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1 Introduction 

In paper [1], the one-dimensional (1D) f-Toda mapping (chain) responsible 
for the existence of the N = 2 supersymmetric Nonlinear Schrodinger 
(NLS) hierarchy [2] was introduced. Using this mapping as a starting point, 
the Hamiltonian structure and recursion operator connecting all evolution 
systems of theN= 2 NLS hierarchy were explicitly constructed there. On 
the other hand, it has been proved in [3] that the 1 D f- Toda chain with 
fixed ends is exactly integrable system, and the method of constructing its 
general solutions in terms of a perturbative series with a finite number of 
terms was proposed. However, these calculations are sufficiently boring, 
and hence the explicit solution was presented only for a very particular case 
[3]. Interest in the general solution of the 1D f-Toda chain with fixed ends 
is mainly motivated by the fact that they, in turn, allow one to construct 
explicitly multi-soliton solutions of equations belonging the N = 2 NLS 
hierarchy. 

After this, the N = 2 supersymmetric Toda latt.ice hierarchy whose 
first bosonic flow is equivalent to the 1D f-Toda chain was constructed, 
and its Hamiltonian and Lax-pair descriptions were developed in [4]. 

The aim of the present letter is to generalize the 1 D f-Toda chain to 
the two-dimensional case and to construct its general solutions. It turns 
out that the integrable generalization - 2D f-Toda lattice - actually 
exists and its general solutions in the case of fixed ends can be ·expressed 
in terms of matrix elements of different fundamental representations of 
the SL(njn- 1) supergroup. Our construction is mainly based on results 
of Ref. [5], where the met.hod of constructing a wide class of integrable 
systems related to the sl(n) algebras has been proposed. We observe that 
in a framework of this method there exists some hidden, omitted in [5] 
non-trivial possibility for deriving a new class of integrable systems. The 
developed here method is applied to both the case of algebras sl(n) and 
superalgebras s/(njn-1). The 2D f-Toda lat:ticejust belongs to a new cla88 
and gives the first, simplest rcpresentat.ive that possesses the N = (Oj2) 
superconformal symmetry. 
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2 Structure of sl(n!n- 1) and sl(2n- 1) (su-
per)algebras 

In this section we shortly summarize the main facts concerning the ( su­
per)algebras sl(njn- 1) and s/(2n -1) which we use in what follows (for 
more detail, see [6, 7, 8] and references therein). We consider them simul­
taneously keeping the explicit dependence of all relevant formulae on their 
Grassmann nature via the factor P which is P = 0 or P"r= 1, respectively. 

The (super)algebra sl(Zn- 1) (si(njn- 1)) can be generated by a set 
of 4n(n- 1) graded (2n- 1) x (2n- 1) matrices with zero (super)trace. 
In the Serre-Chevalley basis its defining commutation relations are

1 

[H;,H;]=O, [H;,Xj]=±I<;;Xj, [Xt,Xj}=o;,;H;, 
(1 ~ i,j ~ 2(n- 1)), (1) 

where If; and Xj are the generators of the Cartan subalgebra and· rais­
ing/lowering operators, respectively, I<;; is the symmetric Cartan matrix, 

I<;;= I<;;= ( -1)(i1'+'l(oi+l.;- (1 + ( -1)1')&;,; + ( -1t o;,;+d, (2) 

and the brackets [,} denote the graded commutator. All its other genera­
tors can be derived via the formula 

Y±(k+l) - [X± [X± [X± x± } }} j - j ' i+l'... j+k-1' j+k . . . ' 

(1 ~ k < r, 1 ~ j ~ (r- k)), (3) 

where r is the rank of the (super)algebra, r = 2(n- 1). 
As opposed to the algebra sl(2n- 1 ), the superalgebra sl(njn- 1) pos­

sesses several inequivalent systems of simple roots. The Cartan matrix (2) 
for P = 1 corresponds to a purely fermionic simple-root system with the 
fermionic raising/lowering operators Xj which together with the Cartal1 
generators can be represented by the graded matrices 

If;= ( -1)i+l(E;,; + E;+,,i+,), Xj = ( -1)i+' E;,;+~> 
( E;,; ) •• = o;,po;,q 

with the zero (super)trace, 

str(M) = "Zn-l(-1)i+l M .. 6;=1 Jjl 

x; = E;+~.;, 
(4) 

