition, B-superfields have trivial full background e variations §eG¥*t = 0, and
B-transformations of the analytic prepotentials have a noncovariant form

Sgh™ = 2i{0™),u (EVRHHY — MRV Y (2.28)

Sohett = 2i(HhUI 4 FURGuy ,  ShFHY =0 (2.29)

The operator condition of analyticity {DI":',G”] = 0 is equivalent to the following
relations for the gravitational superfields:

DEG™ =0, DEG™* = -2iGE", | (2.30)
DFG™* = 2i(0™)as G4 = —(c™aa DTG, (2.31)
DEG™* = =2i(0™)asGoHY = (6™)as DTG (2.32)

We shall consider the following decomposition of the transformation operator A in

covariant bases:

A=AMDY = A¥D,, (2.33)



A" = A" = 2™ 4 200" X + 20007, (2.34)
AP =A% = XS 206 2F) + 2i(B70F),  ARE=MBE (2.35)
Ak = Mhyp - Xy (2.36)

It is evident that these B-superfield parameters satisfy the constraints analogous to
€qs.(2.30-2.32), in particular, the parameters A™ are linear in 6.

It should be stressed that the use of background supersymmetry in the formalism
of N = 1 supergravity leads to appearance of linear vector superfield parameters which
contain chiral parameters in the zero and first orders of the 8-decomposition [19].

Transformations of the differential operators of the covariant basis are

5D** = [A,D*] = —(D=A¥)D},, D} =I[A,Dj)= ~ALDS,  (237)

AV =0, AL=0AA", AL =0AR, A= DDA, (2.38)
AP = DIA™ = 2i(a™) X7, A = DIAT+ 207 . 12.39)

The operator A** is invariant by definition, and this allows us to derive a transfor-
mation law of G** in ASG?

G = 4D+ = (D A] L (2.40)

The full variations of the covariant gravitational superfields have the following form:
SG™H = AYA™ 4 2i(0™), o (GHHINT — GPHIARTY (2.41)

§G*H = AYA® - 2UGHHI AT - 2GRS (2.42)

Corresponding local gauge transformations SGMHH = GMH — AGMH are
oM = (D + GH)AY — AGM* = RNHH{GIAY {2.43)

where the components of the local transformetion operator R¥+*(() are defined. It is
evident that these transformations are consistent with the constraints (2.30-2.32).
The local variation of the operator G+ is determined by the transformations dG**+

G =[(D* +G*),)], (2.44)

since the operators DY, are not change with respect to local transformations. This relation
is useful for calculation of linear bracket parameters in the commutator of transformations
(2.43)
AR(L,2) = AT - AAR | 3= A9, - XD, (2.45)
which are constructed by analogy with eq.(2.13) for analytic parameters.
The functions ¥~ in the gauge (2.15) are the series in terms of the superfields G

du,du, (2, u,) AR+
{u*ud) {uiul)
Note that the local variation of gravitational superfields (in distinction with the full
variation 6G™** and the operator A) does not contain X#~; 5o the operator RY¥*+(G)
in the perturbation theory can be decomposed into the sum of terms of the first and zero
degree in the gravitational constant (supetfields G are linear in x).

N (z,u) = Pz u) — & B L ow6?) . (2.46)
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3. ALTERNATIVE REPRESENTATIONS
OF GRAVITATIONAL SUPERFIELDS

Let us remind that in the harmonic representation the nonlinear superfield constraints
of SG? are reduced to the analyticity conditions for the prepotentials HM#+ ot to the equiv-
alent linear constraints (2.30-2.32) for the gravitational background superfields. Consider
the manifestly covariant representation for GT++[17) o

G (9) = (™), 4 [(DF P DI U™ = (D2 DoH 9] (3.
G (0) = (DF PP DIV + (DFPPDITET (3:2)

which allows ene to solve all constraints and to rewrite all geometric quantities through
the unconstrained spinor superfields ¥7 (=, %) and U7 (z.u) of dimension d = 5/2. In a
special gauge the spinor prepotentials are linear in u; and proportional to an ordinary
superficld $¢(x) analogous to the gauge superfield of the linearized SG? [9].

