
92-1/3 E2-98-43 

S.V.Mikhailov* 

RENORMALON CHAINS CONTRIBUTIONS 

TO NON-SINGLET EVOLUTION KERNELS IN QCD 

Submitted to «Physics Letters 8» 

*E-mail: mikhs@thsun l .jinr.dubna.su 



1 Introduction 

Evolution kernels are the main ingredients of the well·known evolution equations for p7trton 
distribution of DIS processes and for parton wave functions in hard exclusive rea.(t.ions. 'J IH•.c:<> 
equations describe the dependence of parton distribution functions and parton wave f:lnclioh~ 
on the renormalization parameter Jt2

• Here, I continue to di$cuss th~ diagr:tmmat.ic ;:,.nalysis 
and mult.iloop calculation of the DGLAP evoiution kernel P(z) [1] aad B:-odsky-LE:'p<~g<' (ilL) 
kernel V(x, y) [2) in a cl?.ss of "all-order" approximation of the perturbative QCD t.h<d h<~s bc<'n 
started in [3). There, the regular method of calculation and rPsummation of certain cla.,scs of 
diagrams for these kernels has been suggested. These diagrams include the chains of one-loop 
self-energy parts (rcnorma!on chains) into the one-loop diagrams (see Fig. IJ. In t.l1is JettN, t!H' 
results for both the kinds of kernels, obtained (>ar:ier in the framework of a scalar model in ~:x 

Nl 

dimensions with t.he Lagrangiiln Lint= L(t!)it\r;)(G) with the sralar '\111<\rk"' flavours (th) and 
i 

"gluon" {r;), are extend~d to the non-singlet. QCD kernels. For the r~aders conn-:tti('nce some 
iraportant results of the previow::. paper [3] wonld be reminded. 

The insertion of the chain into "gh10n" line (chain-1) of the diagram in Fig.l a ,h and r<'~mn
mation over all bubbles ]~ad to the transformation of the one-loop kernel P0 (z) = oi =: o(1- z) 
into the kernel p(ll(z; A) 

Po(z) = az '~' p(')(z; A)= oz [(z)-'(1- A)~=~~))]; whece A= oN;r~(O), o = (::)·'· (I) 

Here, 'l',ji(<r)(€) are the one-loop cMfficients of the anomalou~ dimen~ions of qt1ark (gluon at 
Nj = 1) fields in D-dimension (D = 6- 2€) discus-sed in [3]; for the scalar mo(h•l ;·..,.(.~) = 
"'lo.p(c) = .8(2- £, 2- c)C(c), and C(c) is a scheme-dej)endent factor corrf'~ronding to a ct·rtain 
choice of an MS -like scheme. The argHm~>nf. A of the function 1"..-(A) in (I) is t.hr-: ~t.and:nd 
anomalous dimension (AD) of a gluon f:eld. So, one can conclude that the "all-order" r<>-"ult 
in (1) is completely determined by the single f'fJark bubble dlagr<~m. The resummation of \.his 
"chain-1" subs('ries into an analytic function in :1. shouldn"t he takPn by surprise. H<'all~·. t.he 
considered probl'!m can be connC'Cted with the calcul:~.tion of large i\'1 asympl.otics of the /\D's 
in order of 1/NJ- An approach was sugg<'$\.C'd by Vasil'ev and collahor::~tors at th(' b('~inning of 
80' [4] to calculate the rcnormalb~a.tion-group functions in this limit, they us~d the conformal 
properties of the th('ory :~.t the cril.kal point g = 9c corresponding to the non-t.rh·ial zero g, of 
the D-dimensior.al /1-function. This approar.h ha.c: been extended by .J. Gr~c<'y for ralculalion 0f 
the AD"s of the composite operators of DIS in QCD in ~ny orrlN n of PT, [.'"1, f1]. l haw• usf'd 
another approach. which is clzy.:;c to [i. 8]; ("Qntrary to the large N1 ~.<;ymptotir. mf'thod it doc.'> 
not a.ppe<~l to the value of parameters NJTn, Ct./2 or CF, ~~oria!.C'd in QCD with diffNcnt 
kinds of loops. Following this w~y. the "irnproq;d'" QCD kernel p(ll(z; t1) l1a.c: hC('Il nhtairwd in 
[3] for the c<1se of qu~rk or gluon hubble ch~in in!':ertions in th(' F'f'ynman gangf'. 

