


1 Introduction

The cohomology of the symmetries algebra has important consequences for proper-
ties of the corresponding theory [1,2] and cohomological methods play essential role
in many problems of modern field theory. For example, their application made an
understanding of algebraic origin of gauge anomalies more ¢lear. As it was shown
in [1], one can consider axial anomalies of four-dimensional gauge theory in terms
of infinitesimal cocycles in a representation of gauge group.

- Another example is the BRST formalism which initially was formulated in terms
of symplectic geometry of the phase space expanded by the ghosts and antighosts.
Later it was understood {3,4,5,6,7] that the language of homological algebra is
more deeply related to physrca.l meaning of this formalism: Inclusion of ghosts and
antighosts corresponds to the construction of the chain of free modules (free resol-
vent) on the phase space of the constrained system, where the constraints cannot be
resolved in a direct way. The operator corresponding to the BRST charge becomes
the differential of the complex of these resolvents. Further the investigation of local
BRST cohomology was performed with use of developed homological methods (see
8,9,10] and the citations there).

In this paper, we consider a more modest problem. We study relations between
the Noether 1dent1t1es_a.nd related phenomena for global symmetries of Lagrangians
and cohomological properties of the algebra of these symmetries.

Qur considerations will be carried out for mechanics but the scheme has the
straightforward generalization to the case of fleld theory Lagrangians.

The standard statement (the Noether 1-st Theorem) is: if the Lagrangian L is
invariant under the action of the Lie algebra G of rigid symmetries {6x}, then to
every symmetry & there corresponds the cha.rge Ni(L) which is preserved on the
equations of motion [11].

If the Lie algebra of vector fields {X,, = Xi'5 =2} (1nﬁn1tes1ma.l transformations
of the configuration space) corresponds to {6k} then

Sl = 0— 5 (Nk(L)) - XPFu(L), (1.1)

where Ni(L) = “gLM and F, (L) Eq—l,’,- j‘;% AT
is the left hand side (L.h.s.) of the equations of motion F,, = 0 of the Lagrangian L.
The statement of the Noether theorem is valid also in the case when the La-
grangian is preserved up to a total derivative of some functions {ax(g)} under the -
actions of transformations {6}, i

6xL =0 — &L = day, then Ny(L)-— Ni(L) — oy . (1.2)

To what extent is this total derivative essential? Redefinition of L by adding a total
derivative L — L + df changes ay to ax + 8 f. The algebra of symmetries of the
Lagrangian can be considered generalized, if day is not equal to 0 in (1.2), and it is
essentially generalized, if it cannot be canceled by redefinition of Lagrangian with a
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total derivative, i.e., L = day but the equations
d(ak+6kf) =0 (13)

have no solution.
Using the basic properties of the operators § and d: §% = d% = 0, d§ = &d (see
the Section 2) we obtain from (1.2) that

0 = 6°L = 8day, = dbck, 50 (6a)km = Wi = constant, - (1.4)

where (6)tm = Lrem — Lmog — ci0; and i, are structure constants of the
symmetry Lie algebra (Lram = dxam is the Lie derivative of o, along the symmetry
vector field Xy). o
It is easy to see that wy., is a cocycle of algebra G with coefficients in constants.
In the case when wg, is not a coboundary, one can see that the symmetries’ are
essentially generalized. Indeed, if, according to (1.3), x = —&f + tx, where ) are
constants, then wyy, in (1.4) is a coboundary in constants: wim = (6t)em = —c;;mt.-.
Let us consider for example the algebra of space translations. This algebra has
2-cohomologies in constants represented by antisymmetric tensors Bim. (This alge-
bra is abelian, so § B = 0 and the equation B = 6t has no solutions in constants.) To
obtain Lagrangian which possesses generalized translation symmetries correspond-
ing to these cocycles, we note that for this Lagrangian oy = Apng™. Redefining
Lagrangian by a total derivative, one can reduce Ag., to an antisymmetric tensor,
and we come to the Lagrangian '

L= f(4) +¢" Bimd™ . . (15)

If f(q) = Tg—z-, it is the well-known Lagrangian of a particle in constant magnetic
field. . .

In Section 5 we consider a similar statement for the Galilean group: one comes
to the Lagrangian of free particle as to a unique Lagrangian corresponding to the
Bargmann cocycle of the Lie algebra of the Galilean group.

We see that one of the reasons generalized symmetries arise is the existence of
2-cohomology of the corresponding .Lie algebra !. Of course a situation is more
complicated. For example, by evident reasons for this phenomenon the de Rham
cohomology of configuration space is responsible. If Lin, is a G-invariant La.gra.ngia-.n
and L = Lin, + Au(q)¢*, where A,(q)dg* is a closed differential 1-form which 1s

not exact (A,(q)dg* # df), then in general L is not G-invariant. It has the same -

equations of motion, but it differs from Lin, by Aharonov-Bohm like effects [15]-

1The role of 2-cohomologies of symmetry group on the level of classical Lagrangian.s ma_}'be
at first was recognized in [12]. Many examples where physical properties of- weakly. invariant
Lagrangians interplay with cohomology of configuration space and 2-cohomology Qi: symmetry
group and corresponding Lie algebra were actively investigated in physics. It is of great 1mportanlce
for clarifying geometry of quantization, for revealing the structure of Wess-Zumino terms.. (See (1,
[2], [13], [14] and references there.) :

Even in the case when the de Rham cohomology is trivial and the cocycle wg, in
(1.4) is a coboundary, the symmetries of Lagrangian can be essentially generalized.
The coboundary condition w;; = —cf-‘jt;, is necessary but not sufficient for (1.3) to
have a solution. It is other cohomologies of symmetry algebra which prevent a
Lagrangian to be reduced to a G-invariant by redefinition with a total derivative.

The purpose of our paper is to investigate systematically these phenomena.

_For the algebra. G of vector fields on the:configuration space M and a Lagrangian
L(q,¢) on M, we considered the following possible cases of generalized symmetries
arising o T : :

1) The action of G on a Lagrangian L produces a 2-cocycle on G:
6xL(q,9) = f;ak(CI), Wi = Lyt —~ Loy, — c;;mai ’

-2) The action of Gona Lagrangian L produces a 2-c6cjcl§, :
. but it is trivial: wem = —ciuti,
3) The Lagrangian L differs from the invariant one by a closed form:
L = Liny + Au(9)¢*, (0,4, — 0,4, = 0)
hence &L = $(A,X}E) and Wi = 0,
4) The Lagrangian L differs from the G-invariant one -
© by an exact form (total derivative): - (L.6)
i L= Linu + auf(q)q-u = Linu + ?}[f(q)’ :6’:Linu =0. '
One can see that g ,
“4” = “3” = “2” =>1“171 N (1.7)
We briefly discuss how generalized symmetries reveal themself in Hamiltonian
mechanics and in a quasiclassical approximation of quantum mechanics [13,14].
If the Lagrangian is G-invariant, then to the Noether charges Ny(L) in*(1.1) in

the Hamiltonian framework the charges N*™ = X{p, correspond.” They generate
g k kPu
a G-algebra structure via Poisson brackets
{NE", N ™} = i NI°™ . (1.8)

“In quasiclassical approximation of quantum mechanics the operators X}'p, cor-
respornd to these charges. Their action on quasiclassical wave function in the config-
uration representation is reduced to a infinitesimal transformation of wave functions
argument: .

. 160 = U(g* + 6g*) — U(g"). .
In the case when the symmetry algebra is generalized, one can see that due to (1.2)
NE™ = Xiipu — o

The corresponding operators act not only on quasiclassical wave functions argument

-but also-on its phase:

0L N ()
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In the case when the Lagrangian does not possess the property “2” in (1.6), i.e.,
generalized symmetries lead to a non-trivial cocycle, the Lie algebra of Hamiltonian
Noether charges N/*™ is the central extension of the Lie algebra G which corresponds
to the cohomology class of the cocycle wim:

{Nfem, Nom} = ENE™ 4wy (1.10)

Respectively in this case in (1.9) an essentially projective representation of the
Lie algebra @ is realized. ’
In the case when the Lagrangian possesses the property “2” in (1.6), one can

choose aj such that (1.8) is satisfied and the quantum representation (1.9) of G

becomes linear. But if this Lagrangian does not possess the property “4” in (1.6),
then the action of quantum transformation on the phase factor cannot be removed
by redefinition ¥ — e¥ of the wave function corresponding to redefinition of
Lagrangian with a total derivative. In this case one can say that the linear trans-
formation (1.9) is splitted into a space-like transformation + intrinsic spin-like
transformation. Nevertheless if the Lagrangian possesses the property “3”, i.e., it

differs with an invariant Lagrangian by Aharonov-Bohm like effects, then the action:

on a phase in (1.9) can be removed locally [15]. :
We call a time-independent Lagrangian L(q,¢) weakly G-invariant if Lh.s. of its

motion equations (1.1) is G-invariant.- For example, the Lagrangian L in (1.2) is

weakly G-invariant. One can show that if L is weakly G-invariant Lagrangian, then

6L =cp +w, - (L.11)

where cj are constants and wji correspond to closed forms: wy = wy,(q)¢*, where
differential 1-forms wy,(q)dg* are closed (see in details below). o

If {wi} correspond to exact forms: wyi,(q)dg"* = dax(q), wiu(q)§* = 9 a,( )¢
dok(g)/dt and

Ho—

=0, (1.12)

then we come to (1.2). In the case if (1.12) does not obey the corresponding Noether
charges, S '

oL
— . A2 (1.
Ne =Xk 55 ar — it . (1.13)
depend on time.
We denote by Voo the space of weakly G-invariant Lagrangians on M and by
Vo the subspace of Voo for which the condition (1.12) is satisfied. We denote by
Vi1 (s = 1,2,3,4,) the space of Lagrangians for which the property “s” in (1.6) is

satisfied. According to (1.7),

Va1 € Va1 € Vza € Vi1 € Voa € Voo - (1.14)
One can also consider subspaces {V;0} of the space Voo |
Va0 S V50 C V2o S Vio S Voo, Vea & Vo, (1.15)
4

which correspond to {V.1} if we ignore the condltlon (L. 12) a weakly G-invariant
La.granglan L belongs to V1o, if §;L = da; + ¢;. It is easy to see that §a is also a 2-
cocycle in this case as in (1.4). ‘Moreover L € Vs, g, if this cocycle is trivial, L € Vi,
if a; = 6;f, and LeVs, o, if it differs from V4o by a closed form. Lagranglans in Vo -
have time-dependent Noether currents (1.13) in general.