A solution of constraints for the superfield parameters AT (2,31.2.35) can also be
written in terms of unconstrained parameters K™ (z.u)

AT(K) = (cr"')aé[(D"')zDB'* PR (D+ Dot ];'fit—s;] . (3.3

A} = (DD 4 (DY DERS (3.4)

AF(K) = %(DJf)z(D*)"I\'},"“ . OMK) = ARG, - ¥HRDZ L (35)

Local transformations of the superfields U7 contain the fermionic parameters K™ as
well as the additional bosonic paramecters of transformations

JUD = [D¥ + GHDALTY — AR, + DB +
+DP B+ DB (3.6)

where B~ and B'E are real parameters, and Bry, are symmetrical in spinor indices.
is casy to show that these transformations produce the local transformations (2.43) for
GP++( 0} dependent on the fermionic parameters only. .

Commutators of additional transformations vanish. and the bracket parameters of
nontrivial commutators have the following form:

RKE9(1,2) = ME)RGY - (1 0 2), _ (3.7)
Bz3(1,2) = Mh2) B3, - (1 & 2). (3.8)

1

A derivation of these relations is given by using eq. (2.44).

By analogy with eqgs.(2.25,2.26), we now consider the B-covariant nonlocal represen-
tation for the solution of the SG? constraints (2.30-2.32), which is wseful in the analyxis
of the linearized supergravity

Gm.H - gm++ 4 Zi(o_m)m_'[(_)u—]‘l.':(w) - (_);'-—hnu.ﬂ; . (3_9)
G = ghtt - PR — 2OR Y (3.10)
7



where the following operators are introduced:

0" = QLDa“"D; , O = -—’-a"f*D; .- (3.11)

It is evident that one can restore locality of the representation using variables g“”

'h‘:"" of dimension 3/2; however, this changes dimensions of the corresponding corn-

ponent fields.
It is not difficult to establish relations between the auxiliary B—superﬁe]ds g and the

local prepotentials h
1 o .
gm++ = hME D(UM)“D(au.oa‘_‘—hwﬂ) + 3pva;hm+3)) R (312)

. 1 s oo
g o+ — pit4 -+ _D_{aup.aﬁ h::sl _ aﬁ.uap h:_‘+3)) . (313}
Due to the nonlocality of these relations, one should carefully study connections be-
tween field components of these superfield representations. In various treatments of the
gauge symmetry.components of the superfields g™+ could differ from the standard set of
components of the prepotentials AM*+ (2.21-2.23).
Consider the additive gauge transformations of the superfields g™** induced by lin-
earized transformations of A™++
1 R ,
Sog™t = DA™ = DHIA™ - E(a”‘),.;;(@“’@;,\”’ + 0797 AKY),  (3.14)

— p 5= y+ in- 3t
Sogtt = DYE = DN - (3'""35 Af =71 . (3.15}
The transformations are nonlocal in this treatment, and components of g™** are non-
local combmauons of the standard components, If one would treat g™** and the param-
eters {™ as independent analytic superfields, a stuff of auxiliary components could change
essentially; so we shall not develop here such a treatment.

4. SOLUTION OF HARMONIC CONSTRAINTS
IN 5G?

Solution of the basic condition of the Grassmann analyticity allows one to construct
all geometric quantities of SG3: supervielbein, connection and tensors of torsion and

curvature. . A
In the harmonic formalism of SG%, one introduces the 2 nd invariant harmonic oper-
ator in addition to the basic operator (2.24)

A =D 4G, G =hMgh = QYDA (4.1)

where the corresponding coefficients are considered in different bases. The B-superfields
G™=,G*~ and G*"¥ play an important role in the geometry of supergravity; they can
be written through the basic superfields G™** in perturbation theory.
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Gauge transformations of the B-superfields G¥~~ are determined by the invariance
condition of the operator A~

§G™T = ATTAT 4 2i(0™)u(GHTATT = G (4.2) .
8G* = ATA* - 2iG A — %GRS (4.3)
8GR~ = ATXFY _ 3 SERD = AN, (4.4)

Commutation relation between the invariant harmonic derivatives is the fundamental
constraint of the harmonic formalism of SG2 {10, 12

[A*, A = [(D* 4 G*), (D™ + G™)| = D (45)

This harmonic equation has the manifest iterative solution [12]

‘ = GH(z,w)...G*(z,u,
G =3(-1) /dul...dun (ii:;";...(u,ti'*)% ). (4.6)

r=1

A solution to the functions A*~~ has an analogous structure in all degrees of perturbation

theory.
B-covariant equations for the coefficients in expansion of this operator have the fol-'

lowing form:

D¥WG™" = DTGP L GH G - GG

+2i{0™) i (GHINIGHD § QUGN = (4.7)
DY G — DTG 4 GH G = GG —

—2AHGHIGTD + 2% GEIGHD = 0 ‘ (4.8)
DHGP — DGR 4 GH G- — GrGEY = (4.9)
GA= = (D + GH)GE- (4.10)