In this papN. we pr<'S<'Ilt. the QCD rcsnlt.~similar to Eq.(l). for f'ach typr: ofcliag;r:>lll!';:>ppf'<~r
ing in the covariant.~- gaugE' for the DGLAP non-singl<'t kernf'] P(z: A). Th(' analytic propr-rlif's 
of the function P(z; A) in \"ariabh> A <J.r(' anai_V7.r>cl. Th<' as--"umpli0n 0f "Naivr> NonalJ,.!i;-tniza
tion" (NNA} approximat.ion [9] for llw kPrllf'] <:-akulat.ion [10] is di~russ<'d and its d••l'iri••n('y ;_._ 
demonstrated. The BL evolution kern('] 1-'(:r.y) is obt.ainC'd in t.he s;unc approxima1ion a.c: the 
DGLAP kernel, by using !.he r:xa.ct rPlation.:; !,r>!W('Cn P and V kt>rncl~ [11, 3] fc1r a c·ln:=.." 0f 
"triangular diagrams'" in Fig. 1. The conshkr<'d class of dia;rams Tf'JlTT'SPnt.c: 1 hP lt>adiu~ .Y1 
contrib1Jtions to both kinds of kc>rnd~. At 1.)1" <'nd. a. p<~rlial se>lulion for tlw HL r>quatinn :~ 
presented {compare with [10, 12)}. 
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The announced results are certainly useful for an independent check of complicated computer 
calculations in higher orders of perturbation theory {PT), similar to [15]; they may be a starting 
point for further approximation procl.'dures. 

2 Triangular diagrams for the DGLAP evolution kernel in QCD 

1-l('re, t-he results of the bubble chain resummation for QCD diagrams in Fig.l a,b,c for the 
DGLAP kernel are discussed. These diagrams generate contributions"'~_, (a_, Jn[l/z])" in any 
order n of PT. 
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Figure 1: The diagrams in figs. la- lc are the "triangular" diagrams for the QCD DGLAP 
kernel; dashed line for gluons, solid line for quarks; black circle denotes the sum of all kinds 
of the one-loop insertions (dashed circle), both quark and gluon (ghost) or mixed chains; J\lC 
denotes the mirror-conjugate diagram. 

Based on the resummation method of Ref. [3) in the QCD version, one can derive the kernels 
p(la,b,c) corresponding to the diagrams in Fig.l in the covariant ~-gauge 

(Jo) _ J' -A 7g(O) J( ) ( 1 'Yg(O) <) P (z;A) ~ o,CF2z·(l-A z 
7

,(A) -a,CF· l-z (1 -A)'y,(A)- , (2) 

(Jb) ezl-A 7,(0)) P (z·A) - a CF2· ----' - s 1- z 19 (A) +' 
(3) 

1,,) . ( A(3- 2A) 'Y,(O) ) 
P (z, A) = a,CF · J(l- z) (Z _ A)(l _ A)'Y,(A) - < , (4) 

\vhere a_,= ~), CF = (I"t; -1)j2.Nc, CA = Nc and Tn = -
2

1 
are the Casimirs of SU{lVc) group, 

(4~ . 
and A = -a

5
--y

9
(0). The function f

9
(t") is the one-loop coeffident of the anomalous dimension 

of gluon field in D-dimension, hC're D = 4- 2e. In other words, it is the coefficient Z 1 (.:) of a 
simple pole in the expansion of the gluon field renormalization constant Z 1 that includes both 
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a finite part and all the powers of thee-expansion. Equations (2) - (4) are valid for any kind 

of insertions, i.e., /g = 1!9) for the quark loop, /g = 1!9> for the gluon (ghost) loop, or for their 

sum 
79(A,() = 7!'l(A) + 7!'l(A,(); 

when both kinds of insertions are taken into account. The sum of contributions (2), (3), (4) 

results in p(ll(z; A,~) which has the expected "plus form" 

p!ll(z;A,() 

a,Pa(z) 

a,CF2 · [zz-A(l- A)'+ 2z'-A] 79(0,() 
1- z + -y,(A,()' 

