ОБъЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Аубна

$98-46$
L.G.Mardoyan ${ }^{1}$, A.N.Sissakian, V.M.Ter-Antonyan ${ }^{2}$

HIDDEN SYMMETRY
OF THE YANG-COULOMB MONOPOLE

Submitted to «Physics Letters B»

[^0]and to the vector $x_{j}\left(x_{j} A_{j}^{a}=0\right)$.
By definition,
$$
F_{i k}^{a}=\partial_{i} A_{k}^{a}-\partial_{k} A_{i}^{a}+\epsilon_{a b c} A_{i}^{b} A_{k}^{c}
$$
or, in a more explicit form,
\[

$$
\begin{gathered}
F_{0 \mu}^{a}=-\frac{2 i}{r^{3}} \tau_{\mu \nu}^{a} x_{\nu}=-\frac{r+x_{0}}{r^{2}} A_{\mu}^{a} \\
F_{\mu \nu}^{a}=\frac{1}{r^{2}}\left(x_{\nu} A_{\mu}^{a}-x_{\mu} A_{\nu}^{a}-2 i \tau_{\mu \nu}^{a}\right) .
\end{gathered}
$$
\]

The straighforward computation gives

$$
\begin{equation*}
F_{i k}^{a} F_{i k}^{b} \hat{T}_{a} \hat{T}_{b}=\frac{4}{r^{4}} \hat{T}^{2} \tag{1}
\end{equation*}
$$

where $\hat{T}^{2}=\hat{T}_{a} \hat{T}_{a}$.

4 Yang SO(5) symmetry

The YCM is governed by the Hamiltonian

$$
\hat{H}=\frac{1}{2 m} \hat{\pi}^{2}+\frac{\hbar^{2}}{2 m r^{2}} \hat{T}^{2}-\frac{e^{2}}{r}
$$

where $\hat{\pi}^{2}=\hat{\pi}_{j} \hat{\pi}_{j}$,

$$
\hat{\pi}_{j}=-i \hbar \frac{\partial}{\partial x_{j}}-\hbar A_{j}^{a} \hat{T}_{a}
$$

and

$$
\begin{equation*}
\left[\hat{\pi}_{i}, x_{k}\right]=-i \hbar \delta_{i k}, \quad\left[\hat{\pi}_{i}, \hat{\lambda}_{k}\right]=i \hbar^{2} F_{i k}^{i} \hat{T}_{a} . \tag{2}
\end{equation*}
$$

Let us consider the operator

$$
\hat{L}_{i k}=\frac{1}{\hbar}\left(x_{i} \hat{\pi}_{k}-x_{k} \hat{\pi}_{i}\right)-r^{2} F_{i k}^{a} \hat{T}_{a}
$$

It is easy to verify that

$$
\begin{equation*}
\left[\hat{L}_{i k}, x_{j}\right]=i \delta_{i j} x_{k}-i \delta_{k j} x_{i} \tag{3}
\end{equation*}
$$

For the commutator $\left[\hat{L}_{i k}, \pi_{j}\right.$] we have

$$
\left[\hat{L}_{i k}, \hat{\pi}_{j}\right]=i \delta_{i j} \hat{\pi}_{k}-i \delta_{k j} \hat{\pi}_{i}+\hat{Q}_{i k j}
$$

$$
A_{j}^{2} A_{j}^{h}=\frac{r-x_{0}}{r^{2}\left(r+x_{0}\right)} \delta_{\pi h}
$$ five-dimensional Dirac monopole with a unit topological clarge and the line of singularity extended along the nonpositive part of the x_{0}-axis. The vectors A_{j}^{n} are orthogonal to each other

where

$$
\hat{Q}_{i k j}=i \hbar\left(x_{i} F_{k j}^{a}-x_{k} F_{i j}^{a}\right) \hat{T}_{a}+\left[\hat{\pi}_{j}, r^{2} F_{i k}^{a} \hat{T}_{a}\right] .
$$

There are four possibilities for the indices i, j, k :

$$
\left(\begin{array}{l}
i \\
j \\
k
\end{array}\right)=\left(\begin{array}{llll}
\mu & \mu & 0 & 0 \\
\nu & \nu & \nu & \nu \\
\alpha & 0 & \alpha & 0
\end{array}\right)
$$

and, therefore, the direct calculation is required. After some algebra we obtain $\hat{Q}_{i k j}=0$, and hence

$$
\begin{equation*}
\left[\hat{L}_{i k}, \hat{\pi}_{j}\right]=i \delta_{i j} \hat{\pi}_{k}-i \delta_{k j} \hat{\pi}_{i} \tag{4}
\end{equation*}
$$