These equations can readily be solved in perturbation theory; for instance, in the first
two orders we have

- du,
G (2,u) = j (u+z+)2G’"”(z,u,), (4.11)
Gﬁ()_z*’)( u) d?;g;:;;)(?”")(é, u,) , (4’12)
du, du, Mt
(z) “(z,u) = f(u"'u"’ ‘Ui ;—)(uq- +)1G *(z,u)G (z:“z)"i"
+24 (1] 4] ) (0™ GH I (2,4, ) GP N 2, 4,) ) (4.13)
o= d 1d @ ++ 54+
G (o) = | Gy ey (O ()G (5 ) =
—#(u] w7 )[GHH (2,4, )G (2, %,) — GS0(2,w,) G4 (2, w,)]} (4.14)

where the harmonic distributions (u**uf) and (u¥*u}, ) {11] are considered.
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It is reasonable to discuss the 1 st order solution only in the nonlocal representation

{3.9-3.10)
Gry™ = g™ + 2i(0™)us [0 Rl — 07 hiy — ORI + @t fz;‘,"'] , (4.13)
G*- = gt5 + 2[00k + 05 Ry — OFRETY ~ OFALTY], - (416)

where ©#t = ;£4*“ DY, and also there are defined quantities g[’;‘)“ and hf,‘, Bty

be written via t,he corresponding prepotentlals by analogy with (4.11,4.12).

which can

5. SUPERFIELD DECOMPOSITIONS
OF SUPERVIELBEIN AND CONNECTION

Differential geometry of SG2 has been considered in the holonomic basis {15). We
shall study the background supersymmetry of basic geometric objects in the B-covariant
basis. By analogy with the formalism of D = 4,N = 1 conformal supergravity [20]
one can introduce in HSS a so-called almost covariant basis of differential operators Eg,
which helps to define B-superfield blocks necessary for construction of supervielbeins and
connections of the theory. The initial step of this construction is connected with the
following spinor operator:

= = [Df,A) = =D; +{D,67) . (5.1)

Define also vector and scalar operators

Bu = =3(@)(D}, E5} = 8 + 3@ DL, 167, D}1} (5:2)
B, = {07 B} = 8 = {07, (67, D2} (5:3)
Es = %{Dé+sE;} - (54)

By definition, components of the basis E, satisfy the relations

[A**,EZ]= D%, [A—,EZ) =0 (At E| = [A*, B = [A*,E}=0. (5.5)

Decomposition of the almost covariant operator Ey = G} D}, determines matrix ele-
ments of supervielbein. The corresponding density E = BerGy/ has the correct transfor-
mation Jaw _ ~

= (FuA™ + D3 At — D;‘*.’A“‘)E . (5.6)
Note that the density E of this theory is defined uniquely and does not depend on a choice
of basis: however, we prefer to use its expression in terms of the B-superfields.

By definition, this quantity is B-covariant and does not depend on the scalar superfield
G**. The linear approximation for E is

D°+D‘*+G" (5.7)

Eo = Dﬁ W~ e
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Higher-order terms in E are caleulated straightforwardly from decompositions of the
supervielbein or by using the equation

[D** +G* — 9AG™* — D;GFE =0. (5.8)
A gauge-covariant SL{2, C)-basis in the harmonic superspace of $G2 has been con-
structed in ref.f15). One defines the $1{2, C)-covariant spinor operator instead of the flat
operator D}
Ar =ufAL =D + FEDY : (3.9)
where
Fi = AR = DU (1 - DY)t (5.10)
is the matrix which is expressed in terms of the transition function ¢4~ for the so-called
hybrid basis.
We consider the terms in this matrix linear in &

Fopny = v D Cfa(—:; (G’,-.).,‘,(D"') Gy~ = D} lf,,m . (5.11}

The SL{2,C)-basis also contains a function F which depends on the superfield G*+*
[15). The linear approximation for this function is

Foy=— D“GuJ - -(D*)ZC(‘;; . (5.12)

2 1
Sy = §D:’\“_ : (5.13)

The functions F, I, F¥ and F{ determine components of superfield connection.

