


1 Introduction

Evolution kernels are the main ingredients of the well-known evoiution equatiors for parton
distribution of DIS processes and for parion wave functions in hard exclusive reactions. T hese
equations describe the dependence of parton distribution functions and parton wave [upciions
on the renormalization parameter p2. Here, I continue to discuss the diagrammatic analysis
and multiloop calculation of the DGLAP evoiution kernel P(z) [1] and Brodsky-Lepage (BL}
kernel V(z,y) [2] in a class of “all-order” approximation of the perturbative QCI? that has been
started in [3]. There, the regular method of calculation and resummation of certain classes of
diagrams for these kernels has been suggested. These diagrams include the chains of anc-loop
sefl-energy parts (renormalon chains] inte the one-foop diagrams (see Fig. 1. in this letter, the
results for both the kinds of kernels, oblained eariier in the framework of a scalar model in six
t\"
dimensions with the Lagrangian Liy = E(l"’." Vig)yg) With the sealar “guark” flavours (¢) and

t
“gluon™ (i}, are extended to the non-singlet QCD kernels. For the readers convenience some
important results of the previous paper 3] would be reminded.

The insertion of Lhe chain into “gluon™ line (chain-1) of the diagram in Fig.1 a,b and resum-
mation over all bubbles lead to Lhe transformation of the one-loop kernel Py(z) = aZ = ! - 2)
into the kernel P((z; A)

Polz) = az 225" POz Ay = a3 ()4 (1 = 28| here 4 = a7, (0). @ = 7 (1)
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Here, 71y(,y(€) are the one-loop cocflicients of the anomalons dimensions of gquark (gluon at
Ny = 1) fields in D-dimension (D = 6 ~ 2¢) discuseed in {3]; for the scalar model yu(g} =
Yele) = B{2 — 2,2 - €)}C(¢), and C(e) is a scheme-dependent Faclor corcesponding to a cerlain
choice of an M3 -like scheme. The argument. A of the function 7.{4) in (1} is the standard
anemalovs dimension (AD) of a gluon field. So, one can conclude that the “all-order” result
in (1} is completely determined by the single quark bubble diagram. The resummation of (his
“chain-1" subscries into 2n analytic function in 4 shoulda’t be taken by surprise. Reaily, the
considered problem can be connected with the calculation of large Ny asymptotics of the AD's
in order of 1/Ny. An approach was suggested by Vasil'ev and collaborators at the beginsing of
80" [4] to calculate the renormalization-gronp lunctions in this limit, they used the conformal
properties of the theory at the critical point g = g, corresponding to the non-trivial zero g, of
the D-dimensional #-function. This approach has been extended by J. Gracey for calculation of
the AD’s of the composile aperators of DIS in QCD in any order 2 of PT, [5. 6L 1 have used
" another approach, which is closc to [7. 8); contrary to the large Ny asymplotic method it does
not appezal to the value of parameters N;Tp, /2 or Cr, associated in QUIY with different
kinds of loops. Following this way, the “improved™ QCD kernel P{z; A) hias been obtained in
[3] for the case of quark or ghion bubble chain insertions in the Fevnman gange.

In this paper, we present the QCTY resnlts similar to Eq.(1). for each type of diagrams appear.
ing in the covariant £~ gauge for the DGLAP non-singlet kernel P(z: A). The analytic properiies
of the function P’{z; 4) in variable A are analyzed. The assumption of “Naive Nonabelianiza-
tien” (NNA} approximation (9] for the kernel calenlation [10) is discussed and its deficieney is
demonsirated. The BL cvolution kernel V{r.y) is obtained in the same approximation as the
DGLAP kernel, by using the exact relations hetween P and V¥ kernels {11, 31 for a class of
“triangular diagrams™ in Fig. 1. The considered class of diagrams represents the leading hY
contributions to both kinds of kernels. At 1he end. a parlial selntion for the BE Aquation is
presented (compare with {10, 12}).

The announced results are certainly useful for an independent check of complicated computer
calculations in higher orders of perturbation theory {PT), similar to [15]; they may be a starting
point for further approximation procedures.