(5) 

1 Hereafter, we understand that there is no summation over repeated indices. 
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and the Grassmann parity d;; of their entries defined as d;; = ( -1 )i+i, 
where the value d;; = 1 ( d;; = -1) corresponds to bosonic (fermionic) 
statistics of the entries M;;. At such Z,-grading the generators (3) }j±('k) 
are bosonic while }j±('k+1) are fermionic ones. The Cartan generator of 
principal osp(112) subalgebra of sl(nln- 1) 

H = ~ "''(n-1)"''<•-1J(K-1) ·;H; 
. 2 L...,,=l L ... 'J=I J 

(6) 

defines a half-integer grading of superalgebra sl(nln- 1) = Y-YoY+ = 
(EilJ;:iY_;) Yo (E!lJ;;;;iYd, and H; E Yo, X,± E Y±l and }j±(kJ E Y±'-· 

- 2 2 2 2 
Thus, bosonic generators have integer grading, while fermionic ones have 
half-integer grading, and positive (negative) grading corresponds to upper 
(lower) triangular matrices. Here, (I<- 1 );.; is the inverse Cartan matrix, 
K-1!( = KK-1 =I. 

The highest weight vector I j) and its dual vector (j I (1 :": j :": 2(n-1)) 
of the j-th fundamental representation possess the following properties: 

xt 1 j) = o, 
(j llj) = 1. 

H; 1 j) = o;,; 1 j), U 1 x,- = o, (j 1 H; = o;,;(j J, 
(7) 

The representation is exhibited by repeated applications of the lowering 
operators X;- to I j) and extraction of all linear-independent vectors with 
non-zero norm. Its first few basis vectors are 

I j), x; I j), x;-;ux; I j). (8) 

In the fundamental representations, matrix elements of the group G E 
SL(nln- 1) (G E SL(2n- 1)) satisfy the following important identity' 
[7]: 

d t ( 
(j I XjGXj I j), (j I XjG I j) ) - rr'(n-1)(. I G I ')-K,; 

s e (j I ex; I j), (j I G I j) - i=1 ' ' ' 
(9) 

where K;; is the Cartan matrix (2). It can be used as a generating relation 
for a number of other useful identities connecting different matrix element 

2 Let us remind the de~nition of the superdeterminant, sdet ( ~: ~ ) =: det(A­

sn- 1C)(detD)- 1 

of the group G. Indeed, new identities can be derived by replacing G by 
exp(t+I+)Gexp(LL) on both sides ofeqs. (9), where I± are arbitrary 
linear functionals of the generators X;±, Y;±(k) (3) and differentiating the 
resulting expression over the parameters3 I± at I± = 0. For example, let 
us present the following identity: 

sdet ( (j I xtt~Gl~Xj I j), 
. (j I Gl"..Xj I j), 

(j I xt t~ G I j) ) 
(jIG ii) 

= (8f+B;_rr;~~- 1 '(i 1 e'+'+Ge'-'- 1 ;r'''·l·r,,=o 
= l~ o I~ o rr:~;- 1 ' (i I G I ;r"'' (10) 

which is only valid for the operators/+ (L) annihilating the highest weight 
vector I j) ( (j 1), l+ I j) = 0 ((j I /_ = O) and p, q = 0. 1. The operation I +o 
(Lo) is defined by eq. (10), and it represents the left (right) infinitesimal 
shift of the group G by the generator I+ (L ). 

The identity (9) represents a generalization of the famous Jacobi re­
lation connecting determinants of (n + I), n and (n - I) orders of some 
special matrices to the case of arbitrary semisimple Lie (super)groups. As 
we will see in the next section, this identity is so important. in deriving in­
tegrable mappings and lattices that one can even say that it. is r<'sponsible 
for their existence. We call it the first Jacobi identit.y. Besides eqs. (9). 
there is another independent identity [5] 

( )"(j 1 xtxt-1c 1 J) (j -11 xj_1xjG Jj- I) 
- 1 (jiGij) + (j-IIGij-1) 

(- yPU 1 xtc IJ)(j -11 xt-~c 1 j- I) 
1 

(j 1Gij)(j-11Gij-l) 
( 1 I) 

which we use also in what follows and call the second Jacobi identity. It. is 
responsible for the existence of hierarchies of integrable equations which are 
inva.riant. ,;,ith respect to integrable mappings. From this identity Oil<' can 
generate other useful identities in the sa.nw way as it. has been <'Xplaiued 
after formula (9). 