6. B-SUPERFIELD ACTION OF SG3

In the harmonic SG?2 formalism we can consider iterative construction of the fH-super-
field action §¢ = ¥ 5, which begins with the quadratic action of linearized theory s,
and terms of higher order in superfields G should be restored with the help of the gauge
symmetry

£ 1
duySiy + 6[.,,.5'(‘"“) =0. (6.1)

The linearized harmonic action has been constructed in our work [17]

Sm = -——-/d"'-du[G‘“(“f,‘,' (“"“(‘,,(,,] (6.2)
where eq. (4.11) is used. This expression is a quadratic form, cach term being similar
to the action of the abelian gauge superfield V+* in the full harmonic superspace. It
should be noted that this quadratic form possesses additional SO(3.2) symmetry. and
the components of the 5-vector G™** have a nonstandard normalization with respeet to
this symmelry.



One can easily verify, using WZ-gauge (2.21-2.23), that this action is equivalent to
the component action of linearized SGJ. This can be checked quite simply for the terms
quadratic in auxiliary components . The corresponding terms in Gy, can be calculated
in the coordinates z using relations of the following type:

2 dé . g 1 L oovagas, - Loganaga- 4
D {84V ) = D@0 + 07~ 50V E L (03)
D--[(5+)2go-5é+] = _D++[(9—)29a+gn—] . (6.4)
Tt is useful to consider the equivalent analytic representation of Seh

%/d((_”dui(}“”j}’,;* ‘*‘%GMHT;:U'*'G;H!)T&,) , (6.5)
K

where we introduce the linearized components of torsion which can easily be wr:tten‘ via
spinor derivative of harmonic superfields G{7; - comparing various integral representations

of S, and using eqgs.(8.15).

G ; o
T}y = —$(D*)PD}GE ~ 5(D*)D* Gy » (6.6)
DFTE, = —2ie, I35, DiTh, = —iT}%, (6.7)

Note that the linearized components of torsion satisfy the following conditions:
o/ PO 6.8
D“Tfm =0, DEDET;(” =0. (6.8)

The action S is invariant under the linearized transformations 8 GL' = DA .
Using the representation (3.1,3.2) for the superfields G+ (0} in the_ action (6.2) one
can obtain the linearized equation of motion for $G% varying in the spinor prepotential
go- :
Ty (¥)=0. (6.9)
In the nonlocal superfield representation (3.9,3.10), one can construct the invariant of
linearized transformations for the analytic B-superfield g***
d?zduydu, o, S+ (6.10)
—— g g™ (w) :
/ (uru;—)z g ( l).g 2 .
and the analogous independent invariant for g™**. The only local invariz.mt of local
transformations and approptiate dimension exists in the initial superfield variables (6.2).
The nonlocal invariant can also be constructed in terms of the gauge spinor superfield
dl’zduld'fh w{+3) H Fo4 - - }‘a"’“’” 6.11
/Wﬁ By — 5 (e )DL D3 . (6.11)
In principle, nonlocal invariants can be used in the quantum effective action of this theory.
Note that it is possible to use an .alternative approach in which the backg:ound{ su-
perspace is connected with a flat supersymmetry without the central charge Bi= B

At = Dit L GTHOA + Hr — GRD): (6.12)
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where the B'-covariant harmonic and spinor derivatives D}* and D (independent. of
derivative §7) are introduced. Transformations of the superfields G™++ and GA+® are
identical in different background bases, but the analytic compensator transforms covari-
antly with respect to the B’ supersymmetry enly, and its transformations in B Z) contain
inhomogeneous #-dependent terms. Note that connection of different harmonic superfield
representations and background bases has been discussed, for the gauge theory, in refs.
[13, 22, 23). )

A nonlinear action of $G3  has been constructed in ref. [15] as the gauge-invariant
action of analytic compensator (6.12)

S(H*) = f d?2duE" H¥ (6.13)

which possesses independent B'-invariance by definition. The use of the expression of
H*:* via the B-superfields G7++ in this formula leads to the appearance of terms mani-
festly depending on spinor coordinates, in particular, the corresponding quadratic action
contains similar terms. Apparently, it is possible to reconsiruct this action as an expan-
sion in terms of superfields G and see a transmutation of the background supersymmetry,
but we prefer simple iterative constructions with the manifest #3-covariance.

7. ON DEVELOPMENT OF THE HARMONIC
FORMALISM OF SG?

Our investigation can be used for the superfield quantization of N = 2 supergravity in
the flat background superspace by analogy with the superfield formalism of quantization
in ¥ =1 supergravity [18, 19]. The use of the representation of gravitational superfields
via the spinor harmonic superfield ¥ (z,v) seems to be most adequate for the solution
of this problem. A more interesting and difficuit problem is the study of nonperturbative
structure of theory taking into account results that can be obtained by perturbative su-
perfield methods and by the dual transformations, insufficiently analyzed in supergravity.
We shall discuss one possibility of a dual description of N = 2 supergravity in terms of
alternative superfield variables in the harmonic approach.

