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1. Sonoluminescence being observed during more than half cen
tury [1] has not received satisfactory explanation yet. As known this 
phenomenon represents the emission of visual light by spherical bub
bles of air or other gas injected in water and subjected to an intense 
acoustic wave in such a way that the radius of bubbles changes peri
odically. In the last years of his life Sch\vinger proposed [2] that the 
bases of sonoluminescence is formed by the Casimir effect. While 
changing the size of bubbles the zero point energy of the vacuum 
electromagnetic field (the Casimir energy) of a cavity in a dielectric 
medium changes too. According to Schwinger, it is these changes 
of the electromagnetic energy that are emitted as a visual light in 
sonoluminescent flashes. In Schwinger's calculations the Casimir en
ergy for the configuration in hand proves to be of the same order as 
the energy of the photons in an individual flash(~ 10 MeV). Other 
authors obtained results both consistent with Schwinger's calcula
tion [3] and differing from it in 10 orders [4, 5]. This disagreement is 
basically due to different methods used for removing the divergences 
in the problem under consideration. 

In the present. note the calculation of the Casimir energy of a 
dielectric ball placed in an endless dielectric medium (or cavity in 
this medium) is carried out under following conditions. In the first. 
place a realistic description of dielectric properties of media is used 
which takes into account dispersion [6]. On the other hand the most 
simple and reliable method for removing the divergences, the zeta 
function technique, is applied. Till now these conditions were not 
combined in studies of the problem in question. 

2. When calculating the Casimir energy we shall usc the mode
by-mode summation of t.he eigenfrequencics of the vacuum electro
magnetic oscillations by applying the contour integration in a com

plex frequency plane [7, 5]. Consider a hall material of which is 
characterized by permittivity c1 and permeahilit.y /IJ. The ball is 
assumed to be placed in an infinite medium with permittivity c2 and 
permeability /1·2· For this configmation the frequencies of transverse
electric (TE) an<l transverse-magnetic (TM) modes arc <lctcnuined 
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by the equations [8] 

t,.fE(aw) = JE)i12 s;(k1a)e1(k2a)- y'c2iLJ Si(k!a)e;(kza) = 0, (1) 

t,.fM(aw) = y'c2iLJ s;(k!a)ei(kza)- JE)i12 Sf(k!a)e;(kza) = 0, (2) 

where Sf(x) = V1fX12Jl+lf2(x) and ei(x) = J1fxj2Hl~L2(x) are 
the Riccati-Bessel functions, k; = ftJii w, i = 1, 2 are the wave 
numbers inside and outside the ball, respectively; prime stands for 
the differentiativn with respect to the argument ( k1 a or k2a) of the 

Riccati-Bessel functions. 
As usual we define the Casimir energy by the formula 

E = ~ 2)w,- w,), (3) 
s 

where w, are the roots of Eqs. (1) and (2) and w, are the same 
roots under condition a -> oo. Here s is a collective index that 
stands for a complete set of indices specifying the roots of Eqs. (1) 
and (2): s = {l,m,n} I= 1,2, ... ; m = -(1 + 1),-1, ... ,1 + 
1, ·n = 1, 2, .... The roots of Eqs. (1) and (2) do not depend on the 
azimuthal quantum number m. Therefore the corresponding sum 
gives a multiplier (21 + 1). Further we use the principle of argument 

theorem from the complex analysis in order to present the sum over n 
in terms of the contour integral. As a result Eq. (3) can be rewritten 

as follows: 
00 

E= ~E1, 
L~! 