What else can we say about embeddings (1.14, 1.15)? Does weakly G- invariant
Lagrangian possess generalized symmetries'(1. 2)? Can it be reduced to a G-invariant
one? Does there exist Lagrangian which belongs to the space V,o and which does
not belong to the space Vyy10 or V,1? If an answer is “no” what are the reasons?

To answer these questions, we establish a hlerarchy in the space of weakly G-
invariant Lagrangians. This hierarchy relates the phenomena. discussed above with
cohomology groups of the Lie algebra G and of the configuration space M.

The scheme of our considerations is the followmg Wefix a conﬁguratlon space M
and a finite-dimensional algebra G of its transformations. Then we establish relations
between weakly G-invariant Lagrangians on M and the cohomologles of the a.lgebra.
G and of M. From the considerations above we see that in the phenomena. we are
investigating two differentials are 1nterplay1ng, 6 and d; ,, where the differential §
corresponds to the symmetries and d,, , is the prolongation of the exterior differential
which acts on Lagranglans It is the variational derivative, whose action leads to
the Euler-Lagrange equation. (See in details Section 2.) These differentials, as well
as differentials d and 6, satisfy the condltlons 6 = a2 L = d,, 6 —6d;, = 0.
We naturally come to the differential Q = d g £ 6 which is strlctly related to our
problem. For example the condition Q(L, o) = (d,,L,0,w = éc) corresponds to
the condition 6L = derin (1.2). The changing of the cocham (L, ;) on a coboundary:
(Lyos) — (Lyo;) + Qf = (L+df, i+ 6;f) corresponds to redefinition of Lagrangian
by a total derivative L — L + df.

It is the cohomology of the differential Q, which allows us to reveal the relations
between generalized symmeltries of Lagrangians and cohomologies of the configuration
space and the symmetry Lie algebra. We do it in the following way. Using the
technique of spectral sequences, we calculate the cohomology of @ via cohomology
of d,;, by modulo &, then vice versa via cohomology of § by modulo d,, , . Calculating
cohomology of the operator @ in the first way, we come to the spaces { K,} which are
expressed in terms of cohomologies of the Lie algebra and the configuration space.
On the other hand, calculating the same cohomology-in the second way, we come
naturally to the space Voo of weakly G-invariant Lagrangians and to its subspaces .
{Vso} (1.14,1.15). Natural relations, which arise between the results of calculations .
in the first and in the second way, lead to the sequence of homomorphisms between
the spaces {V,,} and {K,} defining these spaces in a recurrent way via the kernels
of the corresponding homomorphisms.

This construction establishes hierarchy in the space of weakly G-invariant La-
grangians making links between the physical properties of Lagrangians and pure
mathematical objects: the condition that Lagrang:an belongs to some space V,.o
and does not belong to the space Vyy1.6 OF Vio41 in terms of this hierarchy is re-



formulated to the condition that the corresponding homomorphism does not vanish
on it. The problem of analyzing. the content of the spaces {V:.} and differences
between them is reduced to the problem of calculating the corresponding homomor-

phisms. For exarhple in the case, when the space Kj is trivial one has V,_, , = )

In particular, if ail the spaces K, are trivial then all weakly invariant Lagrangians -

are invariant (up to a total derivative).
The plan of the paper is as follows.

In 'Sectioh 2 we consider the complex of 'Légréngians and cla;rify its relations with.

correSporiding_ complex of differential forms. -

In Section 3 v.veyca.lcula.te cghomology of the differentiél'Q of the cvloublexcon‘lplex
of cochains on the Lie algebra G and taking values in the functions on M and in, .

Lagrangians’ of classical mechanics. Using the results of these «calculations, in the

Section 4, we establish hierarchy in the space of weakly invariant Lagrangians and

consider some general properties of this hierarchy. It is the main result of the paper.

In this Sectioﬁ'wévconsider'also f_rom our’poi_nt of view the hierarchy for Lagrangians

polynomial in velocities.

In Section 5, using this hierarchy, we calculate the content of the subspaces'V,, .-
in (1.14, 1.15) for some special cases of configuration spaces and symmetry algebras. R
In particular, we perform this analysis for 50(3), Poincaré and Galilean algebras. - .
In Section 6, we give some motivations for the technique we used in this paper.
In Appendixes we give a brief sketch on the notion of Lie algebra cohomology and .
calculation of double complexes cohomology via cbrresponding spectral sequences. ;-

2 The complexes of Laigrangiaris and Differentiai

" Forms

Let M be aﬁ'n—dimensional ma.ﬁifdld (conﬁg‘uré.tiodspace) and gv be a 'Lieiaklg.ébra S
acting on it. It means that a homomorphisrn ® from G in the Lie algebra of vector..

fields on M is defined:

G-z (fundamental vector field): [z,§] = [:;:_;_g}] S (2

We denote this bair by G, M. ’ :

Let (M) be the space of differential J-forms on M. The linear spaces (M),
for any given j can be considered as G-modules if we define the action of the algebra .-
on forms via Lie derivatives along corresponding fundamental vector fields: 4o w =
Liw. One can consider the G-differential corresponding to-this module structure .
and cohomology spaces H'(G, ¥ (M)), which are G-cohomologies with coefficients

in (M). ( See e.g.[16] or Appendix 1).

Consider the de Rham complex {7 (M ),d} and extend the exterior differe;l‘ti‘:;l _

d onto i-cochains C(G, M (M)) = C(G) ® V(M) by setting d(c ® w) = ¢ ® dw.

The differentials d and § commute with each other, d6 = §d, and one can consider . ..

the corresponding double complex {Cf(g, Q(M)),d,6}..
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To include Lagrangians in the game, we extend the complex {QJ (M),d} of dif-
ferential forms to the complex {A7(M),d, ,} of Lagrangians, following {17]. .

We define the space AJ(M) of j-Lagrangians (j 2 1) as the space of fu-nctl'ons
(Lagrangians) which depend on points ¢* ‘of the manifold M and on derivatives

g.gi, - —‘?k%?-,; of an arbitrary but finite order k of parameters (¢2,...,¢7) which
a a¢al . ot .

take values in the j-dimensional space R. In the case j = 0 we put A°(M) = QO(M)
to be the space of functions on M. We say-that Lagrangian has the rank &, if th?
highest degree of derivatives on which it depends is equal 1&0 k and we_denote.by Az
the corresponding subspace of A7. The Lagrangians of classical mechanics considered
in the following Sections belong to A]. o )

If L is a Lagrangian in A7(M) then to every map (_?-dlmen31on§.l Vpath)

gi(€',....8): R,"_'—>M"’ o (2.2)

cbrresponds the integral

o L0 8O N g
suten = [ £ (e, %58 e ) €48 0
This defines the natural :émbedding of the space V(M) of differential j-forms in
Aj(M): L

: B 1 o ' . Ggm gk
W= Wyy.;(g)dg" AL AdgY — Ly, = "!w[m...n,'](‘I)F ----- 96 (2.4)

The integral S.([g(¢)]) is equal to the integral of the diﬂ'erefltial form w over Fhe
surface defined by the map (2.2). It does not depend on the choice of parametrization
q(¢) of this surface. We say that Lagrangian L, corresponds to the differential form
w and later on:we often will not distinguish between w and L,,. .
Remark In general, for an arbitrary Lagrangian the.l.hfs. of (2.3) is not
correctly defined on images of maps (2.2). It can be con31der.ed as a functlonz?l
on embedded surfaces which does not depend on its parametrization in a case if
Lagrangian L is a density, i.e. under reparametrization q(¢) — ¢(£(£)), one has L —
L-det(9¢/8€) and L defines the volume form on surface g(£) (see for e)_(ample [18,19]).
The Lagrangians corresponding to differential forms are the special examples of

densities. : . . |
To define:the complex of Lagrangians which generalizes de. Rham complex we

consider, following [17], the differential d, ;, using Euler-Lagrange equations of mo-
tion for the functional (2.3):

. e, aq” . akql-‘ _ : aql-‘ . 5

dg,t A — AL dg, L (q, %E" ..,W = f,_,(L)———a€i+l , (2.5)

where &@ = (1,...,7,7 +1),a = (1,...,j) and F, (L) are _l.h.s. of Euler—'La;grar.lge
equations of the Lagrangian L, i.e. the variational derivatives of the correspondmg

. functional (23) Fu(L) = #::SL([‘I(Q])



- .For example, if L€ A{(M), L = L(q, 22%), then

P dt_:.LL (Qa%g';,%‘f%)‘.: ‘
DiBicoss (8~ sl - sratts) . 0
(g pciry ©
the édhofﬁblogy of . he.camplzeis ér exterior dlffefentllalvd, d'é : = O[l 7]’ and consider

AN (M), d, ) ,'A°(M)i‘ﬂsA1,(M)“L%A5(M)f'-ﬂ (2.7)