Now the commutation rule for the $S O(5)$ group generators

$$
\begin{equation*}
\left[\hat{L}_{i j}, \hat{L}_{m n}\right]=i \delta_{i m} \hat{L}_{j n}-i \delta_{j m} \hat{L}_{i n}-i \delta_{i n} \hat{L}_{j m}+i \delta_{j n} \hat{L}_{i m} \tag{5}
\end{equation*}
$$

can be derived from (3) and (4). Moreover, it follows from (3) and (4) that $\hat{L}_{i k}$ commutes with \hat{H}. This $S O(5)$ group was previously proposed by Yang [1] as the dynarnical group of symmetry for the Hamiltonian $\hat{H}_{Y}-e^{2} / r$ including only a monopole-isospin interaction.

5 SO(6) symmetry of YCM

Let us consider the operator

$$
\begin{equation*}
\hat{M}_{k}=\frac{1}{2 \sqrt{m}}\left(\hat{\pi}_{i} \hat{L}_{i k}+\hat{L}_{i k} \hat{\pi}_{i}+\frac{2 m e^{2}}{\hbar} \frac{x_{k}}{r}\right) \tag{6}
\end{equation*}
$$

by analogy with the Runge-Lenz vector. Long manipulation exercises yield $\left[\hat{H}, \hat{M}_{k}\right]=0$, which means that \hat{M}_{k} is the constant of motion. Now, from (3), (4) and (5) one can show

$$
\left[\hat{L}_{i j}, \hat{M}_{k}\right]=i \delta_{i k} \hat{M}_{j}-i \delta_{j k} \hat{M}_{i}
$$

More complicated calculation leads to the formula

$$
\left[\hat{M}_{i}, \hat{M}_{k}\right]=-2 i \hat{H} \hat{L}_{i k}-\frac{i}{m} x_{i} x_{k} F_{m n}^{a} \hat{T}_{a} \hat{\pi}_{m} \hat{\pi}_{n}-\frac{2 \hbar^{2}}{m} \frac{x_{i} x_{k}}{r^{4}} \hat{T}^{2}
$$

It is easily to verify from (1) and (2) that last two terms cancel each other and, therefore,

$$
\left[\hat{M}_{i}, \hat{M}_{k}\right]=-2 i \hat{H} \hat{L}_{i k} .
$$

This commutator is identical with the corresponding commutator for the Coulomb problem. For $\hat{M}_{i}^{\prime}=(-2 \hat{H})^{-1 / 2} \hat{M}_{i}$ one has

$$
\left[\hat{M}_{i}^{\prime}, \hat{M}_{k}^{\prime}\right]=i \hat{L}_{i k} .
$$

Now, introduce the 6x6 matrix

$$
\hat{D}=\left(\begin{array}{cc}
\hat{L}_{i j} & -\hat{M}_{j}^{\prime} \\
\hat{M}_{j}^{\prime} & 0
\end{array}\right)
$$

The components $\hat{D}_{\mu \nu}(\mu, \nu=0,1,2,3,4,5)$ give an so(6) algebra

$$
\left[\hat{D}_{\mu \nu}, \hat{D}_{\lambda \rho}\right]=i \delta_{\mu \lambda} \hat{D}_{\nu \rho}-i \delta_{\nu \lambda} \hat{D}_{\mu \rho}-i \delta_{\mu \rho} \hat{D}_{\nu \lambda}+i \delta_{\nu \rho} \hat{D}_{\mu \lambda} .
$$

Since $\left[\hat{H}, \hat{D}_{\mu \nu}\right]=0$, one concludes that YCM is provided by the $S O(6)$ group of hideden synumetry.

6 YCM energy spectrum

Having obtained the group of hidden symmetry one can calculate the energy cigenvalues by a pure algebraic methocl.