3Thc Grassmann parit.y of i ± ("Oincidcs wit.h t.h<' parit.y of t.h<' op<'rat.or I±. 
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3 The SUToda(2, 2; { sj, sj}) mappings and lat­
tices 

In this section we derive new integrable mappings together with the corre­
sponding interrupted lattices on the basis of the representation theory for 
the algebras sl(nln- 1) (P = 1) and sl(2n- 1) (P = 0) summarized in 
the previous section. 

Our starting point is the following representation for the group element 
G(z+, z_) E .S'L(nln- 1) (.S'L(2n- 1)) [6, .5]: 

G =: M_;:'M_ (12) 

in terms of the product of upper and lower triangular (including a diagonal) 
matrices M+(z+) and M_(z_), respectively, which are defined as solutions 
of the following equations: 

2(n-l) 

A±= M;±18±M± = (=F1)P( L (8±¢J(z±)H; + vj(z±)XJJ 
j=l 

2(n-l)-1 
'\' ±( ±(2)) + L...., Sz Z±)Yl ' ( 13) 
f=I 

where Z± are bosonic coordinates (8± = 8~.), ¢J(z±) and sf(z±) are 

arbitrary bosonic function;, while vj(z±) are arbitrary fermionic (bosonic) 
ones. It is well known that for any finite-dimensional representations of a 
(super)algebra, the equations forM± can be integrated in quadratures, and 
their solutions contain only a finite number of terms involving products 
of Xj and r/'21 . The fields A± belonging to a (super)algebra can be 
treated as components of two different pure gauge connections in the two­
dimensional space with coordinates (z+, z_) (see appendix). 

At this point it is necessary to make an important, for further consider­
ation, remark concerning equations (13). Similar equations has been used 
in [.5]. They have only but crucial difference as compared to eqs. (13): all 
higher grade functions SJ, which belong to A±, were chosen equal to unity. 
Of course, this can always be done by suitable gauge transformation4 , but 

4 Let us recall that the form of equations (13) for the matrices .Af± is invariant with 
respect to gauge transformations .ll.1± --7 g± 1 M±9± generated by the Cartan subgroup 

!I± = exr(ZJ~n1- 1 >ul (z± )Hj), \.,.·here !l (z±) are parameter-functions. 
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only in the case if sJ #. 0 for any j. Obviously, in the opposite case, i.e. if 
sf = 0 for some set of indices I, it is impossible to reach the value sf = 1 
for this kind of indices l by any gauge transformations. Thus, we are led 
to the conclusion that the space of gauge inequivalent solutions of eqs. 
(13) is parameterised by the numbers {sj,sj,j = 1, ... ,2(n -1)}, which 
take only two possible values, 0 or 1. In general, different sets of { sj, sj} 
correspond to inequivalent integrable systems which can be derived from 
various fundamental representations of the group element G (12). Due to 
this reason as well as to the fact that UToda(2, 2) mapping \5] was derived 
at the particular choice SJ = 1 in eqs. (13), it is natural t~ call them the 
SUToda(2, 2; { sj, sj}) mappings (lattices). In the following section, we 
analyze their simplest representatives and demonstrate that they indeed 
possess quite different properties and solutions. 

Besides the independent functions ¢J(z±), sf(z±) and VJ(z±) entering 
into equations (13), we introduce also a set of dependent fermionic (P = 1) 
or bosonic (P = 0) functions expressed in terms of matrix elements of 
fundamental representations of the group G (12): 

( · I xta I ") (. I ax-: I ") 
+( ) - J J J -( ) - J J J 

Jl; z+,z- = (jIG li) ' Jl; z+,z_ = (jIG li) ' 

'~' ( l _ a'fllT "f,· z+, z_ = --
9; 

and the bosonic functions5 

g; = (-1f1'IT:~:-' 1 (i I G I i)-K;; 

1' (j- 1 I G I j- 1)(-I)U+l)P (j + 1 I G I j + 1)(-IpP 
- ( -1)' - (j I G I j)2(1-1') ' 

1 :o; j :o; 2(n- 1). 