From the definition of d_ . and f i
. i i rom (2.4) it follows that Ly, = d_ . [,
{9 (M), d} of differential forms is subcomplex of the coniplex (E2L7)w the COT-n‘plerx

The spaces A/ i iven j i es Al (M)
paces A’(M) of Lagrangians for any given j (and their subspaces AL(M)

.f?r a.ng i§iven j and. k) a.'s‘ v;'/ell as (M) can be naturally considered as G-modules
If we define the action of Lie algebra elements o Lagrangians, as follows: if z € g
and £ = &g = X*(q)0/0q* (see (2.1)), then

oL oL <
(IOL)=£5L=X“—+ D.x# 9~ oL
o (DaX*) 9+ (DgD, X*) o, +... (2.8)
T R . '
where D, = Zs = Gt qgaq—ag + ... is the total derivative. If a Lagrangian

zo;res—pc?ds t¥ a dif.ferenPiall form, then (2.8) corresponds to usual Lie derivative:
w = Lgy. To the identity £,w =-dw]n +d(w]n) for Lie derivative on forms there

corresponds the identity £, L = 7"Fu(L) + D, N*, which leads to Noether currents

N in the case £,L = 0,
) ~Con51der1§1g g-(}ifferential 6 corresponding to this module structure we come to
the spaces H*(G, Aj(M)) of G-cohomologies with' coefficients in Ai(M) ) :
In thf:' same way as for differential forms one can extend the action of d, . on the
?;g?e:gs f: )(9:1’ A) c}>f i-cochains with values in A7 and consider the doubleE.éompléx“:
"G,M),d,,;6) because d. . and § angi mplex .
.' )rdpy; 8 L commute also for Lagran . T
{C (i, ¥),d, 6} is embedded in this complex. sranpise. T cf’mPIGX:
The cohomology of the complex (2 7) evidently di ho-
: . y differs f; th I -
mology, but 6n the other hand one has 7 from the de Rhein cohe
Proposition 12 7

l.. If Lagrangia.n Lisexact,L =d e L' and it is a density (see the rémark abO\;éj |
then it corresponds to an exact differential form. k ' L

( ) ‘ ‘ M

The complex 2.7 dlﬂels flOm the standald variational complex see for (-] ample 20 26]
( X >

It was lllthduced n Ili] by Ih. VOIOHOV for the Lagla.ngla.ns On superspace. Thls cOHlp]e)X‘

and Proposition are useful in supermathematics where the concept of usual differential form is... .

ill-defined [18,19,21].

2. If Lagrangian L is closed and it depends only on first derivatives, d,, L =
0,L € Aj, then it corresponds to a closed differential form-up to a constant

L=Ly+c,dwo=0. (2.9)

In the case when L in (2.9) is a density then one has ¢ = 0.
The 2-nd statement immediately follows from (2.6) and from the definition of

the density. We do not need the first one here and we omit its proof.
We use this proposition to consider the following subcomplex (C*,d,,) of the

complex (2.7), which will be of use in this paper:
(Cdp): AM)ESALM)ESG, AJ(M) —0,  (210)

where, like in (2.7), C°® = A°(M) is the space of functions on M, C! = A}(M) is the
space of Lagrangians L(q*,¢*) of classical mechanics defined on the configuration
space M, C? is the subspace of coboundaries in AZ. It contains elements correspond-
ing to equations of motion of some Lagrangian from Al: a € C? = d,,A}(M) iff
there exists a Lagrangian L such that a = d L. : ‘

From the 2-nd statement of Proposition 1 it follows that the cohomology of this
truncated complex is strictly related to the de' Rham cohomology:

Ho(C*,d,,,) = H (M), H\(C",d,,) = H"(M) + R, H*(C",d_,) =0. (2.11)

. For our purposes, it is:also useful to consider the following modification of the
"complex (2.7). We consider the spaces {A7}, where A7 = A7/R, if j > 1 and
A0 = A° = Q°(M). Elements of A7 (j. > 1) are j-Lagrangians defined up to
constants. We denote by I the equivalence class of Lagrangian L in A. Instead
the complex: (2.7), one can consider the complex : 1

(TM),4,, ) A°0nEsTI(M) 28R (m)es 2.12)

and respectively the double complex {C¥(G,A%),d, 6} of i-cochains on G with
values in AJ. The differentials d, , and & are well defined in a natural way: d A=
d, ) and 6) = GX where X is the equivalence class of the cochain A in C*(G,A*).
The differential d,, does not differ essentially from d,,: If A is a cochain with

values in Lagrangians, then it is easy to see that
4, X=0, < d, ) =0. (213)
 To (2.10) there corresponds the subcomplex
_ i —  d
(@ds,):  AAM)ESRIM)ES(d, RJ(ID)) — 0 (214)

of the complex (2.12). From (2.13) it follows that for the truncated complex C* one
has
HOC,d,,) = B (M), B'(C,d,,) = B (M), H*(C%,d,,) = 0. (215)
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Non-pleasant _cqnsfcdntg; do not arise here like in (2.'11). The difference between
the complexes {C*(G,AJ),d;,,8} and {C¥(G,A),d, ,,6} becomes non-trivial on
the level of 1-cochains at least.” It corresponds to the difference between time-
;n)dependent and time-dependent Noether charges. (See, e.g., Example 1 in Section
Finally, we want to note that to every Lagrangian'L on'M there cOrrespohHs a
de'nsityb AL on the space M = M x {space of parameters}. To the functional (2.3)

- there ‘corresponds the integral of the density over the graph-of the map (2.2)'. ‘For
example to Lagrangian L(g¥, ég; of classical mechanics one can' put into correspon-
dence the density

A (%, #) = 1 (qu,?_{_) g
T 75 7(7), then Ay — AL

To a path‘q‘“('t) ’theijé 'qol;,rgs'pon,ds the curVg_ (QF(T),,t(T)) and Qﬁe has SL([q(t)]) = _

(2.16)

54, ([a(7),(7)]) for any parametrization ¢(r). (This transformation is useful in the
formalism where fields and space variables are on an Ve‘qua.lvfootir'l‘g [22].). S

It is easy to see that for densities Ay, the difference Betwéeﬂ complexés’l(Q.’lO)_a.na
(2.14) is removed. To redéﬁnitioxj of Lagrangian L by a constant ¢ there corresponds
redefinition of Ay by the form cdf. B I

_and its Spectral Sequences. -

3 Cohomology of Lagrangians Double Complex

atically the problem which we considered in the Introduction.”

We study simultaneously two double complexes, the double complex(E**,d, ,,6)
of cochains on G with' values in the spaces of the complex C* defined by (2..10),
{E*,d,,,6} = {C¥(G,C7),6,d,,)}, and the double complex (E**,d,.,,0) of co-
chains on G with values in the spaces of the complex C defined by (2.14'1) ’

Using now the complexes constructed in the previous section we investigate system-

2

{E5,d,,,8} = {Ci(6,0)),d,,,6)}.

- The complex (E**,d, ,,6) is as follows

d

2N

d

- A%(M) EL A}(M)'t’ 2y g ANM) ey
‘ 6 51 : 51
CUGAYM)) Bh UG ANM)) B CNG,d, ANM)) ‘25 o
61 61 : 61 ©(3.1)
C¥G,A%M)) B4 Cxg,AY(M)) 3 02(G,d,,ANM)) ‘25 o
51 4l 51

and the complex (E**,d ,,§) is represented in a similar way (by putting the “bar”s
in_corresponding places). '
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The differential of the complex £** is equal to
Q=(-1yY6+d,,, (3.2)

and Q = (=1)76 + d, , for the complex E**.

The problem of weakly invariant Lagrangians classification can be now reformu-
lated in terms of these double complexes.

To do this we consider their spectral sequences { E;*}, {E**} and the transposed
spectral sequences { *E;*}, {TEx*}. The relations between {*E**} and {E**} lead
to the hierarchy in the space of weakly G-invariant Lagrangians with time-indepen-
dent Noether charges, the relations between {1E**} and {E?*} lead to the hierar-
chy in the space of weakly G-invariant Lagrangians with time-dependent Noether

“charges, and the relations between {E>*} and {E?*} lead to the relations between

these two hierarchies.

We denote by Voo (see Introduction) the subspace of weakly G-invariant La-
grangians in the space E®!, i.e., Lagrangians of classical mechanics on M, whose
motions equations l.h.s. ‘are G-invariant: ’

Voo={L: L€ Al and édy, L=0}. = (3.3)

One can see that the cochain f = (d, ;L,0,0) is a cocycle of the differential @ iff
L € Vo0. The cohomology class [(d, , L,0,0)] of this cocycle belongs to H2(Q). If we
express the cohomology of differential @ via the stable terms of transposed spectral
sequence {*E>*}, l.e. calculating H*(Q) in perturbation theory, considering in (3.1)
the differential 6 as zeroth order approximation for the differential @}, we see that
[d; . Voolo = TE22 is the subspace of H?(Q). On the other hand if we express the
cohomology of differential @ via the stable terms of spectral sequence {E>*}, i.e.
calculating H*(Q) in perturbation theory, considering in (3.1) the differential d,
as zeroth order approximation, we express H(Q) in terms of { E:2~*}. The relations
between the space 'E%? and the spaces { E:?~*} lead to the relations between the
space of weakly G-invariant Lagrangians and cohomologies groups of G and M.
The technique of spectral sequences calculations see for example in [16] or in
Appendix 2. .

The spaces { E#7} and {E+’}

We pay more attention to the calculations of the spaces { E;*}. The calculations
of the spaces {E7*} can be performed in a similar way. The spaces { E{”} are equal
to the cohomologies of operator d,,: E;’ = H(d,,,E*). From (2.11) and (2.15)
it immediately follows.that .