E - l + 1/2 f d t,.fE(az)b.fM(az) 
L- ~. dzzdzlnt,.fE(oo)b.J'M(oo)' 

c 

(4) 

where. the contour C surrounds, counterclockwise, the roots of the 
frequency equations (1) and (2) in the right half-plane. This contour 
can be deformed into a segment (-iA, iA) of the imaginary axis and 
a semicircle of radius A with A -> oo. In this limit the contribution 

of the semicircle into the integral ( 4) vanishes with the result [5] 
00 

I+ 1/2 J { 4e-2(q,-q,) 
E1 = dyln 

1f a ( ..ftlii2 + ..ft21Ii)2 
(5) 

0 
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x [v'cJc2J.LIJ.L2 ((si(q1)e1(q2))2 + (sl(ql)ei(q2)) 2) 

-(cJJ.L2 + c2J.Li)s1(q1)si(q2)e1(q2)ei(q2)] }, 

where q; = yT;iiiy, i = 1, 2 and s1(z), q(z) are the modified Riccati

Bessel functions: s1(z) = (1fZ/2) 112Iv(z), e1(z) = (2z/7r) 112Kv(z), 

v = l + 1/2. 
Further we will content ourselves by examining the case when 

both the media are nonmagnetic J.Ll = ?'2 = 1 and their permittivities 

cJ, c2 differ slightly. In view of this we can put in Eq. (5) q1 = q2 

keeping in remain c1 and c2 exactly. It gives 

E1 = l + 112100 

dy ln { 1-e [(si(Y)Ci(Y))'n, (6) 

2 - (v'El- ..ft2)2 
E - ,.fti+..ft2 

Now we are going to take into account the effect of dispersion con

sidering the parameter e in Eq. (6) as a function of y = awfi. 

Justification of the mode-by-mode summation method in applying 

to dispersive and absorptive media has been considered in [9]. For 

definiteness we put C)= 1 + 6, C2 = 1, 6 ~ 1, then e ~ 62/16. We 

substitute 6 by 

6(y) = 6o/[1 + (yjvyo) 2
], v = l + 1/2, (7) 

where 60 is a static value of 6(y) and the parameter Yo is determined 

by a "plasma" frequency wo: Yo = a wo. The function describing 

dispersion in Eq. (7) is a standard one [one-absorption-frequency 

Sellmeir dispersion relation] except for its dependence on I. We have 

introduced this dependence in order to be able to use the zeta fun<:

tion technique below. This complication does not contradict the 

main goal pursued by using this function, namely, it should simu

late crudely the behaviour of 6(y) at large y. As known [10], the 

general theoretical principle,s lead to the following properties of the 

function c(w) in the upper half-plane w. On the imaginary axis 

4 

v.J = iy, y > 0 the function ~:(iy) acquires real valu~s. and with in

creasing y it steadily decreases from th~ static value 1 + ~0 > 0 (for 

dielectrics) to 1. Obviously formula ( 7) meets these requirements. 

Substituting (7) into (6) and making use of the uniform as:>mp

totic expansion for the modifkd Bessel functions [11] wlwn I -+ x 

one obtains 

El ~ -
1-oc 

3 (o0)

2 

- - ft(awo) + 
6-±a 4 

(8) 

9 (")2[ (")2] . + 
21

.
1
"

2 
; 6/z(awo)- ih(aw0 ) ; + O(ll-·

1
). 

where 

/J(Z) = 

h(z) = 

h(z) = 

. 2 (-:1 _2 16- .J) 
. -.. - + L + 3- + 3 ' 

::'
1 (521 1127 593 2 _ :1 4) 

(1 + z)7 g + 27z + 27 Z + I z + z • 

z (80 80- 928 2 1952 _:1 5960 -·.1 

-." 63 + 7" + 21= + 21- + 63-

320 ) +80z5 +-g=6 +9z 7 +z8
• 

(9) 

(10) 

(11) 

We carry out the s1umnnt.ion of the part.ial Casimir <'ncrgics ( 6) 

with the help of the zeta function t<'chnique [12] taking into accmmt 

asymptotics (8) 

00 

E=LEI 
I= I 

oo [ . 3 ("0 )

2 
3 (.c\0

)

2 

] 
= """" E1 +- -

4 
f1(awo)-- - .fl(a.,·n) 

L- 64a · 6.Ja .J 
I= I 

"" . 3 (f, )2 '"" 
= L El- 64a ; j, (ov..·o) LU + 1/2)" 

~I 1=1 

(12) 

•X> 3 (f, ) 2 

= """"E1-- :1 j,(a~·0 )[((0. 1/2)- 1]. 
L- 64a ~ . 
I= I 
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Here E1 = E1 + (3/64a) (Do/4)2 h(aw0) is the renormalized partial 
Casimir energy, ((s, q) is the Hurwit2 zeta function. As ((0, 1/2) = 0, 
we get for the Casimir energy (12) 

"" 3 (D ) 2 

· E =LEI+ 
64a : h(awo). 