2 Triangular diagrams for the DGLAP evolution kernel in QCD

Here, the results of the bubble chain resummation for QCD diagrams in Fig.l a,b,c f_or the
DGLAP kernel are discussed. These diagrams generate contributions ~ g, (@, In[1/z]}" in any
order n of PT,

Figure 1: The diagrams in figs. la — lc are the “trianguiar” diagrams for the QCD DGI:AP
ketnel; dashed line for gluons, solid Ene for quarks; black circle denotes the sum of zfll kinds
of the one-Joop insertions (dashed circle), both quark and gluon (ghost) or mixed chains; MC

denotes the mirror-conjugate diagram.

Based on the resummation method of Ref. [3] in the QCD version, one can derive the kernels
Pllabe) eorresponding to the diagrams in Fig.l in the covariant {—gauge
P g g
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where a, = %’—), Cre= (N2-1)/2N,Cy= N and Tp = % are the Casimirs of SU(N,} group,
and A = —a(,;;{()). The function ¥,(¢) is the one-loop coefficient of the anomzlous dimension

of gluon field in D-dimension, here D = 4 — 2¢. In other words, it is the coefficient Z(¢) of a
simple pole in the expansion of the gluon field renormalization constant 2, that includes both



a finite part and all the powers of the e-expansion. Equations (2) - (4} are valid for any kind
of insertions, i.e., 7, = 7}") for the quark loop, 7, = 7§9) for the gluon (ghost) loop, or for their
sum

To(4,8) = 21{(A) + 1A &)
when both kinds of insertions are taken into account. The sum of contributions (2}, (3), (4)
results in PA)(z; A,£) which lias the expected “plus form™

(1) 5 _ ooty _ap e 2272 2009 .
P2 A4,8) a,Cr2 [zz (1-A)2+ l—zL‘rg(A,E)' (5)
aPo(z) = ascpz-[z + 12_22]+, (6)

where, for comparison, the one-loop result e, Fs(#) is written down, the latter can be obtained as
the limit PO(z; A = 0,£). Note that in (5) the §(1 - z) - terms are exactly accumulated in the
form of the [.. ] prescription, and the £ - terms successfully cancel. This is due to the evident
current conservation for the case of quark bubble insertions, including the gluon bubbies into
consideration merely modifies the effective AD, ¥,(4,£) = 7;”(.4). conserving the structure of
the result (5), see [3]. Substituting the well-known expressions for v,(¢) from the quark or
gluon {ghost) loops (see, e.2., [13])

~e) = -8N,TrB(D/2,D/2)C(e), (7
e, &) = %’13(0/2-1,13/2-1) ((35_‘12)4-
_en2
(-0w-9+(*5) s) cle, (8

into the general formulae {2) - (4), and (5) one can obtain P1)(z; A, £) for both the quark and
the gluon loop insertions simultaneously. Here, the coefficient C'(g) = I'(1 — ¢)I'(1 4 ¢) implies
a certain choice of the MS scheme where every loop integral is multiplied by the scheme factor
T(D/2 — 1)(g2/47)c. The renormalization scheme dependence of P)(z; 4) is accumulated by
the factor C{e) 2. Of course, the final result (5) will be gauge-dependent in virtue of the evident

gauge dependence of the gluon loop contribution 7}9)(6,5), in this case, e.g.,

A©) = ~am (0.6 = —a. (100 +120.0) = -0, [(3+ L5 cu- Ivm . @

is the contribution to the one-loop renormalization of the gluon field. The positions of zeros
of 7,(4,€) in A, i.e., the poles of P(z;4,&), also depend on §. The kernel PUH(z; A) became
gauge-invariant in the case when only the quark insertions are involved, ie., v, = 7_!."); A=
AW = g 40(0) = a,iTRNI, and P (z; AW) 5 PUXz; 4} as it was presented in [3]. It
is instructive to consider this case in detail. To this end, let us choose the common factor
'}éq)(ﬂ)/'yg(q)(.-!] in formula {5} for the crude measure of modification of the kernel in comparison
with the one-loop result a,Fy(z). Considering the curve of this factor in the argument A in
Fig.2, one may conclude:

?For another popular definition of a minimal scheme, when a scheme facior is chosen as exp(c-€}, ¢ = ~ve+...
instead of I'(D/2 = 1), the coefficient C{e) does not contain any scheme “traces™ in final expressions for the
renaormalization-group functions.
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Figure 2: The curve of Uie Tactor 34() /2, (1), the arrow on the picture corresponds to the point
A=1/zr.