R H'(M)®R 0 R HY(M) 0 (3.4)
CYg) CYG,H'(M)®R) 0 cY(g) CYG,H'Y(M)) O )
Cz(g) e 0 : Cz(g) N 0
0 R |
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Hereafter we identify the differential forms with Lagrangians corresponding to them
by (2.4) and the differential d, , on these Lagrangians with the differential d on
forms.

The operator d; acts in the columns of E‘ * and is generated by §. By definition
Ei = H(EM dy). 1t is easy to see that E30 H'(g) is i-th cohomology group of
the Lie algebra § with coefﬁcxents in R. ~ o

Now we prove that E?! = E?!. Indeed if c € E is a constant (c € R), then

dycis evidently equal to zero. To prove that dyH 1(M ) = 0 we consider the following
homomorphism 7 from the space of differential 1-forms into the space of 1- cochains
on G with values in functlons on M (in the space AO(M))

rwh) =wlh, (3.5)

where  is the fundamental vector field ®k corresponding by (2.1) to the element &
of the Lie algebra G. From the standard formulae of differential geometry it follows
that . ,
if dw=0 then §w=drw and Srw=0. (36)
Hence for the cohomology class [w] in H!(M) one has dy[w] = [6w] = [drw] = 0 in
El''! Consequently E)! = EJ1. o
. Now we calculate E}. If [c]; € E}! then

c=YWeuNtrtd, (37
10 | |

where ¢,t' belong to C'(G) (are consf.ants), the set ‘-{w(")} of closed differential 1--

forms constitutes a basis in the space H'(M) of 1-cohomology and « is an element
of E'®. Straightforward calculations using (3.5, 3.6) give

dildi = tP @uw® + 6 +d(..)] =0= M =0and &' =0.  (3.8)
A

On the other hand, coboundaries in E}!-are equal to zero because E{' = E3.
Hence from eq.(3.7) it follows that E}! = H'(M)® H'(G) ® H'(G). (In the case of
complex EM, ¢/ in (3.7) is equal to zero and from (2 13) it follows that (3.8) holds
also.) ,

We arrive at the following tables

R H (M)OR 0 R HY(M) 0 (3.9)‘
H'(G) H' (G)@H\(M)® H'(G) 0 HY(G) HY(G)®H'(M) 0
H(G) 0 H*(G) 0
H3(g) 0 H3(G) 0
One can show that the spaces {E2J }in (3 9) as well as {E;J }, which are  of 1_rlt':_c;rest
for us (Z + 7 £ 2) are stable: E E ...=E%, E . It
12

is evident without any calculations for the spaces E9°, E}, because differentials d;
on these spaces go out of the table and the boundaries are zero by thé same reasoris.
The spaces ES! and E2° are stable, because the differential dys E9! — E29 is trivial.
It follows from eq.(3.5): dz[w] = [@Q(w, 7w)] = [§7w] = 0. The same arguments lead
to the stability of the space E1 ‘1. One can perform 51milafr consider'atidné“fopthe
spaces {E3’}. - ' .

Hence, the tables (3. 9) establlsh the relations between the spaces H "‘( ), H™ (Q)
(m =0,1,2) and the spa.ces Eim=i, 'Eim=i respectively (see Appendix 2). -

Evidently H°(Q) = H°(Q) = R Con51der1ng the térms {E%!, EL0} in (3.9), we
see that

H'(G)C HY(Q) and H(M)@R = H'(Q)/H'(). (3.10)

according to eq. (A2.11). These relations define a canonical projection p; of H 1(Q)
on H'(M) @ R and an isomorphism ¢, of kerp; on H'(G): If L = (L, ) is a cocycle
of @, then L = w+c, where w is a closed form, c is a constant, and p; ([L]) = [w] +c.

Ifc=0and w = df, then a—§f is a I-cocycle in constants whxch is equal to ¢ ([L]).

Usmg the homomorphlsm (3. 5) one can establlsh a.lso the 1somorphlsrn
HY(M) © H'(G) ® R~ H‘(Q) W +t+emwtcttrw] =~ (311

which corresponds to (3.10) and sphts H 1 (Q) on components.
Similar considerations for the table E3* lead to ana.logous conclus1ons H (6) <
HY(Q) and H'(M) = Hl(_)/Hl(g HI(M) GHY(G)=H'@Q).
Con51der1ng in the samé ‘way the terms {E22, ELY, E%0} in (3. 9) we see tha,t

H(G)CHYQ) aad H'(M)®H'(G) H'(O) = HQ/H'G).  (312)
These relations define the canonical projection B \
p: H(Q) — H‘(M) ® H‘(g) ® H'(G), (3.13)
while on the kernel of p, we have the isomorphism _
t2: kerpy '—_»;1{24(9)’. Coe (3.14)

We consider now (3.13) and (3.14) component-wise.

Let f = [F,), f] € H*Q) be a cohomology class of the cocycle (F,A,f): .
Q(F,\f) =0. dy, A = —6F,6) = df,6f = 0, F € E®* X\ € E', f € E°*:
The space E%2 contains coboundaries only, so cocycle (F, A, f) is cohomological to-
(0, X, f) where M =X + 6L and L: F = d, L. Since d,,, ' = 0, from Proposition -
1 it follows that 1-cochain A ‘takes values in closed dlfferentlal 1-forms + constants:

Vheg N(h) = wh) +ih). (3.15)

Usmg (3 7,3. 8) we see that to N there corresponds’an element of HI(M) ®H1(g) )
H'(G) which is nothing but pa(f).
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In the case p;(f) = 0 it means that M = do, where & € E'? and the cocycle
(0 X, f) is cohomological to (0,0, f — éa). Since d(f — bar) = 0 so f — éa, is cocycle
in Z’(g) The cohomology class of f — 6e in H?(G) is l,g(f)

Similar ‘considerations for the second “antidiagonal” in the table B3 lead to
the analogous conclusions for H%(Q): H%(G) € H*(Q) and H'(M) ® H'(G) =
HY(Q)/H?*(G); pz: H*(Q) — H'(M) ® H'(G). An isomorphism %3: kerp; ~—
H?*(G) is defined on the kernel of 7;.

. From the considerations above we see that natural relations between complexes
(B**,d,,,8),(E**,d;,8) lead to the isomorphisms

H(Q)=H'@Q)®R, H'Q)= H2(Q)€BH‘(G) (3.16)

The decompos1t10n of H*(Q) defines the projection “ _
o: HY(Q) - H'(G). i - (317)

Here o(f) is equal to the element of H'(G) in the r.h.s. of eq. (3.15). This pro-
jection will be useful for extracting Lagrangians whose Noether charges are time-
independent in the space V, 4 of weakly invariant Lagrangians.

The spaces {*E"} and {{EF} .

Now we return again to-the complex (3.1) and express the cohomologies H(Q)
and H(Q) in terms of the transposed spectral sequences {*Er*} and {¥E*~}.

For constructing *E}* and *E;* we have to consider the cohomology of verti-
cal differential § as zeroth order approximation: ‘Ejf* = H(E**,8) and 'E}* =
H (E*=,6). We arrive at the tables '

A?ﬂu ‘ A{inu ‘ dE‘LVO‘O
‘Byt = HNG,AYM)) HY(G,A})
HY(G,A°(M)) :

and : - - =
A?ﬂg Al in; dE_,_ v0.0
T HY(G,A(M)) H? g A‘
B = i oot 5D (318)
Here A9, = C%G,A%(M)) is the space of the functions on M invariant under the

action of the Lie algebra G and A}, is the space of G-invariant Lagrangians from

Al. The space Al,,, contains the classes (Lagrangians quotiened by constants) .
whose variation under symmetry transformations lying in G produces G-cochains.

with values in constants: A € Al;,, ¢ 8A = 0 & §A = ¢t;. These La.gra.ngla.ns have
linear time dependent Noether charges (see (1.13)). The space d,, Vo is the image

of the subspace Voo of weakly G-invariant Lagrangians under the differential d L

(see (3. 3)) From (2.13) it also follows that TE0Z = d,:,_voo
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‘The differential *d, generated by d., acts in rows of the table ‘E}* (compare

with the table (3 4)). For * = H(‘E‘ *,"d;) we obtain _
R annu(M) ® R dE.Lv(lo/(dE.LA}i;W)
‘Eyt =tE}° (3.19)
Here H} (M) is the space of closed G-invariant differential 1-forms quotiened by

the differentials of G-invariant functions.

One can consider a similar table for TE;*.

The space *E}? in (3.19) is the subspace of H'(G,A%(M)). It consists of the
classes [a] € H l(g A%(M)) such that the equation da = 6L is solvable.” (Compare
with_(1.2)). -We see that the table (3.19) is not stable in the terms which we are
interested in, because the differential ‘d; acting from ‘E}? in *E3? is not trivial:
‘da[a] = ‘[dg, L]2. The next table ‘E;' = H('E“’ 'dg) is stable in the terms we
are interested in: ‘

4. Vo (d,, ; A}, )W
R H,W(M)GBR_ ;(gdi.El;).

‘B3 =g L L . (320)

From the general propertles of spectral sequences it follows that in (3.20) *E9? =
tE%2 is the subspace in Hz(Q) and the space 'E}0 = *EL (which is a subspa.ce of :
‘El %) is the quotient space of H'(Q) by the space ‘E‘” Hino(M) ® R (compare

‘ w1th (3.10)). Hence from the decomposition (3.11) of H‘(Q) 1t follows that

{EE0 = (H'(M) © H'(@))/ Hb(M). @2

H} (M) isembedded in H(M)®H\(G) via a monomorphism: [w].,.., ([w], —7w),
where 7 is defined by (3.5). If [w]iny # 0 in H,‘,W(M) and [w] = 0 in H‘(M) then
Fw=26f#0in "HY(G), where w = df. B

On'the other hand the element [a] in-H'(G, A%(M )) belongs to ‘the subspa.ce :
¢EM if da = L such that dL = 0. Hence from Proposition 1 and (3.6) it follows
that for this element there exist’ such [w] € HI(M) and ¢ € H‘(g) tha.t

. [a] [7rw+t] SRR : (322) ‘

The homomorphism ([w], t) — [7w + t] € H'(G,A°(M)) relates (3.21) with (3.22).
One can see also that in the case t= 0 this ‘map induces an isomorphism

H‘(M)/H,M(M) ="'E} °/H‘(Q) : N (3 23)‘;‘; .