(14) 

(15) 

Our nearest goal is to demonstrate that the functions {g;, 'YJ, 'Yj} sat: 
isfy the following closed system of equations: · 

aal _+- (+- ++-) + - ngi- si+1si+I9i+I9i+2- 9i si si 9i+I si-1sj-19j-1 

+sj_2sj_29i-I9i-2 + 9i+I'YJ+I'Yf+t- (1 + (-1)1')9;'Yj'YJ 

+(-1)1' · -:- f 8 7 - f · ± - 7 · ± (16) 9;-1/;-l'Y;-U ±"/3 - 8 1 9;+1"1;+1 83-19;-l'Y;-1 

5Hereafter, in order to simplify formulae we use the following definitions: x:k = 
x~n-l)+k+l = 0 (k 2: 0), and (0 I r I 0) = (2(n- I)+ !I r l2(n- !) +!)=I for any 

group element r E SL(nln- !) (SL(2n- !)). 
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with the boundary .conditions g0 = g2(n-l)+l = 0. They has been called 

above the 
SUToda(2, 2; { sj, sj}) lattice. The main steps of deriving eqs. ( 16) repeat 
the corresponding calculations of ref. [5] concerning the sl(n)-case, but 

for a reader's convenience we briefly present them here. 
At first, using eqs. (7), identities (10) with a group G (12), and defini­

tions (14)-(15), we obtain other, equivalent expressions5 for IJ• 
'f _ ( j)jP 'f + 'f 'f 'f 'f 

"Yj - - vi si Jlj+l - sj-IIl-j-1' ( 0 :$ j :$ 2( n - I) + I), ( 17) 

which being differentiated with respect to Z± give equations (16) for 1J. 
At second, taking into account eqs. (7)-(8) and (12) one can derive the 

following relation 

0+0-ln(j I G I j) = sdet ( (j I ~jl;+Gl;-:_XT I j), 
(J I Gl;-X; I;), 

(j I Xjl;+G I j)) (18) 
(j I G I j) 

with I;±= (=Ff+'v[ + sf'_ 1 X[_ 1 - (-l)Psf'XJ+,. Using identities (10), 
definitions (14)-(15) and eqs. (17), equation (18) becomes 

8+8-ln(j I G I j) 
- (-!){j+l)P ·( + ~ . + (-1)-p + ~ . + ~ +) - g1 si s3 9;+1 s1_ 1 s1_ 1g3-I -y1 'Y; , (19) 

and it can easily be transformed into equation (16) for g;. 
Thus, we conclude that the SUToda(2, 2; { sj, sj}) lattice (16) 1s m­

tegrable, and its general solutions are given by formulae (12)-(15) and 

( 17) in terms of matrix elements of fundamental representations of the 

(super)groups SL(nln- 1) and SL(2n- 1). 
To close this section, we would like to stress that the presented here 

formalism, underlying the identities between matrix elements of various 

fundamental representations of a group, guarantees the existence of a zero­

curvature representation with a pure gauge connection defined by a single 

group element G (see appendix). An advantage of the developed scheme is 

that starting with a graded algebra and properties of fundamental repre­

sentations of the corresponding group we simultaneously obtain both inte­

grable mappings and general solutions of their interrupted versions which 

represent finite-dimensional exactly integrable lattices. 
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4 Examples: supersymmetric mappings 

The consideration of the previous section v .. ·as based on a pure super­

algebraic leveL However, in physical applications integrable systems pos­

sessing supersymmetry cause more interest. In this connection the im­
portant question arises which concerns the existence and classification 

of supersy1nmetric mappings encoded in the above-constructed super­
algebraic integrable systems. We do not know the complete answer to 

this question and analyze here only two important. rep1:,sent.atives of the 

SUToda(2, 2: {sj, sj}) lattices (16), characterized by 

I) s'f' = I, (I :$ j :$ 2( n - I)), 

II) s2; = s2;+1 =I, si; =I, si;+1 = 0, (0::; j :$ (n -I)). (20) 

We show that for the sl(nln .:._I) superalgebra, i.e. when If and 1j are 
fermionic fields, they represent. two inequivalent integrable systems which 

indeed possess higher supersymmetries, the N = (212) and :V = (012) 

superconformal symmetries, respectively. The first. system is the :V = 
(212) superconformal Toda lattice equation (see, [9] and references therein), 

while the second one represents two-dimensional generalization of the I D 

f-Toda chain [1, 3]. 