It is known [3] that the Casimir operators for $S O(6)$ are

$$
\begin{aligned}
& \hat{C}_{2}=\frac{1}{2} \hat{D}_{\mu \nu} \hat{D}_{\mu \nu} \\
& \hat{C}_{3}=\epsilon_{\mu \nu \rho \sigma \tau \lambda} \hat{D}_{\mu \nu} \hat{D}_{\rho \sigma} \hat{D}_{\tau \lambda} \\
& \hat{C}_{4}=\frac{1}{2} \hat{D}_{\mu \nu} \hat{D}_{\nu \rho} \hat{D}_{\rho \tau} \hat{D}_{\tau \mu} .
\end{aligned}
$$

According to [3], the eigenvalues of these operators can be taken as

$$
\begin{aligned}
& C_{2}=\mu_{1}\left(\mu_{1}+4\right)+\mu_{2}\left(\mu_{2}+2\right)+\mu_{3}^{2} \\
& C_{3}=48\left(\mu_{1}+2\right)\left(\mu_{2}+1\right) \mu_{3} \\
& C_{4}=\mu_{1}^{2}\left(\mu_{1}+4\right)^{2}+6 \mu_{1}\left(\mu_{1}+4\right)+\mu_{2}^{2}\left(\mu_{2}+2\right)^{2}+\mu_{3}^{4}-2 \mu_{3}^{2}
\end{aligned}
$$

where μ_{1}, μ_{2} and μ_{3} are the positive integer or half-integer mumbers and $\mu_{1} \geq \mu_{2} \geq \mu_{3}$ The direct and very hard calculations lead to the representation

$$
\begin{align*}
& \hat{C}_{2}=-\frac{e^{4} m}{2 \hbar^{2} \hat{H}}+2 \hat{T}^{2}-4 \tag{7}\\
& \hat{C}_{3}=48\left(-\frac{m c^{4}}{2 \hbar^{2} \hat{H}}\right)^{1 / 2} \hat{T}^{2} \tag{8}\\
& \hat{C}_{4}=\hat{C}_{2}^{2}+6 \hat{C}_{2}-4 \hat{C}_{2} \hat{T}^{2}-12 \hat{T}^{2}+6 \hat{T}^{4} . \tag{9}
\end{align*}
$$

From the last equation we can obtain another expression for the cigenvalue C_{4}

$$
C_{4}=\left[C_{2}-2 T(T+1)\right]^{2}+6\left[C_{2}-2 T(T+\mathrm{I})\right]+2 T^{2}(T+1)^{2}
$$

and conclude that

$$
\begin{array}{r}
C_{2}-2 T(T+1)=\mu_{1}\left(\mu_{1}+4\right) \\
\mu_{2}^{2}\left(\mu_{2}+2\right)^{2}+\mu_{3}^{4}-2 \mu_{3}^{2}=2 T^{2}(T+1)^{2} . \tag{11}
\end{array}
$$

The energy levels of YCM can be obtained from (7) and (10)

$$
\begin{equation*}
\epsilon_{N}^{T}=-\frac{m \epsilon^{1}}{2 \hbar^{2}\left(\mu_{1}+2\right)^{2}} \tag{12}
\end{equation*}
$$

The substitution of the eigenvalues of \hat{H} and \hat{T}^{2} in the equation for \hat{C}_{3} gives one more formula for C_{3}

$$
C_{3}=48\left(\mu_{2}+2\right) T(T+1) .
$$

Now we have two expressions for C_{3} and the comparison leads to the relation

$$
\begin{equation*}
T(T+1)=\left(\mu_{2}+2\right) \mu_{3} . \tag{13}
\end{equation*}
$$

Comparing this with (11), we have the equation

$$
\left(\mu_{2}^{2}-\mu_{3}^{2}\right)\left[\left(\mu_{2}+2\right)^{2}-\mu_{3}^{2}\right]=0 .
$$

Since $\mu_{3} \leq \mu_{2}$, one concludes that $\mu_{3}=\mu_{2}$. Then, from (13) it follows that $\mu_{2}=T$, which means that μ_{1} in (12) takes only values $\mu_{1}=T, T+1, T+2, \ldots$.

Acknowledgements.

It is a pleasure to acknowledge G. Pogosyan for helpful comments.

References

[1] C.N. Yang, J.Math.Phys. 19 (1978) 320.
[2] P.A.M. Dirac, Proc. Roy. Soc. A133 (1931) 60.
[3] A.M. Perelomov and V.S. Popov, JETP Lett. 2 (1965) 34.

[^0]: ${ }^{1}$ E-mail: mardoyan@thsunl.jinr.dubna.su
 ${ }^{2}$ E-mail: terant@thsun1.jinr.dubna.su