Here H},,(M).,and H 1((_}) are the images of natural homomorphlsms H,,w(M ) i
H'(M) and H‘(g) 0 respectively.

For the table ‘E , one has *ES! = HI(M),,,,,, the spa.ces ‘E‘o a.nd ‘E]‘O as
well as the spaces ‘El 0 and*EI9 coincide, but on'the other hand ‘El 0 C tE1O
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In the tables (3.18)~(3.20), every space *E!- is a subspace of the previous one and
respectively every space *EJZ is the quotient: space of previous one. We denote by
I, the homomorphism which puts into correspondence to every weakly G-invariant
Lagrangian its equivalence class.in the space, ‘E%%:

I: Voo— ‘E®?, IL(L)=‘[d,,Ll,, SI.CHYQ).  (3.24)

Similarly IT,: Voo — *EO2. .

- Comparing the content of the spaces {*E}°} and {*E®?} in the transposed
spectral sequences (3.18)-(3.20) with the above results for the spectral sequence

{Ez*}, we come to
Proposition 2 . ‘ o
" a) To weakly G-invariant Lagrangians there correspond . elements of the space
tE32, i.e., of HYQ). Thus to these Lagrangians there correspond elements in-E}*
or in EZ° via homomorphisms p; and ¢; defined by (3.13), (3.14).

b) To weakly G-invariant Lagrangians whose images in the space tE92 vanish,
M3(L) = 0, there correspond elements of ! EZ-? which belong to the image of the dif-
ferential *d;. Thus to these Lagrangians there correspond elements in *E}? defined
up to the space *E}° (see 3.21), which is the kernel of this differential.

c) The space 'E}? is related to weakly G-invariant Lagrangians whose image in
the space ‘EQ? is equal zero: IT3(L) = 0. '

A similar statement is valid for the spaces {7E:~}. In the next section, using this
Proposition, we establish a hierarchy in the space of weakly G-invariant Lagk'ra'n‘gians‘.ﬁ

4 The calculation of the hiefarchyl

Now using the calculations of the previous Section for a given pair [G, M], we estab-

lish a hierarchy in the space of weakly G-invariant Lagrangians of classical mechanics. -
Let U/ be an arbitrary subspace in the space A}(M) of the classical mechanics -

Lagrangians on M. Let Uo be the subspace of weakly G-invariant Lagrangians in Y:
Uoo = Vo;oﬂu , where Vg g'is the subspacel(3.3) of all weakly G-invariant Lagrangians-
in A}(M). From Proposition 1 and (3.3) it follows that for an arbitrary L in U the

condition L € Upp is equivalent to the condition that the cochain 8L takes values in

closed differential forms + constants: 7
§dg, L =04 &L =w,¢" +t; and dw; = di; =0. e (4

(Compare with (1.11)). Here 6L is the value of the cochain 6L on a basis vector
e; of the Lie algebra-G. (As always, we identify differential forms with Lagrangians
corresponding to them by (2.4).) ’

Using the homomorphism I3 defined by (3.24) -and the projection homomor-
phism (3.17) o2 of H%(Q) on H'(G), we consider the homomorphism -+ - - *~ =

U =00l Upo — HY(Q) — H'(G)
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and we denote Ko = HY(G). “2)
Component-wise according to (3.15), Wi(L) = t;, where t; is deﬁnedl by (41) .We
denote by Uy, the kernel of this homomorphism. In the case U = A} (M) it is just
the space Vo1 in (1.14) defined by the condition (1.12). . _

Now using Proposition 2 we define recurrently the homomorphisms {¢s} and .
respectively {¢,} on the subspaces of Up.1. and on the sub§paces of Upo, such that
every homomorphism is defined on the kernel of the previous one. Moreover, the
domains for these homomorphisms will be related via the homomorp.h.lsm v,

Using the statement a) of Proposition 2, we consider the compositions

¢1 = p2 ol Upo — B3 C HYQ) — E3' = H'(M)@ H'(G) ® HY(G),
%, =P, 0 Tl Uno — "ES* € H(@Q) — B} = H'(M) ® H'(9)

ote :
and we den K = H'(G) & H(M): @)
From (3.15), (3.16) it follows that the restriction of ¢, on the su.bspase Uoa
coincides with-¢;. We denote by Uio the kernel of the hon.lomorphlsm $, and
by Uy the kernel of the homomorphism ¢1. The space Uy is also the kefn.el of
homomorphism ¥ restricted on Uy . Using again the statement a) of Proposition 2
(see also (3.14)) we consider the compositions

$2=120 g Upa — ‘Eg" c HZ(Q) . ES" = Hz(g),
@, =1z 0 1t Uyo — tE9TC HY Q) — E3’ = H*(G)

and we denote K = H(G). ()
The homomorphism ¢, evidently coincides with ¢2 on Uy. . . .
For example, if the condition (4.1) is sat.isﬁed, for a Lagra.nglaxi LinlU ] ie.,
L € Up.o, then ¢,(L) is equal to the cohomology class of w;”flq“ in H (g).® H (M)
defined by (3.7); L € Uy o iff {w;,dg"} are exact fo.rms. In this case ¢,(L) is equail to
the cohomology class of the cocycle fij = (6a);; in H(G), where da; = wi. If also

t; =0, then L € Uy ;. o
We denote by Uzo the kernel of the homomorphism ¢, and by Uz the kernel of

i i = ker¥lu, - ‘
the homomorphism ¢,. It is easy to see that Usa 20 |
For every Lagrangian L € Uzy one has MM3(L) = 0. Fr.om statement b) of
Proposition 2 it follows that one can consider the homomorphism

¢3 - (tdg)—l o sz u2.1 —_ tE(2]2 —_ tE%.O/ tE:}.O g tE}.O/t ;.0.
Using (3.18) and (3.21) we denote

HGNM) (4.5)
(H(M) & H'(9))/ Hin (M)

Ka = tE%o/ tE;.O —
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By similar considerations for the space Us g, we can define the homomorphism
&3 = (*d;)~! o II, of the space Uy into the same space K.

One can see that in this case, as in the previous ones, ¢3|u,, = ¢3 and Us; =
kerW|y, ,, where by Us.1, Us o we denote the kernels of #3 and ¢, respectively.

For example, in the case when L in (4.1) belongs to U, 1, one can choose ¢; such
that da; = wi,dg” and (8a);; = 0, because ¢2(L) = 0. The equivalence class of o
in K3 is ¢3(L).

"~ In the case when L € Us;, one has II5(L) = 0. It means that the value of
the homomorphism II; (see (3.24)) at this Lagrangian is equal to the value of this
homomorphism at some G-invariant Lagrangian: II;(L) = d_, L = d_ Li,. From
Proposition 1 it follows that L = L;,, + w, where the closed differential 1-form w
is defined uniquely up to a closed G-invariant form and an exact form. This defines
the homomorphism k

- ¢4(L) ual - HI(M)/(Hmu(M))*)
which can be considered as taking values in the space *E}°/H'(G)., according to

eq.(3.23). We denote
I Hl (M)/(Hmu(M))" _— tEl‘O/Hl(g) : (46)

.One can define the homomorphlsm @4(L): Uso — K, in a similar way.

' Similarly t6-the previous cases ¢4 lt, = ¢4 and Uyy = ker¥ |u4 os Where by Uy,
Uso'we denote the kernels of @3 and ¢3 respectively.

From the definitions of ¢, and @, it is evident that Lagrangians belonging to ¢,
can be reduced to G-invariant by the redefinition on exact form (total derivative).

The spaces U,, constructed here (s = 0,1,2,3,4,0 = 0,1) coincide with the
spaces V,, considered in the Introduction (see (1.14), (1.15)) in the case U = A}(M).

These considerations can be summarized in

. THEOREM :

Let U be an arbitrary subspace in the space of classical mechanics Lagrangians
for a given pair [G, M]. Let Upo be the subspace of U defined by (4.1) which contains
weakly G-invariant Lagrangians in U. Then the following relations establishing the
_classification (hierarchy) in the space Upo are satisfied

u‘i‘l,’g u4.0
. B N _
Ki &% Uy C Uy 2 K,
N ni. _
Ky & Uy C U 2 K
gl N _ (4.7
Ky & U, C the > K
N no_
K Q5 Uy C Uy B K
V2
Ko

M

The spaces Us, are intersections of U with the spaces V. deﬁned in Introduction
(see (1.6)-(1.15)); the spaces K, and homomorphisms W,d,,¢, (s = 0,1,2,3,4,)
are defined by the egs. (4.2)— (4 6), the double filtration {Us.,} is subordinated to

these;homomorphzsms

Uso = ker(q&,: Us—1.0 — Ks), Uy = ker(¢a a—l 1— K,),

Usy = ker(¥: Uso — Ko), Byl = 65

We denote the diagram (4.7) by D([G, M],U) and call it the hierarchy diagram
for the subspace U/. In the case when & = Al(M) is the space of all Lagrangians of
classical mechanics on M, we denote the diagram D([G, M],U) shortly by D([G, M]).

The diagram D(|G, M],U) measures the differences in the spaces {U,..} for an
arbitrary subspace .

