


and to the vector z; (IjA; =0).
By definition,
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As originally proposed by Yang {1], the Dirac monopole {2] can be generalized to the

SU(2) gauge group and such a generalization (Yang monopole) can be achieved only in

the five-dimensional Euclidean space. ' £ 2, Ttz 4o
The simplest bound system connected to the Yang monopole is the Yang-Coulomb 5 ou = T3 Tm v T

Monopole (YCM) which we define here as the system composed of the Yang monopolc !

and a particle of the isospin coupled to the monopole by the SU(2) and the Coulomb

or, in a more explicit form,

: i . a
interaction. ' F, = 3 (:::,,A'; —z,A} — 227'“,,),
It is of interest to ask what happens to the known SO(6) hidden symmetry of the
five-dimensional Coulomb system after SU(2) generalization. In this note, we prove The straighforward computation gives
that SU(2) leads to the SO(6) group acting in a more gencral IR® ® 5% space. We use A
this new symmetry for computation of the YCM energy spectrum by a pure algebraic F“ZF";TQT,, = T2 (1)
method. _ rt
where 7% = T,T,.
2 Notation and 7 matrices
We keep the following notation: j = 0,1,2,3,4; ¢ = 1,2,3,4; a = 1,2,3; z; are the 4 Yang SO(5) Symmetry
(_}lartesian co?rdinate-s of the particle, 7, denote the SU(?) gauge. group generators; The YCM is governed by the Hamiltonian
A?® = (0, A?) is the triplet of Yang monopole’s gauge potentials; F}; is the gauge field of -
the Yang monopole; 0° are the Pauli matrices, and 7* are the 4x4 matrices i 1 ., N R 72 e
= —T —
a 1(0 io") 2 1(0 ——iaa) s 1(502 0) 2m- " 2mr? r
= - PR , = - .3 , T == -2
2 o 0 2\ w0 0 2 0 0 where 72 = #;#;,
7% matrices satify to relations ) .
7; = —th— — RAT,
T = deae, 4TNTE = 8,46, + 2ieape s 7 ! Oz; ’
nA’ Ay v N 2
; and
fubcTcl:ﬂTIiu = '2— (6OIATI(/1H - 60VT;:H + 6HVTZ(, - 6[3117-;{;‘0) . N
[#i, 2] = —thix, [7ti, 7x) = R F3T, . (2)

and r = (z;z;)!/%
Let us consider the operator

3 Yang monopole fo = %—(z;ﬁ'k — ophe) — P2 FRT

Consider the formula . .
It is easy to verify that

n 2i a
A= iz, . A . .
r(r + 74) ' [Lig, ;] = ibi;xp — 165w . 3)
It is obvious that cach term of the A"~ triplet coincides with the gauge potential of the & 7

: - - . . . . F mmutator [L;, 7;] we have
five-dimensional Dirac monopole with a unit topological charge and the linc of singutarity or the co ator [Li, 7;]

extended along the n sitive ‘ the 7p—-axi . a . A fe A N A

g onpositive part of the zo-axis. The vectors A} arc orthogonal to (Eik, 5] = i8i57k — 16kt + Qins
each other
Atpb = =70

3% rz(r;”}’;“O) b

BOBeRLT Rl FLITRTIT
TRLuGHX HeCa2Rsoannt

L BMSINCTERA

Exanals T, o.n

2



where
Qixj = ih (I;F;f,— - Ika_;) T, + [#5, 7 FR 1]

There are four possibilities for the indices ¢, j, k:

1 g op 00
Jl={v v v w
k a 0 a 0

and, therefore, the direct calculation is required. After somne algebra we obtain Qikj =0,
and hence

[Lik, 73] = i6i57% — 1847 . (4)

Now the commutation rule for the S0(5) group generators
[-Z’ijy -Z—’mn] = ié‘imi’jn - i(sjm-i’in - ié‘ini”jm + Z‘6_7‘71.-z’z'm (5)

can be derived from (3) and (4). Moreover, it follows from (3) and (4) that L;; commutes
with H. This SO(5) group was previously proposed by Yang [1] as the dynamical
group of symmetry for the Hamiltonian Hy —¢? /7 including only a monopole-isospin
interaction.

5 SO(6) symmetry of YCM

Let us consider the operator

M, =

T

(6)

N A 2me?
(friLik + Lo + 22 Ik)

1
2¢/m
by analogy with the Runge—Lenz vector. Long manipulation exercises yield [ﬁ, Mk] =0,

which means that M, is the constant of motion. Now, from (3), (4) and (5) one can
show

[Lij, My] = i M; — 165 M;
More complicated calculation leads to the formula
[M;, M) = —2iH Ly — %z,-sz,;nTA,,ﬁmfrn - %hzzr#f"
It is easiiy to verify from (1) and (2) that last two terms cancel each other and, therefore,
(Nt V) = —2iB L
This commutator is identical with the corresponding commutator for the Coulomb prob-

lem. For M! = (—21;)—1/2 M; one has

[MI,M’] = iiik .
i k

e ™

Now, introduce the 6x6 matrix

s L; -ar
D= ( N[; 0 > .

The components Du,, (1, v =0,1,2,3,4,5) give an so(G) algebra

[D;un D,\p] = ié;n\bup - ié‘u.\Dup - i6/1pDV,\ + ibupD;l,\ .
Since [H, D,w] = 0, onc concludes that YCM is provided by the SO(G) group of hidden
symunetry.

6 YCM energy spectrum
Having obtained the group of hidden symmetry one can calculate the energy eigenvalues

by a pure algebraic method.
It is known [3] that the Casimir operators for SO(G) are

. 1. =4
C2 = §D}LVD}III
* éll = G;an‘r,\D;prnD-r,\
. 1. . . .
C4 = iD;wDupr‘rDr“ .

According to [3], the eigenvalues of these operators can be taken as
Cy = mlp +4) + palp + 2) + 415
Cs = 48(j1 + 2)(je2 + L)pes
Ci = @+ +6mn +4)+ 420 +2) + 1 — 2442

where p11, g1z and gy are the positive integer or half-integer numbers and gy > 1y > pa.
The direct and very hard calculations lead to the representation

~ elm -

¢, = — — + 27Tt 4 n
: oMH (¥)

. met \/? -

Cy = 48 (‘ﬁ) g ®

Ci = C*+6C,—4C, T — 1272 + 6T, (9

From the last equation we can obtain another expression for the ecigenvalue €

Ci = [Cy = 2T(T + )] + 6[C, — 2T(T + )] + 2THT + 1)?



and conclude that
G =2T(T+1) = m(m +4) (10)
p3 (2 +2)° + 3 — 203 = 2TH(T + 1) (11)

The energy levels of YCM can be obtained from (7) and (10)

.4
T _ me
€ =

Y o ey 0

The substitution of the eigenvalues of H and T? in the equation for C, gives one more
formula for C;

Cy=48(pu, + 2)T(T + 1) .
Now we have two expressions for C; and the comparison leads to the relation
T(T +1) = (p2 +2)ps . (13)
Comparing this with (11), we have the equation
(12— 13) [(n2 +2) — 3] = 0.

Since p3 < jiz, one concludes that gy = pz. Then, from (13) it follows that po = T,
which means that g in (12) takes only values yy =T, T +1,T +2,....
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