L The N = (212) superconformal Toda lattice. In t.he case of I) 
(20) equations (16) become 

(J+(J_ln 9; = 9j+l9j+2 -g;(9;+t + 9i-l) + 9j-l9j-2 

+ 9;+ll.i+ 1if+'- (I+ (-l{)g;~Tif + (-1)"9;-llj-_,,j_,. 

onj = 9i+l'YJ+ 1 -g;-l'YJ-" (I :$j:$2(n-1)). (21) 

for the sl(nln -I) superalgebra, i.e. when P = I and ;fare krmionic 

fields, they coincide with the component form of t.he :V = (Ill) superron­

formal Toda lattice equa.t.ion 

D_D+lnB; = (-IF+1(Bi+l- Bi-d= "'£J\;;H;. (22) 

Here, /\;; is the symmetric Carl.an matrix (2) of the .</(nln- I) sttperal­

gebra, Bi(=+•'9+;z_,,9_) is the bosonic N =I superfi<'ld with th<' compo­

nents 

g; = (-IF Bil· 'YJ = D± In Hi I· (2:1) 
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-~· 

where I means the 11± --'> 0 limit, and 'D± are the N = 1 supersymmetric 
fermionic covariant derivatives 

V± = 0~± =t=11±8±, V~ = =t=B±, {'D+,'D-} = 0 (24) 

in theN= (Ill) superspace (z+,19+;z_,19_). 
Let us remark that after rescaling Bj --'> (-I )i Bj the factor (-I Ji+I 

completely disappears from eq. (22) which in this case corresponds to 

anti-symmetric Cartan matrix I<;j = o;+r.J- o;,j+I· This form of equation 
(22) has been discussed in [!OJ where an infinite family of solutions of its 
symmetry equation were constructed. These solutions describe integrable 

evolution equations belonging theN= (IIJ) supef'conformal Toda lattice 

hierarchy. 
The general solutions of theN= (Ill) superconformal Toda in terms 

of matrix elements of fundamental representations of the SL(nln- 1) su­
pergroup with the group element G (12)-(13) can easily be derived from 
formulae (14)-{!.5) and (17) and look like 

~ = (-1J'v~ (j +II GXj+, lj + !) - (j -11 ax,-_, lj -I) 
I, J + (j +I I G I j +I) (j- I I G I j- 1) , 

,+ = (-!J'v+ + (j + !J x;+,G lj + 1) _ (j -II x;_,G 1 j -!) 
Y, J (j + 1 I G lj + 1) (j- I I G li- !) 

. = (-IJ'((j + 1 I G I j + 1)JHl' 
g, (j- I I G I j- !) . (25) 

These expressions can be promoted to a compact superfield form in terms 
of theN= I superfield B,(z+, 19+; z_, 19_) (22)-(23), 

B = ( (j +I I~ Jj +I) )t-rp 
J . (j- I I G li- 1) , 

±- -± -± 
vi = vi+ I - vi-I, 

- • "''"-'' -+ l x+) "''"-'it--H ( l -l G ::= ev+ ~J=l (v, HJ-(-l' ' Ge{}_ w,=1 v, ,- -1 'X:J . (26) 

Actually, equation (22) possesses the N = (212) superconformal sym­
metry and can be rewritten in a manifestly N = (212) supersymmetric 

form [9] 

D+ [)_In 4>, = <1>;-r- <I>,, D+D- In <l>j = 4>,- 4>i+I (27) 
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in terms of two bosonic chiral and antichiral N = 2 superfields <!>J(z+, 0+, 0+; 

z_, 8_, 0_) and 4>,(z+, 8+, 0+; z_, 8_, 0_), D±if!i = D± 4>, = 0, respectively, 

with the components 

g2i = 4',1, g2i+! = <I>,I, 1t = D±ln4',1, 1t+' = D±ln<!>JI· (28) 

Here, D± and D± are the N = 2 supersymmetric fermionic covariant 

derivatives. 

fj 1- - fj l . 
D± = 88± 'f28±8±, D± = 80± 'f20±0±',. 