We say that a weakly G-invariant Lagrangian L € U is on the floor s if L € U,
and L ¢ Uyy10. All Lagrangians from U, o are on the fourth floor.

We say that a weakly G-invariant Lagrangian L is on the floor sy if this La-
grangian is on the floor s and it belongs to U, ;. All other Lagrangians from the
floor s are on the floor s_. : .

All Lagrangians which are on the “plused” floors have time-independent Noether
charges, except Lagrangians on the zeroth floor.

The Lagrangians which are on the floor s have non-trivial images in the space
K,,1 in (4.7). A Lagrangian on the floor s_ have also non-trivial image in Ko under
the homomorphism ¥.

The hierarchy diagram will be called trivial, if all the spaces K, vanish.

Returning to the table (1.6) in the Introduction, we can conclude that a La-
grangian which possesses the property-s in (1.6) and which does not possesses the
property s + 1 in (1.6) has non-trivial image in the space K,41.

An evident but important corollary of the hierarchy diagram is that a floor is
empty, if the corresponding space K, is trivial. For example, in the case when the
first de Rham cohomology of the configuration space is trivial then Ky = K4 = 0,
and the zeroth and the third floors are empty. In the case when the algebra G is
semisimple, only the floors 24, 3,,44 can be nonempty, because in this case H'(G) =
H?*(G) = 0 and hence Ko 2 'Ky = K; = 0.

In general, the inverse, statement is not valid. From the fact that the space
K, is not trivial does not follow that the floor s — 1 is not empty, because the
homomorphlsms in (4.7) are not surjective in general. For example, homomorphism
3 is not surjective in general because the map *d; which induces this homomorphism

- is defined on the subspace *ES! of the space H'(G, A°(M)).

We say that the diagram ’D([g M],U) is full on the floor s, (s < 4) if ¢s41 is an
epimorphism onto the space K,, we say that this diagram is full on the floor s_, if
the restriction of ¥ on X, ¢ is an epimorphism. In the case if the diagram is full on
the floors sy and s.. we say that it is full on the floor s.

_ For a given pait [G, M], two subspaces & and U’ in the space A}(M) of classical
mechanics Lagrangians on M will be called equivalent with respect to the hierarchy,
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if the images of all the homomorphisms ¢,, ,, ¥|y, , for the diagram D([G, M],U’)
coincide with the images of the corresponding homomorphisms for the diagram
D([G, M],U). 1t is evident that in this case for arbitrary L € I there exists L' € U’
such that L' — L belongs to the space Uy, i.e.,

L' = L + Ly, + total derivative. (4.8)

This construction can be used for defining in the space U a grading corresponding
to the filtration (4.7) (see the examples in the next section).

Now we use it for simplifying the diagram (4.7) for physically important subspace -

Uret of Lagrangians which are polynomial in velocities. Let U/ = Q!(M) be the
subspace of formal Lagrangians in #{7°! corresponding to differential forms by (2.4),
and U* = A°(M) be the subspace of formal Lagrangians in U which are functions
on M.

One can see that the space ¢?° is equivalent to the space U7 @ U* with respect
to the hierarchy. '

To prove it, we note that every L in U can be represented as

=Y La(g,¢

n>0 . n22

where Ly (g, §) is the polynomial on ¢ of order n. Using the fact that the Lie deériva-

tive does not change the order of a polynomial: (6L). = 6(L,) one can see from
(4.9) and the deﬁmt]ons of the hornomorph1srns U, ds, &, that ¥( L‘) \IJ (¢), ¢s(L) =
(L) = ¢,( ¢*). This proves the equivalence. i of

The hornomorphlsm ¥ in thlS case takes values in the subspace of H'(G) iso-

morphic to the cohomologies of H}, 4y ! wh1ch are {rivial in H'(M): If 6p € H' ©),

thendgoe (M), if w € H}

-anv

(M) and w = dyp, then ép € H'(G).

Iﬂll

,From these facts it follows that for the diagram D([G, M], Ur*'y the followmg,

add1t10nal relations are satisfied: ‘ .
W=t oB, U =t,oA. " (4.10)

Here the quotient space B is equal to U35 /U3, where U35 is the space of functions

in A°(M) whose G-syminetry variation is constant and U35 = A?, (M) is the space

of G-invariant functions. Respectively A, = L(,f | are the correspondmg subspaces of-

the spacé (M) of differential 1-forms.

Weakly G- mvarlant Lagrangians which belong to the space Y differ from the
Lagrangians in U} (g -invariant Lagrang1ans up to a total derivative) by the inter-
action with “electromagnetic” field whose field strength is G-invariant. -In particular
a Lagrangian on the floot s_ differs from a Lagrangian on the floor 5 by the inter-

action with “electrical field-1-form E, =0p/0q". The value of this 1-form on every’

symmetry vector field is constant: E u(q)ei (q) = 1, where {e!(q)} are fundamental
vector fields corresponding to the basis {e.} in the Lie algebra G via the map (2.1).
The time dependence of the corresponding Noether charge is proportional to ¢;.
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=3 Lnlg,d) + 4 W()d* +ela), (4.9),

In general, for an arbitrary Lagrangian in V, these properties are not satisfied
(see, e.g., Example 1 in Section 5).

The second physically important example is the subspace %" of Lagrangians
on M which are densities (see the Remark in Section 2).

It is easy to see that U, ; = U, in this case, i.e., all the floors s_ are empty,
because the homomorphism W is trivial. It follows from the definition of the homo-
morphism ¥ and the considerations in the end of Section 2.

We do not consider here systematically general methods to handle with calcu-
lations of the spaces K, and corresponding homomorphisms for an arbitrary pair
[G, M], but we note only some points which can be useful for analyzing the con-
tent of the space K3 in the hierarchy diagram and the groups H(G, A°(M)) which
generate these spaces.

First we note that the basic exarnple of [G, M] pair is provided by the following
construction. Let M C N be a subspace of the space N and the action of a Lie
group G be defined on N. The action of G on N determines a pair [G, N] as well
as a pair [G, M], where G = G(G) is the Lie algebra of the group G. This pair in
general cannot be generated by a group action on M.

We say that a pair [G, M] is transitive, if fundamental vector fields span the
tangent bundle TM: Vg € M S9| = T,M (P defines the action of G on ‘M by
(2:1)). For example this is the case, 1f a L1e algebra action on M i is genera.ted by a
transitive action of Lie group.

For a given [G, M], we can consider the stab111ty subalgebra Gst(q) for every point
q € M: Gu(q) = {G 3 z: ¥(z)|, = 0}. In the case the pair [G, M] is generated by
the action of a group G, gsg(q) is 1sornorph1c to the Lie algebra of stability subgroup
for any point do- ‘

“Let [G,M] be a transitive pair (the constructions below can be generahzed on
non-transitive case also).

If a is a cocycle representing a cohomology class in H'(G,A°(M)), then at an
arbitrary point go it vanishes on the vectors in the commutant [G.:(go), Gst(g0)]- If
this cocycle is generated by a 1-form w via the homomorphism 7, defined by (3.5)
(e = mw), then it vanishes at an arbitrary. point go on all the vectors in G:(qo)-
Moreover, 7w is a coboundary 1ff w is a coboundary. Thus for any point ¢ € M one
can consider the homornorphlsms

H‘(M) H‘(g A"(M))ﬂ'Hl(gs:(q)), ' o (@l

which obey to the following conditions:- [7r] is the monornorph1sm and peo[r] =0.
If for every g, po([a]) = 0 then [@] = n[w]. For example H'(M) = H'(G,A°(M)) if
H'(G,:(q)) = 0. In-the case when the pair [G, M]is generated by a transitive action
of a Lie group G (on N. 2 M), then the image of the-monomorphism [r] coincides
with the kernel of p, for an arbitrary point ¢, because the homomorphisms pg, for
different points ¢, are related.by the adjoint action of the group transformation:

¥(¢,90), Y€ € Gat(g0) a(q, Afigﬁ) = a(qo,ﬁ) ifg=goqo. (4.12)
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Hence in this case K3 can be embedded into the quotient space of H'(G.(g)) for
any gq:

K3 C Hl(gst(q))/qulyl(g). . (4.13)
It gives an upper estimate for the dimension of the space K.

The formula (4.13) follows from the definition (4.5) of K3, the explicit realization
(3.22) of elements of *E}° and the properties of the homomorphism p, mentioned
above. ’

One can say more in the case when the pair [G, M] is generated by the transitive
action of the compact connected Lie group on the same space M. In this case, taking
the average of the group action on a cocycle one comes to the monomorphism of
HY(G,A%(M)) into HY(G):

HY(G,A%(M)) 3 [a] = [@tdua € H'(G), (4.14)

1
Vol(G)
where dyc is invariant measure on G. : _

For example, if the pair [G, M] is transitive and is generated by the action of
semisimple compact connected Lie group on the space M, then all K, vanish and
the hierarchy diagram is trivial. Indeed Ko = Ky = Kz = 0 since for semisimple
algebra H'(G) = H*(G) = 0. From (4.14) and (4.11) it follows that H*(G, A°(M)) =
HY(M) = 0, because H'(G) = 0. Hence K3 = K, =0 too.