= a:sCF2 · [z + _!:___] 
1- z +' 

(-5) 

(6) 

where, for comparison, the one-loop result a3 P0 (z) is written down, the latter can be obtained as 

the limit p(I)(z;A -4 0,~)- Note that in (5) the 0(1- z)- terms are exactly accumulated in the 

form of the [ ... ]+ prescription, and the~- terms successfully cancel. This is due to the evident 

current conservation for the case of quark bubble insertions, including the gluon bubb:es into 

consideration merely modifies the effective AD, ;9 (A,~) -4 ;!9>(A), conserving the structur(.> of 

the result (5), see {3]. Substituting the well-known expressions for ; 9 (c) from t.he quark or 

gluon (ghost) loops (see, e.g., [13)) 

7l'l(<) = -SNJTRB(D/2,D/2)C(~:), (i) 

CA ((3D- 2) >l'l(~:,() = TB(D/2- 1, D/2- 1) D _ 
1 

+ 

(1- <)(D- 3) + ( 
1

; ') 
2 

") C(<), (8) 

into the general formulae {2)- (4), and (5) one can obtain p{ll(z; A,~) for both the quark and 

the gluon loop insertions simultaneously. Here, the coefficient C(e) = r(l- c)r(l +e) implies 

a certain choice of the MS scheme where every loop integral is multiplied by the scheme factor 

f(D/2- l)(,u2/411')l. The renormalization scheme dependence of p{l){z; A) is accumulated by 
the factor C(e) 2 • Of course, the final result (5) will be gauge-dependent itt virtue of the evident 

gauge dependence of the gluon loop contribution ;!9'(e,{) 1 in this case, e.g., 

A(<)= -a,79 (0,~) =-a, (-r!•l(O) + 7!'l(O,()) =-a, [ G + (1 ; 0) CA - ~N1rR] , (9) 

is t.he contribution to the one-loop renormalization of the gluon field. The positions of zeros 

of;9 (A,~) in A, i.e., the poles of P(z;A,~) 1 also depend on{. The kernel p(l)(z;A) became 

gauge-invariant in the ca.'>e when only the quark insertions are involved, i.e., ;
9 

= ;!9 ); A = 

A(q) = ..:...a:s;!9)(0) = a3 ~TRNJ, and p(ll(z;A(9)) ~ p{l)(z;A) as it was presented in [3]. It 
3 

is instructive to consider this case in detail. To this end, l~t us choose the common factor 

~-~9)(0)/y~9){.4) in formula {5) for the crude measure of modification of the kernel in comparison 

with the one-loop result a:sPo(z). Considering the curve of this factor in the argument A in 

Fig.2, one may conclude: 

2For another popular definition of a minimal scheme, when a scheme factor is chosen a~ exp(c·!), c = -"'fe+ ... 
instead of r(D/2- 1), the coefficient C(c) docs not contain any scheme ~traces" in final exprcssioJJs for the 
renormaliz.ation-group functions. 

4 

0.6 

< 
~0.4 
" 

0.2 

0 

0 0.5 ,, 2.5 

A 

Figure 2: Th<• rurv£'ofth£' factor ")'_q{0)/;_.1( ·1).th£' arrowoJl th<' pklur£' corr0spo1tds to tht> poiut 

A= ljr.. 

(i) the rang<> of rom·<'rf!;C'IICC' of PT S<'l'ic-s corr('sponds to th<' kfl ZI'I"O of th(• funrtion -jql(.·1) 

and is <'qual\.o Ao = .Jf2, t-hat corr<'sponds to o~o = !5r.f.\'!· so. this ra!lp.;P looks wry hrot~d. 

o,, <Sr. t~t. N1 = 3; 
(ii) in spite of a wide rangC' of PT fi<h•lity, thC' I'<'SIIlllma.tion into dll(=: .·\)is suhstnntial 

two ZC'ros of the funct-ion pJil(.:; A) in :1 appPar within lh<' rang<' of coll\'Np;<'nn• (it ch•pends on 

a rC'rtain l'vtS ::;clH~m(.>); 
(iii) \.h<' factor ;!9)(0)/"Y!q)(A) dC'<"ays quickly wit.h th<' p.;rowth of tht• ar~nnwnt :\. HPally. if 