2 -2 - -
D±=D±={D±,D,}=O, {D±,D±}='fO± (29) 

in the N = 2 superspace (z±, 8±, 0±). The N = 2 superfield solutions can 

be restored from eqs. (25)-(27) and read as 

<!> J 

(2j I n I 2j) 

(2U + 1) 1 !1l2(j + 1))' 
4> _ (2i + 1 I IT I 2j + 1) 

' - (2i- 1 1 n I 2j- 1)' 

f1 =: eO+ 2:~~~-tl(VJHJ-(-l)'Xj) 

G( + 18 -8 18 -8 ) L "'~·.->lt;;~H,-(-l)iXC) 
z+ - + + z - - e w,_ ' ' 2 ·-2-- ' 

n = /t L~~nl-IJ(;;Hj-(-l)Jxn 
G(z+- ~8+o+,z_ + ~8_'0_)l-I:;~·.-•lt;;;H;-t-r)ixn, (30) 

where the functions vf are defined in eqs. (26). The chiral and antichiral 

group elements !1 and IT, D±!1 = D± i1 = 0, are related by the involution 

of the algebra of N = 2 fermionic derivatives (29), 

8± = 0±, 0± • = 8±, z± = Z± ~ n· = n, IT. = !1. (31) 

For a particular case of the s/(211) superalgebra eq. (27) amounts to the 
N = 2 supersymmetric Liouville equation of Ref. [11], where its general 

solution has been presented. For the general sl(nln-1) case the solution of 
the superconformal Toda lattice in another parameterisation of the group 

element and in another basis in the space of the functions {g,, 1;+, ,,-}has 

been found in [12]. 
For the sl(n) algebra, i.e. when P = 0 and IF are bosonic fields, eqs. 

(21) reproduce the UToda(2,2) lattice of ref. [5]. 
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2. The N = (012) superconformal Toda lattice. Now, we con­
sider the second system characterized by relation I I) (20). In the new 
basis {U;, V;, W;, W;,<>;,a;, (0 :::; j :::; n- 1)} in the space of the fields 
{g;,-yj,J'j}, 

U; .= 92;, W i :=: 1ij, ai = 12i' 

V; = -92j+l, 
ill + - -
'J:'j = -"Y2j+ll O:j = -{2j+ll (32) 

equations (16) become 

i)_i)+ ln(U;V;-tl 

. 1 
o+(ua_w;) 

J 

i)+i)_ln V; 

- p -
= o_(IJ!;W; + ( -1) IJI;_ 11Jf;_t) 

p - -(1 + ( -1) )((o_W;)W; + W;_,i)_IJI;_,), 
1 - - -= V;IJ!;- 11;-,IJI;-~o o+(vo_IJ!;) = U;W;- U;+,wi+'• 
J 

= U;V;- U;+' V;+' + (iJ_W;+J)IJI;+' 
p - p -

(1 + (-1) )IJ!;o-W; + (-1) (o_W;)W;, (33) 

1 
(Y. - <> >T< 
J- U·U-'ltj, 

J 

- 1 " -a,· = -u •T• . v _..,, 
J 

(34) 

with the boundary conditions: Uo = Vn-1 = 0, Wo = v{, 'lln-1 = v~n-l)" 
Let us discuss equations (33) in more detail in the case corresponding 

the superalgebra sl(nln- 1), i.e. when P = 1 and fields 1/J; and v;; are 
fermionic. 

In this case, the first equation of system (33) has the form of a conser­
vation law with respect to the coordinate z_, 

a_x = o, I = 8+ ln(U; V;-d - w; w; + w ;_,w ;-1, (35) 

and as a result, the quantity I depends only on the coordinate z+, i.e. 
I= I(z+)· It can easily be expressed in terms of the functions .Pj(z+) and 
vj(z+), introduced by eqs. (13), 

I(z+) = i)+ln('l;-l(z+)h;(z+)), ?);(z+) = e<•i,-<i,.,-Jvi,vf,.,d,+), (36) 

where we have used the definitions (32), (14)-(15), (17) and the second 
Jacobi identity (ll). Keeping in mind relations (35)-(36), after rescaling 

U; -7 Uj = rJ;U;, V.~ v ;----rv·= J '--ryj' W; 1 1/J; = ry;W;, 

12 

- - \jl w, -7 1/J; = _, (37) 
?); 