We wish to note that from (4.11) it follows that even if G is a semisimple algebra
in general H(G,A°(M)) is not trivial, inspite the first cohomology group with coef-
ficients in an arbitrary finite-dimensional module over semisimple algebra is trivial
(Whitehead lemma [16]). ‘ ;

The constructions above indicate that it is the interplaying of de Rham and
symmetry algebra cohomologies which leads to the nonemptness of the second floor
(K3 # 0) of the hierarchy diagram in the case of semisimple symmetry algebra. (See
Example 3.) '

5 Examples

In this section, using the hierarchy diagram (4.7) and considerations below, we con-
sider 'some examples of weakly G-invariant Lagrangians classification.
Ezample 1

This example is a model one. But here we describe in details how to use the
construction (4.8) for establishing the grading corresponding to the hierarchy fil-
tration (4.7). We consider the following pair [G,M]. Let G be the Lie algebra {3
with the generators e, ez,€3 such that [e1,e3] = es,[e2, €3] = [es,e1] = 0. Let a
configuration space M be the cylinder: M = R x S! with the coordinates (z,¢).
The homomorphism @ (see (2.1)) is defined by the relations '

é] . 0 . a :
de, =.é_l‘= 5-2-, Qez =€ = 25:;, Des = ez = '5‘; . (51)
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This defines the pair [¢3,S! x R]. For this pair we first calculate the hierarchy
diagram D([¢3,S! x R]). We consider as & the whole space A}(M). From (5.1) it
follows that every {3-invariant Lagrangian has the form F(z) where F is an arbitrary
function. ' '

Now we calculate the spaces {K,}. Ko = H'(G) = R? is generated by the
cochains €' and e? ({e'} are dual to {e;}: €i(e;) = 6!). Component-wisely the
elements of H'(G) are of the form ¢; = (a, b,0). The group H*(M) = R is generated
by the 1-form d. Hence, K1 = R? is generated by cochains (dy, 0,0) and (0, dy, 0).
Now K; = H*(G) = R? because any cochain f;; is a cocycle which is the coboundary
iff fa3 = fz1 = 0. It is easy to see that H} (M) = R is generated by the 1-form dz.
The stability subalgebra at every point (z,¢) is generated by the vector e; — zes,
hence from (4.11)-(4.13) and the result for H}(G) it follows that K3 = 0. Note
that the explicit calculations without using (4.11) give that H}(G,A%(M)) = R? is
generated by the cocycles a; = (0,az + b,a); d(0,az + b,a) = (0,adz,0) = §;adyp,
hence *E}° = tE}® = HY(G,A°(M)) and K3 = 0.

The space K4 = R is generated by the form d. We come to the following result

Ko=Ky =K,=R? K;=0, K,=R. (5.2)

‘We saw already that the second floor of D([¢3, S x R]) is empty.

Special analysis of the homomorphism ¢, leads to the fact that the 1-st floor is
empty too: the image of ¢, in K, is trivial because in this special case the subspaces
*EX? and EZ° of H*(Q) have zero intersection.

Now we show that the diagram D([¢5, S! x R]) is full on the all floors except of
the first one and study the contents of the spaces {V;.,Vso0}. S

For this purpose, we consider the following 5-dimensional subspace of the formal
Lagrangians, on S? x R:

o,
U={L L=ap+bep+cz+ds+ %"’-}, (5.3)

where (a,b,c,d, q) are constants.

We shall show that the diagram D([¢s, S? x R],U) is full on all the floors except
for the first one. From this fact and from the emptiness of first floor for the diagram
D([¢5, S x R)) it follows that the whole space V of classical mechanics Lagrangians
on M is equivalent to its subspace U with respect to the hierarchy (see (4.8)).

Straightforward calculations show that for arbitrary Lagrangian from U/ one has

6‘L=C§Z_L=bd(p+c, '
b2L=L,p L= adz+ bed: +d +qdp, 8L = Lo L = 0. (5-4)
Comparing (5,4) with (4.1), we see that U = Up.
. Let us calculate the homomorphisms ¥, ¢,, ¢, for the diagram D([¢s, S* x R}, U)
using (5.2)-(5.4). One has ¢; = ¢, = ¢3 = ¢, = 0. For any L € U we have ¥(L) =
(c,d,0) € Ko. If c=d =0, then L € Uy, and $1(L) = ¢,(L) = (bdp, gdp,0) € K.
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Ifb=¢qg=0,then L € Uypandif c =d =b=¢ =0, then L € U,._Hence,
Uso = Uzo = Uro and respectively Usy = Uz1 = Uro. One has ¢4(L) = %(L) =
adp € K,. If a = b= ¢ =0 then we come to Uso. If also ¢ = d = 0 then we come
to U4.1 =0. .

All these homomorphisms, except for ¢;, ¢,, are epimorphisms. Hence, the space
A}(M) is reduced to its subspace U with respect to the hierarchy. Moreover these ho-
momorphisms are isomorphisms on corresponding quotient spaces: SV = Uo.o/U1 .0,
S, = Us—l.l/Ua.l and ‘5$, = Us—l.O/Us.O if s ?': 2. .

From these considerations and from (4.8) it follows that for every weakly £3-
invariant Lagrangian there exists a unique Lagrangian in U such that their difference-
belongs to V4.1:

VYL € Voo 3(a,b,c,d,q): (5.5)
L = F() + total derivative + aip + bzgp + cz + d% + 1% '
Finally we come to the following grading in the space Voo of weakly £3-invariant
Lagrangians on S! x R:
Var=Var=Vu=V® K=V 0R,
Vo1 =V11® K1 =Via®R?, Voo =Vo1 @ Ko = V1 ®R?.

We also briefly consider the diagram D([€s, S* x R],U?*"), where U?°! is the subspace
of Lagrangians polynomial in velocities (see the end of Section 4). It is easy to see
that U?* is reduced to the three-dimensional space U?* which is a subspace of U
defined by the additional conditions d = ¢ = 0 in (5.3). The diagram D([¢s, S X
R],U!) is not full on all the floors s_ and on the floors 04 and 14. In this case
¥ = R # Ko, and §¢; = R # K;. The space UES is parametrized by the
three-dimensional space U, up to Uuret: Uret = UES JUEY similar to (5.5, 5.6) with
conditions d = ¢ = 0.

We note that in (5.5) the term d(5/Z) responsible for time-dependent Noether
charges cannot be considered as interaction with “electrical field” as in the case of
Lagrangians in ur, ]

We also want to note that all the considerations which lead to the formula (5.6)
(except for the property of homomorphism ;) based on general relations establislied

by the diagram (4.7).

(5.6)

. Ezample 2

Let M = R™ be the n-dimensional linear space which acts on itself by trans-
lations. It determines the pair [R®, R"] (we identify the affine space with the cor-
responding linear space and with abelian algebra of translations). It is easy to see
that Ko = R*, K; = R®* AR", K; = K3 = K4 = 0. The space of Lagrangians on
R" is equivalent to the space U = {L: L = w2(g,4) + wy(g)} with respect to the
hierarchy, where w,, w; are 2-cocycle and 1-cocycle respectively on the Lie algebra
R™. In the same way, like in (5.3)(5.5) we come to the statement that every weakly

G-invariant Lagrangian in this case has the form

L = F(¢,...,4") + total derivative + Bugd'q* + Eiq'.
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It' describes the interaction with constant “magnetic” and “electric” fields (compare
with (1.5)). The corresponding Noether charges are Ni(q,4,t) = OF (0§ — 2Bi.q* —
E;t. The corresponding grading of the space Vg is the followihg: ' ~

Vir =Vaa = Vo, Vi1 = Vou = Vi @R 5, V,0 = V., ® R™.

This case is famous in literature as “arising of constant magnetic field as a central
extension of translations algebra” {2]. - . o R
. © " Ezample 3.'30(3) algebra.

v I.n. this example; we consider the Lie algebra 30(3) which is a special case of
siamls1mple algebras. -Let M = R® be the 3-dimensional linear space with the Carte-
sian coordinates (z',2%,2%). We consider first the pairs (s0(3), R?] and [s0(3), 5%
where 5% is the sphere z'z' = 1 in R® and the action of so(3) on R3 is genet’a.tec{
by the standard action of the group S0(3) on R3: if {el,eé,ea} is a basis in so(3)
:Echh.that [lfi.-, f(zi,] = EijkCh ,thenl<I>(e,-) = L; = —€;3270/dz*. For the pair [so(3), 5]

e hierarchy diagram is trivial because S i isi] :
the and. of he Seition 5. k O(3) is a semisimple compact group (see

Alternatively one can see it' by the followiﬁg explicit calculations: From the
commutation relations it is evident that H'(so(3)) = H?(s0(3)) = 0. Hence, K, =
Ky = 'Kz =K, = 0. fa;isa cocycle with values in functions on Sz,,' then
0=éa=Lia,~ L’.‘?‘" - e;jka;:. Hence, [%q; = Itk'([”,;a',-) =I Fand a4 =6F isa
coboum:;lary, wherg F =“Z, ,(,FTI) F'is deﬁnéd by the expansion over the spherical
harmonics of F. The term F° vanishes because it leads to a cocycle in'cbnstanfs
and H'(s0(3)) = 0. Hence K3 =0 as well. . - ‘ :

The calculations and the result are the same for the pair [so(3),R3]. All weakl
so(3)-invariant Lagrangians of classical mechanics on R? and on S? are exhausted
by s0(3)-invariant ones (up to a total derivative). -

Now ‘bea.ring in mind the construction (4.11) we modify a little bit this example
considering instead of the sphere S? the domain in it, the sphere without North pole
(pl'mctured sphere) S?\N (z® # 1). Thus we come from the pair [30(3),32] to the
pair [so(3), S?\NV]. In the same way, we come to the pair [so(3), R3\ L] taking out
the ray L, (2! =0,2% =0,2% > 0) from R®. © o ,

The essential difference of these pairs from the previous ones is that they cannot
be generated by the action of the corresponding Lie group. .

We perform the calculations for the diagram D([so(3), S?\ N]). .

It is evident that for this diagram Ko = K; = K; = K4 = 0 as well. Now we
show that for this diagram K3'= R and that this hierarchy is full.

. The stability algebra for this pair is one-dimensional, hence from (4.11)-(4.13) -
it follows that K3 = 0 or K; =R. It'i‘emains to prove that K is not trivial.