WC' takC' th<' naive boundary of the standard PT applicability, o~ = I (a\ .\'1 = :L .. ]I'll= l/{1;:-)). 

t.ll('n t.his factor falls approximately to 0.7 (at ,\'1 = 6, ..tlq) =- 1/r. it falls too . .:,.:'('(' arrow in 

Fig. 1): thus, t.he rcsummat.ion is numcrkt~lly important in t.his raup;<'. 
~OI<' at the <'nd that Eq.(5) could not. pro\'idC' vnlid a!>ymptotk b('ha\·ior or tht• kNuds for 

.: ~ 0. A similt~r ::-bcht~vior is dC't.NmiJW<I by t.lu• doubl£'-]ogt~rit hmic <"OJT(Id ions which t~n• most 

singulnr at zero, lik<' n., (n~ln 1 [.:J)" [1-1]. ThPsP ront.ributions appPar <hH' to n•nmmalizatit)ll 

of t.hP com posit.<' OJ)('rat.or in t.h£' diagrams by laddl.'r gr<~phs. dr. rat lwr I han hy I h<• I riaH)!;Ular 

OTIC'S, 

3 Analysis of the NNA assumption for kernel calculations 

Th<' C'Xpausion of PJ 1\z;A) in A pro\'id<'s th<' kadinp; a_,(a .• N/ln[l/.::]l" d<'JW!ld('JH'(' of tlH' 

kNJH'ls with a. large numh<'l' .rv1 in any orclt•r JJ of PT [:l]. But. thcst• nllltrihutions do uot 

11\lllLC'rically dominatl' for n•al lltllllh('I'S of fltn'OIII'S .v, = ·I, .'l, n. Tli<ll 1\lil,\' ],(' \'t'rilil'd hy 

comparing t.hP tot alnnmpri<"t~l rt•sufts for f I1P l. and .1 loop :\I)'s of ('(ll11posiu• opt'ra!ors (:\ !)( '{)) 

in [J:,] wit.h their .Vrlc-adinp; !(•rms (set• :\])('()in Tablt• 1). Tli('rc.fon•. to ohtain a satisf:u·tnry 

agH'('IlH'JJI. at h•a:-;t with tlw st>rond ord<'r rPs111ts. Oil(' shouhltak(• inlo <H't'oHnl tht' t·outril>utitlll 

from subleading :\'rtNms. /\sa first. :-:.t.Pp. h•tus ronsid<•r tlH• nmtrihution fromtlw n'l!lplt•tPd 

l'('llOtlllalizal.ion of th<• !!;!uon liB£' it should ):!;('ll<'ral(' a part. of subleading lt•rms. lklo\\· 

W(' shall ('X<IIlliut• two :-;p(•cial t·hoin•:-; of tht• ):!;tlliP,t' p:1ranu•tt•r f.. To fa~·iliLt\(' 1ht• diap,r;liJIIIl;ltic 
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analysis, it is instructivE.' to inspect first the Landau gauge~= 0. Indeed, thE.' self-enNgy ont>

loop insertions into the quark lines as well as a certain part of vertex corrections to t.riangulor 
d·iagrams are proportional to~; therefore, they disappear in the Landau gauge. t>.·1oreov<'r, onC' 
should not consider the renormalization of parameter €· The analytic properties of the function 
p(ll(z; A.~= 0) in the variable A= A(O) are modified- the function has no singularities in A 
until the "asymptotic freedom" exists, i.e., A < 0 (at l3CA > 4NJ ). In spite of all these profit<> 
the kernel pfll(z; A, 0) generates the partial kernels a~P(l)(z), (t;P(2)(z), ... which are rather far 

from the real ones. The ADCO 1(1.21 (n) correspof!ding to these kernels (here /'(n) = Jd (l::zn P(z) 

) are presented in Table 1. 

