


1. Sonoluminescence being observed during more than half cen-
tury {1] has not received satisfactory explanation yet. As known this
phenomenon represents the emission of visual light by spherical bub-
bles of air or other gas injected in water and subjected to an intense
acoustic wave in such a way that the radius of bubbles changes peri-
odically. In the last years of his life Schwinger proposed [2] that the
bases of sonoluminescence is formed by the Casimir effect. While
changing the size of bubbles the zero point energy of the vacuum
electromagnetic field (the Casimir energy) of a cavity in a dielectric
medium changes too. According to Schwinger, it is these changes
of the electromagnetic energy that are emitted as a visual light in
sonoluminescent flashes. In Schwinger’s calculations the Casimir en-
ergy for the configuration in hand proves to be of the same order as
the energy of the photons in an individual flash (~ 10 MeV). Other
authors obtained results both consistent with Schwinger’s calcula-
tion [3} and differing from it in 10 orders {4, §]. This disagreement is
basically due to different methods used for removing the divergences
in the problem under consideration.

In the present note the calculation of the Casimir energy of a
dielectric ball placed in an endless diclectric medium (or cavity in
this medium) is carried out under following conditions. In the first
place a realistic description of diclectric properties of media is uscd
which takes into account dispersion [6]. On the other hand the most.
simple and reliable method for removing the divergences, the zcta
function technique, is applied. Till now these conditions were not
combined in studies of the problem in question.

2. When calculating the Casimir energy we shall use the mode-
by-mode summation of the eigenfrequencies of the vacuum electro-
magnetic oscillations by applying the contour integration in a com-
plex frequency planc [7, 5]. Consider a ball material of which is
characterized by permittivity &) and permeability ;;. The ball is
assumed to be placed in an infinite medium with permittivity £, and
permeability j19. For this configuration the frequencies of transverse-
electric (TE) and transverse-maguetic (TM) modes are determined

by the equations (8]
AT (aw) = fEpa §i(kra)éi(kza) —
ATM(aw) = /B §(kya)é(kaa) - 1/51,u2 5i(k1a)éj(kea) =0, (2)
where §/(z) = /72/2 Jip12(z) and &(z = /rz/ H,(:_)m(:c are

the Puccatl Bessel functions, k; a,,u;w, i = 1,2 are the wave
numbers inside and outside the ball, respectively; prime stands for

Vet fi(ki1a)g(kaa) =0, (1)

~ the differentiation with respect to the argument (kia or ksa) of the

Riccati-Bessel functions.
As usual we define the Casimir energy by the formula
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where w, are the roots of Egs. (1) and (2) and &, are the same
roots under condition a — co. Here s is a collective index that
stands for a complete set of indices spec1fy1ng the roots of Egs. (1)
and (2): s = {l,mn} I =12, = —(I+1),=1...,01+
1, n=1,2,.... The roots of Egs. (1) a,nd (2) do not depend on the
ammuthal quantum number m. Therefore the corresponding sum
gives a multiplier (2{ + 1). Further we use the principle of argument
theorem from the complex analysis in order to present the sum over n
in terms of the contour integral. As a result Eq. (3) can be rewritten

as follows:
l+ 1/2 j{d ATE(az)ATM(az)

ATE (oo) A'l M (oo)

E= ZEI, E = (4)

where the contour C' surrounds, counterclockwise, the roots of the
frequency equations (1) and (2} in the right half-plane. This contour
can be deformed into a segment, (—iA,iA) of the imaginary axis and
a semicircle of radius A with A — oco. In this limit the contribution
of the semicircle into the integral (4) vanishes with the result [5]
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x [vErEamas ((si{ae(qe))? + (si(@)ei(@2)’)
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where g; = /Eifi; ¥, ¢ = 1,2 and s(2), ei(z) are the modified Riccati-
Bessel functions: s(z) = (wz/2)2L(2), efz) = (22/7) 2K, (2),
v=1+1/2

Further we will content ourselves by examining the case when
both the media are nonmagnetic u; = g2 = 1 and their permittivities
£1, & differ slightly. In view of this we can put in Eq. (5) 1 = q2
keeping in remain €; and &2 exactly. It gives

o= 2 Can{i-¢awaw)r}  ©
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Now we are going to take into account the effect of dispersion con-
sidering the parameter £* in Eq. (6) as a function of y = aw/t.
Justification of the mode-by-mode summation method in applying
to dispersive and absorptive media has been considered in [9]. For
definiteness we put £y = 1+ 8, g9 =1, § < 1, then £2 ~ 82716, We
substitute é by