1=1 

(13) 

With allowance for (8) one can obtain the estimation for the sum 
"'"" -L-i=1 E1 

oc 

LEI 
i=l 

9 (Do)
2 

[ (D0
)

2

] "" 1 214 4 6h(awo)- 7fs(awo) 4 8----- ,_," 
9 (Do) 

2 
[ (Do) 

2
] (7r2 ) = 214 4 6h(awo)- 7 h(awo) 4 2 - 4 

::;: 5.135 X 10-4 (~Or [6/2(awo)- 7!J(awo) ( ~O) 
2
]. (14) 

Thus the Casimir energy of a dielectric ball is 

3 (D )2 
. E-::=- _Q {J1(awo)+0.066h(awo)-0.0048D5h(awo)}, 64a 4 

(15) 
dispersion resulting only in the positive functions J;(awo), i = 1, 2, 3. 
When z increases the functions J;(z) approach 1 (see Fig. 1), and (15) 
turns into the expression for the partial Casimir energy of a solid ball 
without dispersion [5]. 

Considering the behaviour of the functions J;(z) (see Fig. 1) one 
concludes that the main contribution, with a few percents accuracy, 
gives the first term in braces in Eq. (15) with the result 

E-::= _]_ (Do) 
2 

64a 4 h(aw0). (16) 

0 bviously the change of the energy sign or a considerable increasing 
its magnitude due to the dispersion effect [13] is out of the question. 
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Let us estimate the value of JI(aw0 ). The parameter w0 can b.e 
determined by demanding that at this frequency the photons do 
not 'feel' the interface between two media. This condition will be 
certainly met when the wave length of photon is less than the in
teratomic distance in media d ~ 10-8 em. Actually it is the con
dition of applicability of the macroscopic description of dielectric 
media [10]. Sonoluminescence is observed with the air bubbles in 
water (1], the radil!s of bubbles being a ~ 10-4 em. Hence it follows 
that aw0 -::= ajd = 104 and f 1(104) = 0.999 .... Thus the allowance 
for the dispersion in calculating the Casimir energy of a dielectric 
ball (or spherical cavity in a slab of a dielectric) practically has no 
effect on the final result. 

Certainly the real picture of dispersion in the whole frequency 
range 0 < w < oo for any dielectric, including water, is exceedingly 
complicated and cannot be described by a simple equation (7) with 
a single parameter w0• As known absorption of the electromagnetic 
waves in water and, as a consequence, their dispersion takes place 
already in the radio frequency band. Putting in this case>.~ 104 em, 
we obtain a wo ~ 1 and h (1) = 0. 729,. .. From here one can infer 
that the effective value of a w0 should be less than 104 • In order for a 
more precise evaluation of this parameter to be done a more detailed 
consideration of the dispersion mechanism is needed. Obviously this 
may lead only to diminution of the absolute value of the Casimir 
energy. However this issue is beyond the scope of the present paper 
for the main conclusion (see below) does not depend on this point. 

It is worth noting two peculiarities of the final formula (16). 
When the radius of the bubble decreases its Casimir energy increases. 
This behaviour is completely opposite to one needed for explanation 
of sonoluminescence (as known, emission of light takes place at the 
end of collapsing the bubbles in liquid). Besides, this energy is im
mensely smaller than the amount of energy emitted in a separate 
sonoluminescent flash (~ 10 MeV). Actually taking a = 10-4 em 
and Do= 3/4 (water) we arrive atE-::= 5 · 10-3 eV. 