Table 1 

a~ 'Y(l)(n) a; 'Y( 2 J(n) 

n CFCA N1·Cp C~CF Nj'CFCA N}·Cp 

2 
Exact 13.9 86.1 + 21.3 ({3) -12.9- 21.3 ({3) 

64 224 
(" = -3 11.3 -42.0 12.9 

27 243 
("=0 7.6 -13.2 7.5 

4 
Exact 23.9 140.0 + 19.2 ,(3) -18.1-41.9 ,(3) 

13271 384277 
(" = -3 23 .. 5 --- -76.0 23. ---

2700 243000 
("=0 15.8 -23.5 12.4 

6 
Exact 29.7 173 + 19.01 ,(3) -20.4- 54.0 ,(3) 

428119 80347571 
("= -3 31.1 --- -95.6 28.5 

66150 41674500 
("=0 20.7 -29 15.2 

8 
Exact 33.9 196.9 + 18.98 ,(3) -'21.9- 62.7 ,(3) 

("= -3 36.3 
36241943 

4762800 
-109.0 32.3 -2.1619 

("=0 24 -33.0 17.2 

10 
Exact 37.27 216.0 + 18.96 ,(3) -23.2- 69.6 ,(3) 

("= -3 41.00 -8.5095 -119.28 35.24 -2.3366 

("=0 27.29 -36.0 18.68 
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Another exceptional gauge is~= -3. For this gauge the coefficient of one-loop gluon AD 

79 (0, -3) coincides with the coefficient b0 of the .O-f unction 3 • Therefore this gauge may be used 
for a reformulation of the so-called [9] NNA proposition to kernel calculations. To obtain the 

NNA result in a usual way, one should substitute the coefficient bo for 1!q)(O) into the expression 

for A(q) by hand (see, e.g., [10]). Note, the use of such an NNA procedure to improve pJll(z; A) 

leads to poor results even for a; P1 (z) term of the expansion; a similar observation was also 
done in [16]. The NNA trick expresses common hope that the main lo~arithmic contribution 
may follow from the renormalization of the coupling constant. This renormalization appears as 
a sum of contributions from all the sources of renormalization of a$ . In the case of the~= -3 
gauge the one~loop gluon renormalization "imitates" th-J contributions from these other sources 
and the coefficient b0 appears naturally. The elements of expansion of the ADCO 'Y(n.; A, -3) 
(that corresponds to p(ll(z;A,-3)) in a power series in a$, a; 'Y(l)(n)i a~ 'Y(2)(n); ... and a 

few numerical exact results from [15] are collected in Table 1, let us compare them: 
(i) we consider there the contribution to the coefficient 'Y(l)(n.) which is generated by the 

gluon loops and associated with Casimirs CFCA/2, the Cf-term is missed, but its contribution 
is insignificant. It is seen that in this order the CFCA-terms are rather close to exact values 
(the accuracy is about 10% for n > 2) and our approximation works rather well; 

(ii) in the next order the contributions to "f(2)(n) associated with the coefficients N1 · CFCA 
and C~CF are generated, while the terms with the coefficients C~, N1 · C}, C}CA are missed. 
In the third order, contrary to the previous item, all the generated terms are opposite in sign 
to the exact values, and the "€ = -3 approximation" doesn't work at all. So, we need the next 
step to improve the agreement- to obtain the subleading Nrterms by the exact calculation. 

In any case, it seems rather difficult to collect the renormalization constant required by the 

NNA approximation in the kernel calculations. It is because different sources of renormalization 
of a$ provide different z-dependent contributions, compare, e.g., Exp.(l) with Eq.(10) in [3), the 
latter being generated by the insertions of self-energy quark parts into the quark line (chain 2). 
For this reason, necessary cancellation between the terms from different sources looks unlikely. 

4 Triangular diagrams for the Brodsky-Lepage evolution kernel 

Here we present the results of the bubble resummation for the BL kernel V(x,y). It can be 

obtained as a "byproduct" of the previous results for the kernel DGLAP P(z), i.e., in the 

same manner as it was done for the scalar model in [3). We shall use again the exact relations 
between the V and P kernels established in any order of PT [11] for triangular diagrams. These 

relations were obtained by comparing counterterms for the same triangular diagrams considered 
in "forward" and "nonforward" kinematics. 