Superfield constraints of the nonlinear SG? theory are reduced to the kinematic an-
alyticity condition in the standard formalismn , and nonlinear equation of motion for the
superfields GM+#+ are additional dynamical restrictions on the components of torsion.

By analogy with a dual formulation of the N = 2 supersymmetric gauge theory [21] we
can consider the dual harmonic formalism of the linearized SGZ, in which the equation for
the spinor (d = ~1/2) component of torsion is solved, and then the dynamical analyticity
condition arises, The basic operator of the dual formalism is A=~ = D~ 4+ G-, and the
linearized equation of motion of the standard appreach with the analytic G** transforms
into a solvable linear constraint 7, = 0 for the dual superfields G¥~~. A solution of this
constraint can be written in terms of the new nonanalytic spinor prepotentials A#-* of

13



dimension 3/2

G*~{A) = D} AM 4 DY AFCY (7.1)

G (A) = DFAS» - DAY, (7.2)
= 1 - .

Thy(4) ~ (D*) D G~(A) + §(D+)2D TG (A)=0. (7.3)

The operator G** in this formalism can be calculated with the help of eq.(4.5) and does
not satisfy the analyticity condition off-shell. The dynamical zero-curvature condition

becomes a dual equation of motion
[pf,a%1=0, (7.4)

which is equivalent to the linearized equations of motion for the physical fields of SG?
and to the disappearance of all auxiliary components.

Equations of the dual formalism of SGj for the prepotentials Ai{s’ are equivalent to
standard equations for the linear superfields G; however, off-shell structures are essentially
different in alternative formulations. In particular, the dual formalism has an infinite
number of auxiliary components in the gravitational multiplets which vanish on the mass
shell only.

I am grateful to E.A. Ivanov for interesting discussions. This work is partially sup-
ported by grants RFBR-96-02-17634, RFBR-DFG-96-02-00180, INTAS-93-127-ext and
INTAS-96-0308, and by grant of Uzbek Foundation of Basic Research N 11/97.

8. APPENDIX

In this appendix we shall consider some useful definitions and relations connected with
the flat Lharmonic superspace [10]. The harmonic derivatives 8**, 87~ and & satisfy the
relations of the Lie algebra SU(2) and are defined by their action on the harmonics

(64,0 =8, [8,0%] = £26%* {8.1)
gt uf =0, 0% uy =u}, Ouf =zFuf, (8.2)
G ur =0, 8 ut=ul. ' (8.3)

The holonomic basis in the set of differential operators 8 contains partial derivatives
on the coordinates % {2.1)

oh = (8%, 9, a2, 82, a7, 3‘;, ar, a1y . (8.4)

The holonomic basis in the flat real coordinates z* consists of the operators 8/8=".
The B?(Z)-covariant harmonic derivatives have the following form:

DYt = g% — PTG AN, +4[(04) — (F4)1102 + 0478} + 04+ 3T (8.5)
D = g - 2ig== 0%, £ 4[(07) — (§7)10r + 6478, + 05y (8.6)
where (6%)? = §°%8% and (§%)* = 5;95*.
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Write also known expressions for B-covariant spinor derivatives

Dy = -8/a0** + 2i8°= 8}, — 21079}, {38.7)
D; = —0/08°" — 264~ 84, — 267 92 (8.8)
Df =a/80"t =8}, DY =8j06"t =3} . {8.9)
These operators form the B-covariant basis
A ++ -= 9a A _ P~ + 2
DY = (DY, D™=, 82, 34, Dz, D;). _ (8.10)
The alternative B-covariant basis is independent of harmonics
Dy = (8my 8 D). [Dy, D**] =0 (8.11)
and contains covariant spinor derivatives in the coordinates =
Dk = 9% +i0%9,, — 0%, , Di =35 -i0"d,, ~ i, . (3.12)

We shall use the following condensed notation for scalar elements in the algebra of
spinor derivatives:

(D*y = D°*D¥ . (D*)*=D{D% | (8.13)
a_ 1 F 1
(D*)' = E(D*)Z(D*)2 . (D)= 1—6(1')")’(1)-)2 . (8.11)

These elements are included in the definition of integration measure of the full harmonic
superspace and the analytic measure

d%z, = 'z (DYDY, dPr=de(DY(DY . Y =da (D). (8.15)
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