(i) the range of convergence of PT serics corresponds Lo the keft zero of the function -,-_,(,")(.-1)
and is equal 10 Ag = 5/2, that corresponds lo ag = 157/ Ny, so. this range looks very broad,
n, < 57 at Ny =1;

(i} in spite of a wide range of PT fidelity, the resummation into 1=,§”(:;.-1) is substantial
two zeros of Lhe function Pé”(:: AYin 4 appear within the range of convergence (it depends on
a certain MS scheme);

(iii} the factor Téq)(ﬂ)/'yéq](.ii) decavs quickly with the growth of the argnment 4. Really. if
we take the naive boundary of the standard PT applicability, n, = 1 (at Ny =3 A = 1/ 2m).
then this factor falls approximately to 0.7 (a1 Ny = G, Aol = 1/ i falls to 0.5 see arrow in
Fig. 2): thus, the resummation is numericatly inportant in this range.

Note at the end that 5q.(5) could not provide valid asymptotic behavior of the kernels for
2 =+ 0. A similar z-behavior is determined by the double-fogarithmic carrections which are maost
singular al vero, like ag (a,]n)[::])“ {l4}. These contributions appear due to renormalization
of the composite operator in the diagrams by ladder graphs, ¢fe. rather than by the triangular

ones,

3 Analysis of the NNA assumption for kernel calculations

The expansion of qu(:—::/l) in A provides the loading a, (a,NyIn[1/:])" dependence of the
kernels with a large number ¥y in any order » of PT {3]. Bat these contributions do not
numerically dominate for real numbers of flavours ¥y = 40 5, 6. That may Te verified by
comparing the total mumerical results for the 2 and 3 toop A of canpuosite aperators (ADCQ)
in [15] with their Ny-eading terms (see ADCQ in Table 1). ‘Iherefore. to obtain a satisfactory
agreement. at least witl the second order resalts, one should take into account the contribution
from subleading Ny-terms. As a first stop. lot us consider the contribution from the completed
renormalization of the gluon e # should generate a part of subleading terms. Below
we shall examine (wo special choiees of the gange pataimeter £ To facifitate the disgranmatic



analysis, it is instructive to inspect first the Landau gauge £ = 0. Indeed, the self-energy one-
loop insertions into the quark lines as well as a certain part of verlex corrections to triangular
diagrams are proportional to §; therefore, they disappear in the Landau gauge. Moreover, one
should not consider the renormalization of parameter €. The analytic properties of the function
PU(z; A,£ = 0) in the variable A = A(0) are modified - the function has no singularities in A
until the “asymptotic freedom™ exists, .., A < 0 (at 13C,4 > 4Ny}, In spite of all these profits
the kernel P(11{z; 4, 0) generates the partial kernels a2Fy(2), a2 Ppy(2), ... which are rather far
from the real ones. The ADCO 7y 2)(n) corresponding to these kernels {here y(n) = JEdzzmPiz)
) are presented in Table 1.

Table 1
a2 yy(n) a3 vz)(n)
n CrCa Ny-Cp CﬁCF Ny CrChy N_? -Cg
2
Exact | 18.9 86.1 + 21.3 ¢(3) | —12.9 — 21.3 {(8)
64 224
£=0 7.6 ~13.2 7.5
4
Exact | 23.9 140.0 4+ 19.2 ¢(3) | —18.1 — 41.9 ¢(8)
71
=-13 23.5 - 132 -76.0 23. — 384277
2700 243000
£=0 15.8 -23.5 12.4
6
Exact | 29.7 173 + 19.01 ((3) | —20.4 — 54.0 ((3)
428119 B0347571
= -3 311 - =95.6 28.5 — ———————
66150 41674500
€= 20.7 _29 15.2
8
Exact 33.9 196.9 + 18.08 C(3) —21.9 - 62.7 C(3)
36241943
= -3 36.3 —m -109.0 32.3 —~2.1619
£=0 24 -33.0 17.2
10
Exact | 37.27 216.0 + 18.96 ((3) | ~23.2 — 69.6 ((3)
=-3 41.00 -8.5095 —-119.28 35.24 —2.33266
£E=0 27.29 -36.4 18.68