Let the diagram in Fig.1a have a contribution to the DGLAP kernel in the form P(z) = 
p(z) + 0(1- z) · C; then its contribution to the BL kernel is 

V(x,y) = C (e(y > x) /,~ p~z) dz) H(y- x) · C, (10) 

'where C:: 1 + (x-+ :i, y-+ y). From relation (10) and Eqs. (2), (4) for p(la,c) we immediately 
derive the expression for the sum of contributions y(ta+lc), 

(1•+1•) . [ ) (')1-A I (I- A)]7s(O,!;) ( ) 
V (x, y, A,(")= a,CF2 · C 8(y > x)(l- A y - 2o(y- x) (2 _A) 

7
,(A,!;), II 

3Here, for the }3(a,)-function we adapt P(a,) =-boa!+ ... , bo = ¥cA- 5NfTR 
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that may naturally be represented in the "plus formn. Expression (11) can be independently 

verified by other relations reducing any V toP [11, 17] (see formulae for the V--+ P reduction 

there) and we came back to the same Eqs.(2), (4) for p(h,c). Moreover, the first terms of the 

Taylor expansion of V(la,c)(x, y; A) in A coincide with the results of the two-loop calculation in 

{11). The relation P -tV similar to Eq.(lO) has also been derived for the diagram in Fig. lb 

v<"l<x,y) =c [e<v > x)z!vp<"l (~)L; (12) 

therefore, substituting Eq.(3) into (12) we obtain 

v<"l(x,y;A,~) = a,C'F2 ·C [e(y > x) (:0) J-A _I_] ~,(0,(), 
Y y- X + 1·9 (A,() 

(13) 

Colll.'cting the results in (11) and {13) we ard,,e at the final expression for V(l) in the "main 

bubbles" approximation 

y('i(x, y; A,()= a,CF2 · C [e(y > x) (:)'-A (1 -A+~)] ),((O, ()), (11) 
y y X + /.q A,~ 

which has a "plus form" again due to the vector current consen·ation. The contribution VO) 

in (14) should dominate for ·"rl ~ 1 in the kernel\'. Besides, the function vol(x,y;A.~) 

possesses an important symmetry of its arguments x and y. Indeed, the function V(x, y; A,~)= 

V(l)(x, y; A,~)· (W) l-.1 is :::ymmetric under the <:hange x H y, V(x! y) = V(y, x ). This symnlC't.ry 

allows us to obtain the eigC'11functions 1/ln(x) of the "reduced" evolution equation [18] 

l 

j V(l\x. y; A)~·.(y; A)dy = 1·(n; A)>l•n(x; A), ( !.\) 

0 

>f•n(y; A)- (yy)do(AJ-i C'~<-(A)(y- y), he<e d,.(A) = (DA- 1)/2, D.<= 4- 2A, (16) 

and d.:.(A) is the C'ffective dimension of the quark field when the AD A is taken into account; 

C~o)(z) are the Gegenbauer polynomials of an order of o:. The partial solutions ~(x; as, I) of the 

original BL-equation (where l::: ln(J.i 2 /lt6)) 

(p'iJ,, + ~(a,)8,_.) 1>(x;a.,l) = fo' yPI(x,y;A) 1>(y;a.,l)dy (17) 

arc proportional to t]l('se eigenfunctions 1/'n(x; A) for the special case .B(as) = 0, see, (:.g. [3]. 

In the g(meral case J)(as) :j: 0 let. us start with an ansatz for the partial ~olution of Eq.(17), 

i/J1l(x;as.l)"' >.:Tl(a~,l) · ¢1l(x;A), and the boundary condition is X11 (a5,0) = 1; <P,(x;a3,0)"' 
t''n(x;.4). For this ansatz Eq.(17) reduces to 

(,,'iJ,, + ,J(a,)8,,) In (1>n(x;o., I))= 1·(n; A). (18) 

In the case n = 0 the/>,D oft he vector current ;·(0; A)= 0, and the solution of the homogeneous 

C'qmst.ion in (18) providl.'s th(> "c..symptotic wavl.' function" 

¢o(.T;as,i) = t,.'"o(:r;,-1.)"' ((1- .r):r)(l-A), (19) 
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wlwre A= -li3 (Jt2 )'r(O.~) and iis(p2 ) is the running coupling corrl.'sponding to J(o 3 ). A similar 

solution has been discuss<'d in [1 0] in the framework of the standard :\!\:\ approximation. Soh·

ing simultaneously Eq. {18) and tlw renormalization-group l.'quation for th<" coupling conf>tant 

ii 3 W<> arrive at the partial solution $n(:r;63 .1) in the form 

- { 1'''"'1 )(ll 4) } $ 71 (:r,lf3 )"' X"(Jl2) · Tbn(x;A); whl.'re \n(Jl
2

) = exp -
2 

~(--) da 
a,(p0 ) . a 

(20) 

Rl.'c<'ntly. a form of the solution"' t;1•n(x; .4) with A= -a3 bo has b<>en confirmed in [12] by thC> 

considNat.ion of conformal constraints [19] on the m€'SO!l wave functions in the limit .\'/ ~ 1. 