' 

we rewrite equations (33) in an equivalent form 

8+ ln(u;v;-d = (1/J;v;;- 1/J;-Jv;j-l), 
I I - - -

8+(-8-.P;) = v;1/•;- v;-11/Jj-h 8+(-8-1/'j) = uj1/•; -llj+J1/';+ 1 • 
'l.lj Vj 

i)+iJ-ln Vj = 1ljVj -Uj+!Vj+! + (0-1/>;+1)7J,j+l- (i)_7J•;)lf;, (38) 

where the function 7)j(z+) completely disappears. These equations repro­
duce the ID f-Toda equations [1, 3] at the reduction fh = i)_ to the 
one-dimensional bosonic subspace. Therefore, they represent its two­
dimensional integrable generalization. We call them the 2D f-Toda lattice. 
Summarizing all the above-given formulae we present their general solu­
tions 

(2j + 1 I G I 2j + 1) 1 (2j I G I 2j) 
11

' = '7' (2j- I I G l2j- I), Vj = '7; (2(j + 1)1 G l2(j +I)). 

-_I (2j+ll(vij+Xi;+ 1 )GI2j+l) 
1/•; = 7/j (2j + I I G I 2j + I) 

.t,. = . (2j I (vi;+1 + Xi;)G l2j) (J9) 
~' 'b (2j 1 G 1 2j) . 

in an explicit form in terms of matrix elements el fundamental representa­
tions of the SL(nln- 1) supergroup with the group element G (12)-(13). 

Similar to its one-dimensional counterpart, the 2D f-Toda equations 
(38) admit theN= 2 supersymmetry and can be rewritten in the superfield 
form 

F;+1 F;+1 - F;F; = i)+ln((D_Fj+ 1 )(D_F;)) ( 40) 

in tenns of chiral and antichiral fermionic N = 2 superfields Fj(=+; =-. 0_. 0_) 
and F;(z+;z_,(I_,O_), D_F; = D_ F; = 0, respectively, with the compo­
nents 

v; = -D_F;I, 7f; = F;l, u; = D_F;I, >/'j = Fi\, ('II) 

where theN= 2 fermionic derivatives/)_ and/)_ an• defined in eqs. (29). 
The general solutions of eq. ( 40) have the following nice represental ion'': 

F _ 
7

. (2j I (vij+1 + Xi;)912.i) 
' - h (2.i I g I 2.i) 
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F = 1 (2j + 1 I (v;'j + X;'j+ 1 )91 2j + 1) 
' - Tt; (2j + 1 I g I 2J. + 1) ' 

,., - G'( 1 - . _, "''"-''(- )>X-"= ' Z+, z_- Z0_0_)e - L..,=l I J ' 

- } 8 , ..... ,.~\n-1} 
9 = G(z+,z_ + 

2
e_B_)e- -L..,=• (-!)'X,-. ( 42) 

Here, 0 $ j $ n - 1, Q and 9 are chiral and antichiral group elements, 
D_Q = D_ g = 0, which are related by involution (31), g· = 9, 9 • = Q. 

In the superfield form one can easily recognize that the 2D f-Toda 
equations are actually invariant with respect to higher supersymmetry -
N = (0, 2) superconformal symmetry, which generates the transformations 
(z+;z_,O_,B_)--+ (z+:z_,e_,B_), 

z+ = z+(z+), "" fh = (D+z+)a+, ( 43) 

z_ = z_(z_,o_,B_), 

D_B_ = D_O_ = 0, 

=? D_ = (D_O_)D-, 

e_ = O_(z_,o_,B_), 
1=- -D_z_ = - 2e_D_O_, 

D_ = (D_ B_)D_. 

- -8_ = (j_(z_,O_,B_), 
- 1--=-D_z_ = - 2o_D_e_, 

( 44) 

Under these transformations the superfields F; and F; are transforming 
according to the rule 

F;(z+; z_, 0_, 8_) = <p(z+)(a+z+)'-j F;(z+; z_,e_,B_), 

F;(z+;z_,O_,B_) = 1"-'(z+)(D+z+);F,(z_;z_,e_,B_), (45) 

where <p(z+) is an arbitrary invertible function corresponding to the local 
internal G L(1 )-transformation. Thus, we conclude that the 2D f··Toda 
lattice ( 40) possesses the N = (012) superconformal symmetry and due to 
this important property it can also be called theN= {012) superconformal 
Toda lattice. 