Thus the results of this paper unambiguously testify that the 
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fi(z) 
1.2 

fz 

0.8 h 

().4 

2 

0.0 1-------'-----J..---~----'------' 
0.0 2.0 4.0 6.0 8.0 1 0.0 

Fig.!. Functions f,(z). i~1.2.3 defining the expansion (8). 
When z increases the functions approach their limiting 
value equal to 1. 
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Casimir effect is irrelevant to sonoluminescence. 
This work was accomplished with financial support of Russian 

Foundation of Fundamental Research (Grant N' 97-01-00745). 
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HeCTepeHKO B.B., ITwpoJKeHKO 11.r. E2-98-40 
J1Meer JIH OTHOllleHHe K COHOJIIOMHHecUeHUHH s4JcJ>eKT K33HMHpa? 

3Heprn>! Ka3HMHpa JlH3JieK1pHqe<:Koro mapa (!IJIH rnapoo6pa3Hoil nonocTH 
B 6eCKOHel.JHOif cpe,ne) paCCl.JHT3H3 nyreM C)'MMHpOBaHJUI C06CTBeHHbiX lf3CTOT 

3J1eKTpOMarHHTHbiX KOJJe6aHJH1: C HCnOJJb30B3HHeM KOHT)'PHOI'O HHTerpHp0B3HIDI. 

BIDKHLIM MOMeHTOM B 3THX pacqerax .SJBJU!eTC.SI HBHLIH yqer .uifcnepCHH H ycrpaHeHHe 

pacXO.llHMocreH c noMOlllLJO rexHHKH .U3era-¢)'HKUHiL HaH.neHo, l.JTO 3Hepnul 
Ka3HMHpa .UHaneKTpH1.lecKoro wapa noJIO)KHTeJihHa, npH1.leM OHa yse.nHlJHBaeTCH 

c ~teHbWeHHeM pa,auyca wapa. TaKoe nose.neHHe aHeprHH Ka3HMHpa nonHOCTblO 

HCKJllO'·IaeT B03MQ)KH0CTb TOro, lJTO aQxPeKT KaJHMHpa .HBJUieTC.SI npHlJHHOfi COHO~ 

HIOMliHecueHUHH so3Jl)'ll.IHhiX ny3bipbKOB s ::KJUJ.KOCTH. KpoMe roro, aHeprn.s 

Ka3HMHpa, CB513aHHasJ c ll)'3biphKaMH ra3a B )KJi.UKOCTH, OKa3hiBaeTC.H npeHe6pe::KHMO 

MaJJOfi no cpaBHeHmO C ::3HepnteH, yHOCHMOii cfloTOHaMH B OT)leJ1hHOJ1: BCfihiWKe 

B npouecce COHOJHOMHHecUeHUHH. 00Ka33HO, \ITO )"--et JJ.HCnepc~m npaKTHt.JeCKH 

He BJHLSieT Ha OKOH\laTe.JlhHbiH pe3yJJhTaT. 

Pa6oTa BhmonHeHa s Jla6opaTopwH TeopeTwqecKoil. <j:>w3HKH HM. H.H.Eoromo-
6osa 0!15111. 

DpenpuHT O&henaaeHHoro HHCTUT)'Ta Si;xepHbiX HCC.'le.!l.osruuui. )ly6Ha, 1998 
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Is the Casimir Effect Relevant to Sonoluminescence? 

The Casimir energy of a solid ball (or cavity in an infinite medium) is 
calculated by a direct frequency summation using the contour integration. 
The dispersion is taken into account. and the divergences are removed by making 
use of the zeta function technique. The Casimir energy of a dielectric ball 
(or cavity) turns out to be positive, it being increased when the radius of the ball 
decreases. The latter eliminates completely the possibility of explaining, via 
the Casimir effect, the sonoluminescence for bubbles in a liquid. Besides, 
the Casimir energy of the air bubbles in water proves to be immensely smaller than 
the amount of the energy emitted in a sonoluminescent flash. The dispersive effect 
is shown to be inessential for the final result. 

The investigation has been performed at the Bogoliubov Laboratory 
of Theoretical Physics. JINR. 
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