5 Conclusion 

In this papN, I present dosC>d exprl.'ssions in the "all ordNsM approximation forth<:> DGI.AP 

kernel P(z) and Brodsky-LC>page kernC'] \-'(x,y) appl.'aring as a rl.'sult. of the resummation of a 

CC'rtain das..c; of QCD diagrams with t.he renormalon chain ins('rtions. Th<' contributions from 

t.hC'SI.' diagrams, pOl(.:; A) and \1 <11(:;:1), giv<' t.he leading :\'1 dC'pC>ndencl.' of the kernC'IS for a 

large number of flavottrs N1 ~ 1. Thi.'SI.' "improved" kernC'Is arl.' g<'nNating ftmct-ions to obtain 

coutributions to partial kPrn<'ls like a~"+ I) P{u)(:;) in any order 11 of p<'rt urbat ion expan:;.ion. 

liNe A,....., a$ is a new expansion parantl.'t.er that coincidl.'s (in magnitud<•) with th<' anomalous 

dimension of the gluon field. On til(> ot.hl.'r band, tlw method of calculation suggeSIC'd in [:l] 
doC's not dC>pend on thC' nature of self-C'nNgy insNtions aud does not appeal to th<' ,·aim• of 

the parameters NJ1R, C.1/2 or Cr- a."-.<>ociat.cd wit.h diff<"r('nt loops. This <tllows us to obt<tin 

contributions from chains with diffl.'n~nt kinds of self-energy insertions. hot h quark and glnon 

(ghost) loops. The prizE' for this gl.'ll('ralizat.ion is gauge depl.'ndC'nce of t h<' lin a! rt•stdts for 

pl1)(.:; A) and VP)(z; A) on the gauge parameter~. 

The result for the DGLAP non-singl<'t kern<"! p(Jl(:::A(~).~) b; pr('s<•ntt•d in (5) in tl)(• co· 

variant ~-gauge. The analytic propl.'rtiC'S of t.his k<"rlll.'l in I he ,·aria bl<" a .• ar<' discn!'..;;C'd for qu:1rk 

bubble chains only, and in thl.' ge1wral cMe for two values of the gang<' param<'l<>r ~ = 0: -:J. Thl' 

insufficiC'ncy of the NNA proposition for t.ltl.' kC'rnel cakulat.ion is d<'moustratt•d hy th<> t•vidt•nt 

calculation in the third order in a$ (sel.' Tab!<> 1). 
The contribution vPl(.:r,y;A(~).~) t.o t.ltl.' Brodsky-l,('pag(' k<'ftwl (1·1) is ohtaint•d fnr th<• 

same classes of diagrams a.s a "byproduct."' of the pn•vious tt•chniqu<' [1~]. :\ pt~rlial solution 

(20) to the Brodsky-·LC'page pqua.t.ion is dcriV<'d. 
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Renor:11alon Chains Contributions to Non-Singlet Evolution Kernels 1 

in QCD I 

Contributions to QCD non-singlet evolution kernels P (z) for the DGLAP 
equation and V (x,y) for the Brodsky-Lepage evolution equation are calculated 
for a certain class of diagrams which include rer.onnalon chains. Closed expressions 
are presented for the sums of these contributions that dominate for a large number 
of ilavors Nr>> I. Calculations are performed in covariant ~-gauge, in the MS 

scheme·. The assumption of «naive nonabelianization» approximation for kernel 
calculations is discussed. The partial solution to the Brodsky-Lepage evolution 
equation is obtained. 

The investigation has been performed at the Bogoliubov Laboratory 
of Theoretical Physics, JINR. 
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