Another exceptional gauge is £ = -3. For this gauge the coefficient of one-loop gluon AD
¥ (0, —3) coincides with the coefficient bg of the S-function 3_ Therefore this gauge may be used
for a reformulation of the so-called [9] NNA proposition to kernel calculations. To obtain the
NNA result in a usual way, one should substitute the coefficient & for (q)(O) into the e).pressnon
for Al) by hand (see, e.g., [10]). Note, the use of such an NNA procedure to improve P( (z; A)
leads to poor results even for a? Pi(z) term of the expansion; a similar observation was also
done in [16}. The NNA trick expresses common hope that the main logarithmic contribution
may follow from the renormalization of the coupling constant. This renormalization appears as
a sum of contributions from all the sources of renormalization of @, . In the case of the £ = ~3
gauge the one-loop gluon renormalization “imitates” the contributions from these other sources
and the coefficient by appears naturally. The elements of expansion of the ADCO «{n; 4, —3)
{that corresponds to PU){z; 4, —3)) in a power series in a, , a? )(n); af ¥zy(n); ...and 2
few numerical exact results from [15] are collected in Table 1, let us compare them:

(i) we consider there the contribution to the coefficient 7(,)(:1) which is generated by the
gluon loops and associated with Casimirs CrCa/2, the Ch—term is missed, but its contribution
is insignificant. It is seen that in this order the CpC-terms are rather dose to exact values
(the accuracy is about 10% for n > 2) and our approximation works rather well;

(;!) in the next order the contributions 1o yz)(n} associated with the coefficients Ny - CrCa
and CLCr are generated, while the terms with the coefficients C3, Ny Ch, CFCy are missed.
In the third order, contrary to the previous item, all the generated terms are opposite in sign
to the exact values, znd the “6 = —3 approximation™ doesn’t work at all. So, we need the next
step to improve the agreement ~ to obtain the subleading Ny-terms by the exact calculation.

In any case, it seems rather difficult to collect the renormalization constant required by the
NNA approximation in the kernel calculations. It is because different scurces of renormalization
of a, provide different z-dependent contributions, compare, e.g., Exp.(1) with Eq.(10) in (3], the
latter being generated by the insertions of self-energy quark parts into the quark line (chain 2).
For this reason, necessary cancellation between the terms from different sources looks unlikely.

4 Triangular diagrams for the Brodsky—Lepage evolution kernel

Here we present the results of the bubble resummation for the BL kernel V{xz,y). It can be
obtained as a “byproduct” of the previous results for the kernel DGLAP P(z), f.e., in the
same manner as it was done for the scalar model in {3]. We shall use agzin the exact relations
between the V and P kernels established in any order of PT [11] for triangular diagrams. These
relations were obtained by comparing counterterms for the same triangular diagrams considered
in “forward” and “nonforward” kinematics.

Let the diagram in Fig.1a have a contribution to the DGLAP kernel in the form P(z} =
p(z} 4+ 8{1 — ) - C; then its contribution to the BL kernel is

Viz.y) =C (9(y> z)f"" p—(;ldz) +6ly—12)-C, (10)

‘where € = 1+ (¢ — %,y —= §). From relation (10) and Eqgs. (2), (4) for P <) we immediately

derive the expression for the sum of contributions V{}a+1¢},

T 1-A - 3
8{y > z)(1 - A) (5) -%é(y—l‘)g;_i; ::((g,?)’ ()

3Here, for the B(a,)-function we adapt B(a,) = —boa? + ..., bo = 13_10,. - §N,TR

Vet g,y 4,6)=a,Cr2-C




that may naturally be represented in the “plus form”. Expression {11} can be independently
verified by other relations reducing any V to P [11, 17) (see formulae for the V — P reduction
there) and we came back to the same Eqs.(2), {4) for PU2<). Moreover, the first terms of the
Taylor expansion of V2<){z, y; A) in A coincide with the results of the two-loop calculation in
{11). The relation P — V similar to Eq.(10) has also been derived for the diagram in Fig. 1b

vz y)=¢ [ﬂty > r)al;P“"’ (E)L (12)

therefore, substituting Eq.(3) into (12) we obtain

4
V‘””(w,y;A,e)=asc'F2-c[a{y>z} (3)’ ;{-;} %a(ii-% (13)
+ 19V

Collecting the results in (11) and (13) we atrive at the final expression for V11! in the “main
bubbles” approximation