8(y) = &o/[1 + (w/vw)), v=1+1/2, (7)

where & is a static value of (y) and the parameter yo is determined
by a "plasma” frequency wo: ¥ = awo. The function describing
dispersion in Eq. (7) is a standard one [one-absorption-frequency
Sellmeir dispersion relation] except for its dependence on I. We have
introduced this dependence in order to be able to use the zeta func-
tion technique below. This complication does not contradict the
main goal pursued by using this function, namely, it should simu-
late crudely the behaviour of 8(y) at large y. As known [10], the
general theoretical principles lead to the following properties of the
function e(w) in the upper half-planc w. On the imaginary axis
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w = iy, y > 0 the function (iy) acquires real values, and with in-
creasing y it steadily decreases from the static value 1 4 & > 0 (for
diclectrics) to 1. Obviously formula (7) meets these requirements.

" Substituting (7) into (6) and making use of the uniform asyinp-
totic expansion for the modificd Bessel functions [11] when [ — x

one obtains
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We carry out the sumination of the partial Casinir cnergies (6)
with the help of the zeta function technique [12] taking into account

asymptotics (8)
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Here E; = E; 4 (3/64a) (6/4)* fi(aw) is the renormalized partial
Casimir energy, ((s, ¢) is the Hurwitz zeta function. As ((0,1/2) =0,
we get for the Casimir energy (12)

oc _ 3 50 2
E= — | = . 13
> Bt ggg (3) oo (13)
With allowance for (8) one can obtain the estimation for the sum
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Thus the Casimir energy of a dielectric ball is

_ 2] oo
6 f2(awo) — 7 f3(awy) (%) Z (¥ 1/2
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E r~ 3 (60) {fl (awp) + 0.066 fo(awy) — 0.0048 63 fs(awo)} )

6da
(15)

dispersion resulting only in the positive functions f;{awy), i = 1,2, 3.
When z increases the functions fi(z) approach 1 (see Fig. 1), and (15)
turns into the expression for the partial Casimir energy of a solid ball
without dispersion [5].

Considering the behaviour of the functions f;(z) (see Fig. 1) one
concludes that the main contribution, with a few percents accuracy,
gives the first term in braces in Eq. (15) with the result

1’&13'5(60) Filawn).  (16)

Obviously the change of the energy sign or a considerable increasing
its magnitude due to the dispersion effect [13] is out of the question.

D e—

A-___' e

Let us estimate the value of fi(awp). The parameter wy can be
determined by demanding that at this frequency the photons do
not ‘feel’ the interface between two media. This condition will be
certainly met when the wave length of photon is less than the in-
teratomic distance in media d ~ 10~% cm. Actually it is the con-
dition of applicability of the macroscopic description of dielectric
media [10]. Sonoluminescence is observed with the air bubbles in
water [1], the radius of bubbles being a ~ 10~ cm. Hence it follows
that awy ~ a/d = 10* and £,(10%) = 0.999.... Thus the allowance
for the dispersion in calculating the Casimir energy of a dielectric
ball (or spherical cavity in a slab of a dielectric) practically has no
effect on the final result.

Certainly the real picture of dispersion in the whole frequency
range 0 < w < oo for any dielectric, including water, is exceedingly
complicated and cannot be described by a simple equation (7) with
a single parameter wy. As known absorption of the electromagnetic
waves in water and, as a consequence, their dispersion takes place
already in the radio frequency band. Putting in this case A ~ 104 cm,
we obtain awy ~ 1 and fi(1) = 0.729.... From here one can infer
that the effective value of a wy should be less than 10*. In order for a
more precise evaluation of this parameter to be done a more detailed
consideration of the dispersion mechanism is needed. Obviously this
may lead only to diminution of the absolute value of the Casimir
energy. However this issue is beyond the scope of the present paper
for the main conclusion (see below) does not depend on this point.

It is worth noting two peculiarities of the final formula (16).
When the radius of the bubble decreases its Casimir energy increases.
This behaviour is completely opposite to one needed for explanation
of sonolurninescence (as known, emission of light takes place at the
end of collapsing the bubbles in liquid). Besides, this energy is im-
mensely smaller than the amount of energy emitted in a separate
sonoluminescent flash (~ 10 MeV). Actually taking ¢ = 10~* c¢m
and 6y = 3/4 (water) we arrive at £~ 5.107% ¢V.

Thus the results of this paper unambiguously testify that the



Casimir effect is irrelevant to sonoluminescence.
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