Keeping in mind that at P = 1 (i.e. for the case of sl(n) algebra with 
bosonic fields W; and W;) equations (33) represent the integrable bosonic 
counterpart of the 2D f-Toda lattice, it is reasonable to call them the 2D 
bosonic Toda (b-Toda) lattice equations. 
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5 Conclusion 

In the present letter we have demonstrated the dominant role of the repre­
sentation theory of graded superalgebras in the context of the problem of 
constructing superintegrable mappings. We have shown that the following 
chain of relations: representations of a graded algebra =} representations 
of the corresponding group =? integrable mappings {lattices), used in [5] 
for constructing the bosonic integrable mappings, perfectly works also in 
the super-algebraic case and gives an effective algorithm•f()r constructing 
new mappings. We have developed this approach and constructed the new 
integrable mappings. All other ingredients of the theory of integrable sys­
tems such as deriving evolution equations, which belong to an integrable 
hierarchy, and their multi-soliton solutions are also present in the frame­
work of this construction. Thus, for example, equations of hierarchy arise 
in this approach as solutions of the symmetry equation which corresponds 
to an integrable mapping, while their multi-soliton solutions are related to 
general solutions of the corresponding integrable lattices with fixed ends. 

We have applied this approach to the case of sl(nln- 1) superalgebra, 
and the 2D f-Toda lattice possessing the N = (012) superconformal sym­
metry has been derived for the first time together with its general solutions 
in terms of matrix elements of different fundamental representations of the 
SL(nln- 1) supergroup. 
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for Basic Research, Grant No. 96-02-17634, RFBR-DFG Grant No. 96-
02-00180, INTAS Grant No. 93-127 ext .. 

Appendix 

In this appendix we derive zero-curvature representation for the 
SUToda(2, 2; {sf, sj}) lattice (16) (compare with [6, 7]). 
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Firstly, we rewrite the group element G defined by eq. (12) in the 
following equivalent form: 

G = M.j:' M_ = N_G0 N+· (A.1) 

This relation defines the group elements N+, N_ and Go representing the 
exponentiation of the graded subspaces g+, g_ and 9o of the sl(nln- 1) 
(sl(n)) superalgebra, respectively, in terms of the group element G. It is a 
simple exercise to deduce the following two chains of identities: 

A_ = G-'fJ_G = N+.'G"r;'(N:.'fJ_N_)GoN+ + N+.'(G0'fJ_Go)N+ 

+N.j: 1fJ_N+, 

A+= GfJ_G-' = N_G0 (N+8-N.j: 1 )G0'N:.' + N_(GofJ_G01 )N:.' 
+N_fJ_N:_' (A.2) 

from relations (A.1) and (13). Comparing the decompositions over graded 
subspaces of the right-hand and left-hand sides of these identities, one can 
obtain decomposition rules for the following algebra-valued functions: 

G01(N:_'fJ_N_)Go E g_, ilJ g_,, 

G0'(N:.'fJ_N_)Gol-2 = kl_,, 
Go(N+fJ-N.j:' )G0' E g+, ilJ g+,, 

G0 (N+8-N.j:
1 )G0'1+' =A+ I+'' (A.3) 

which we use in what follows. Here, l±k means the projection on the grade 
subspace 9±k· · 

Secondly, we introduce a new group element Q, 

Q = M_N_;:' = M+N-Go, (A.4) 

and the components A+ and A_, 

A_= Q-'fJ_Q = G0'(N:.'fJ_N_)Go + G01fJ_G0 , 

A+= Q-'fJ+Q = N+D-N.j: 1
, (A.5) 

of a pure gauge by construction connection, 

[D+- A+, f)-- A_]= 0, (i\.6) 
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with the properties 

.4_ E 9o ilJ g_, EB g_,, A-l-2 = A-1-,, 

.4+ E g+, ilJ g+'• A+l+2 = G01 A+ I+,Go, (A. 7) 

where in deriving these equations. relations (A.1) and (A.3) have been 
exploited. 

Relations ( A.4 )-(A. 7) represent the resolved form of the zero-curvature 
representation for the SUToda(2, 2: { sj, sj}) lattice equ~tions ( 16). 
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