V(g g A £) = , 2\ 1A w08 _
(x4 A &) = a,Cr2 C[G{y>r)(y) (1 A+y_z)+7y('4‘0, (14)

which hes a “plus form” again due to the vector current conservation. The contribution 1)
in (14) should dominate for Ny » 1 in the kernel V., Besides, the function VU, ALE)
possesses an important symmetry of its arguments z and y. Indeed, the function V(x,y; 4,€) =
VUM, w1 4, 8)-(Gy)} =4 is symmetric under the change z & y, V{z,y) = V{y, ). This symmetry
allows us to obtain the cigenfunctions #,(x) of the “reduced” evolution equation [18]

1

fV“’(x- ¥3 A)a(y; Addy = y(m; Alha(; A), (15)
0

Balys A) ~ ()@ A-F CRWy - g), here dy(4) = (Da—1)/2, Da=4-24,06)

and dy(A) is the cffective dimension of the quark field when the AD 4 is taken inte account;

',(,°](:) are the Gegenbauer polynomials of an order of a. The partial solutions ®{x; a,,1) of the
ariginal BL-equation ( where I = In(i2/2))

(20,0 + Hadn,) Bz el = [ VOz33 A) Blyias, Dy (1)

arc proportional 1o these cigenfunctions ¥,{x; A) for the special case 4(as) = 0, see, e.g. [3].

In the general case S(a;) # 0 let us start with an ansatz for the partial solution of Fq.(17),
Gofriag ) ~ yalus, {) - $af{z; 4), and the boundary condition is x,(as,0) = 1; $plz;a, 0) ~
¥, (2;.4). For this ansatz Eq.(17) reduces to

(120,2 + 3a,}0a, ) I (Pl 0,. 1)) = (75 A). (18)

In the case n = 0 the AD of the vector current 4(0; 4) = 0, and the solution of the homogeneous
equation in (18) provides the “asymptotic wave function™

Solr:0.,1) = Lol A) ~ (1 - 23z}, (19)

where A = —a(12)7(0,£) and &,(z®) is the running coupling corresponding to 3a,). A similar
solution has been discussed in [10] in the framework of the standard NNA approximation. Solv-
ing simultancously Eq. {18} and the renormalization-group equation for the coupling constant
a, we arrive at the partial solution ®,(z:d,.!) in the form

- aaf 2) ¢
&, (z,d,) ~ xul{pe?) - dalz; ) where xn(p’) = exp{-/ ’ ﬂ”"“ﬂ’ﬂ} (20)
adedy  Sla)

Recently. a form of the solution ~ r,(z; 4) with A = —a,bp has been confirmed in (12} by the
consideration of conformal constraints {19] on the meson wave functions in the limit Ny > 1.

5 Conclusion

In this paper, 1 present closed expressions in the “all orders™ approximation for the DGLAP
kernel P(:) and Brodsky-Lepage kernel V' (x,y) appearing as a result of the resummation of a
certain elass of QCD diagrams with the renormalon chain insertions. The contributions from
these diagrams, P{z: 4) and VU)(z; A), give the leading Ny dependence of the kernels for a
large number of flavours Ny 3> 1. These “improved” kernels are generating functions to obtain
contributions to partial kernels like ag"'}”}",,)(:} in any order n of perturbation expansion.
Here A ~ a, is a new expansion parameter that coincides (in magnitude) with the anomalous
dimension of the gluon field. On the other hand. the method of calenlation suggested in [3]
does not depend on the nature of self-energy insertions and does not appeal to the value of
the parameters NyTr, Ca/2 or Cr associated with different loops. This allows us to obtain
contributions from chains with different kinds of self-energy insertions, both quark and glnon
{ghost) loops. The prize for this gencralization is gauge dependence of the final results for
PUz; A} and VU){2; A) on the gauge parameter £,

The result for the DGLAP non-singlet kernel PUOY(z: A{€).€) is presented in (3} in the co-
variant &-gauge. The analytic propertics of this kernel in the variable a, are discussed for quark
bubble chains only, and in the general case for two values of the gauge parameter § = 0: =3, The
insufficiency of the NNA proposition for the kernel calculation is demenstrated hy the evident
calculation in the third order in a, {(sce Table 1).

The contribution V(x4 A(£),€) 1o the Brodsky-Lepage kernel (1-1) is obtained for the
same classes of diagrams as a “byproduct® of the previous technique [I8]. A partial solution
{20) to \he Brodsky-Lepage equation is derived. ’
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