To show it, we consider the Lagrangian L which corresponds to the differential
form A = —(1'+ cos6)dp on the punctured sphere S*\N, 6, being the spherical
coordl.nates. The 2-form dA = sin8df A dy corresponding to its motion equations is

30(3)-invariant, hence this Lagrangian is weakly 80(3)-invariant. On the other hand
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it cannot be reduced to-a so(3)-invariant one by redefinition on a total derivative
df because a so(3)-invariant 1-form on the sphere is equal to zero. Hence, since all
other spaces K, are equal to zero, this Lagrangian belongs to the floor 2. We come
to the following result:

Ky = H'(50(3),A%S>\N)) = R and ¢o(A) € Ks #0.  (5.7)

For this special case, the explicit realization of (4.11), (4.13) is the following: We .

_ identify the vectors with the elements of s0(3) by the linear map 7: (z%,2%,2%) —
2le; + ze, + 23€3. For any point ¢ € 52, the corresponding stability subalgebra is
generated by y(z). To (4.11)-(4.12) there corrésponds the following statement: If o
is a 1-cocycle with values'in functions on the punctured sphere, then

a(a:,*y(_.c)) = z'a;(z) is a constant on the sphere, . (5.8)
' this constant is equal to zero iff this cocycle is-a coboundary. ’

This statement. can be casily proved in a straightforward way without usihg (4.11),
(4.12). - S R ;

We proved that K3 = R and all other K, are equal to zero and prgsented in
(5.7) the Lagrangian with nontrivial image in K5, Hence, the hierarchy diagram

D([s0(3), S2\N]) is full on all the floors and the space of classical mechanics La- "
grangians is équivalent to the one-dimensional space U = {L: L = —q(1 + cos §)¢}
with respect to this hierarchy. So using (4.8) we arrive to the following statement: '

every weakly so(3)-invariant Lagrangian on the punctured sphere has the form

L = Liny + total dér’ii/ativeg ~ g(1 + cos 0)50 S ‘ (59)

In the.case g # 0, it belongs to the floor' 2, of the hierarchy.
“The calculations for the diagram D[so(3), R3\l;] are'similar and the result is the
same: every weakly so(3)-invariant Lagrangian on R3\I; has the form (5.9).
One can see that in the case when Liny is the free particle Lagrangian, then (5.9)

corresponds.to the Lagrangian which describes the interaction of a particle with the -

Dirac monopole [15}. s . »
~ Explicit calculations for (5.7) give that ¢5(L) for the Lagrangian'(5.9) is equal
to the cohomology class in H'(so(3), S*\N) of the following cocycle: - ‘
B 0y = —gcot fcosp, = —geotlsing, as= g, C(510)
Finally, we make the following remark about the Lagrangian (5.9). Via stereogra-
phic projection of the punctured sphere-on R? one comes from thé pair {so(3]; 52\ N]
to the pair [so(3), R?], where the fundamental vector field corresponding‘to-es is the
infinitesimal rotation and fundamental vector fields corresponding to ey, e; are non-
linear infinitesimal: transformations. “The weakly so(3)-invariant -Lagrangian (5:9)

transforms to - .-~

Ll=2(1 +u2 4 v?,)z.:*-;gl + udtv? o

2 .-

U m@pet), o wbovi o ’-’7(5",11')"' :

in the case when Li,,-is the free particle Lagrangian. (u,v are the Cartesian coor-
dinates on R%.) ' , S

_ In the case g = 0 the Lagrangian (5.11) is strictly related to the Lagrangian-de-
scribing the interaction of a free particle in 2-dimensional plane with the Coulomb
potential. To the vector fields €;,¢é; there correspond so called hidden symmetries
of Coulomb interaction which lead to Runge-Lentz vector [23].-So, the Lagrangian
(5.11) leads to the Lagrangian which possesses essentially generalized hidden sym-
metries of the two-dimensional Coulomb potential. These consideration deal with
the so called higher symmetries which are not in the frame of this paper.

Ezample 4. Galilean and Poincaré Lie algebras
We consider the action of Galilean and Poincaré algebras on the 4-dimensional
space R* with the Cartesian coordinates (t,2’,2% 2°).- The lagrangians on R* are
. L(t,2',£,2%) (i = 1,2,3) where &',{ means derivatives with respect to “time” r.
To threat these algebras simultaneously, we consider:a 1-parametric family of
the Poincaré Lie algebras G(P;) (c is the “velocity of light”). Their action (2.1) on
},ihtladspace R* is generated in a standard way via the following fundamental vector
elds:

.0 a ~ a 1,0 - .0
Po — 3;’ pi= 3_3:7’ B; = tom T a% 3 L; = —Eijkfl?’.gx—k ) (5.12)
which correspond to its basis. The relations (5.12) define the pair [G(P.), RY].

; !n the case ¢ — 00, Lie algebra G(P.) is contracted to the Lie algebra of the
Galilean group (nonrelativistic limit), which we denote also by G(P). All the
cqmmut:}t}on relations of the basis vectors in G(P.) do not depend on ¢, except for
the relations [B;, By} = ~1/c%ei;k L, [pi, Bx) = ~1/c2pobix which tend to zero, when
¢ tends to infinity.

' Correspondingly to (5.12), the action. of the Galilean Lie algebra G(Pw) on R*
is-generated by the vector fields

2. i‘ktav~L'_ A.ia.- . A
3t 95 oz’ i“"‘eijlfx”ax_k-‘ _ A (5.13)

It defines the pair [G(P), RY. (The vector field corresponding to Lorentz boost
transforms to vector field corresponding to special Galilean transformation.)
“The first two cohomology groups for algebras G(P.) are

HY(G(P))=0, HYG(P))=0, ifc#oo
HYG(P)) =R, H*G(Px)) =R. - (5:14)

The first and the second cohomologies groups of the Galilean Lie algebra are gen-
erated by the _l-cocycle ci and the 2-cocycle cg (the Bargmann cocycle) respectively, -
whose nonvanishing components in the basis (5.13) are

Celp) =1, ca(pi, B;) = —ca(Bj,pi) = ;. (5.15)
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The relations (5.14) make trivial the ’calculations of all the spaces K, except
for the'space K3 for the hierarchy diagram D(G(P.), R*). From the formulae (4.5),
(4 11) it follows that K3 = 0, because the stability subalgebra of every point (to, z})
in R* is isomorphic to the subalgebra. generated by the vectors (L, Bj)- Wthh has
only trivial 1-cocycles and H'(R%) =0.

" Now we'study the space of weakly g(P ) mvarla.nt Lagrangla.ns on R‘1 First of
all we'note that from (5.12) it follows that G(P, )- invariant Lagrangian is an arbitrary
function of the square of velocity in Minkovsky space if ¢ # oo and g(’Poo) -invariant
Lagrangian is an a.rbltra.ry functlon of velocity t component: L

_ Zzlzl. )

- 1) Pomcare Lle algebra (c # o) In this case the hierarchy diagram D(G(P.), R?)
is trivial because'all the spaces K, are equal to zero. Every weakly G(P.)-invariant
Lagrangian is invariant one (up to a total derivative) and it belongs to.the floor 4,.

Liny = F(c*? ). .ifec 76’00,

Uso > L = F( — ¥ #¢') +'total derivative. ~ (5.17)
2) Galilean Lie algebra (¢ = o0):
In-this case [(0 = Kg R 1(1 = [(3 =0.

We consider the followmg 2- dlmensmna.l subspace of Lagrangians on R?

m(E;d'd’)

ot uy, - (518)

U {L L=—=—"—7
where m and b are constants. One can see by stra.lghtforwa.rd calcula.tlons that for
a Lagrangian in U ' e
L L=bLypL=LyL=0,Lpl=mi. ‘(5,19)

Comparing (5.19) with (4.1) we see that U="0, 0, 1.e. U is-the subspace of weakly
G (P )-invariant Lagrangians. The calculation of homomorphisms ¥ and @2 on the
kdlagra.m D([6(Pe) R“] U) glves ‘

R B o )

where [¢)], [cB] are cohomologlcal classes in Ko a.nd K2 respectlvely of the cocylces
(5.15). -

Hence the hlerarchy diagram D([G(Px), R“] U)is full and the space U in (5.18) is
equivalent to the space of all Lagrangians on R* with respect to the hierarchy. From
(5.18), (5.20) and (4.8) it follows that every weal(ly G(Peo)- -invariant La.gra.ngla.n on
R* is of the form: .

m(E. ¢ )

Uood L =F(i) + —=———= 4 bt + total derivative. (5.21)
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L‘;,,,, = F(t) ~ife=o0. (5.16)

It belongs to the floor 1, if b=0 and m # 0. ‘
Physically it is more interesting to consider the hierarchy diagram for the sub-

space le‘”" of Lagrangians which are densities in R*. The space of Lagrangians

L(t,z',dt/dr,dz* /dT) in ‘R* is more wide than the space of classical mechanics
Lagrangians L(x dz'/dt) én the configuration space R® with coordinates z* @@=
1,2,3,). To every Lagrangianin R3, according to (2. 16), there corresponds a La-
grangian which is a density in' R®.'On the other hand, to every Lagrangian L in R*
which is a density and which doés not depend explxc1tly on time, there corresponds
a classical mechanics Lagrangian, if we put the parameter 7 to be equal ¢. For ex-
ample, to the Lagranglan of a free relativistic particle there corresponds the density

in R‘1 o ‘
' L‘rel(c) =“——mc lezii’ =) i, . - (5.22)

and to the Lagrangian of a free non-relativistic particle there corresponds the density

e Lnonrel’= rnz;% . C : N (5.23)

The Lagrangian L,e,(c) + mc2t whlch differs from L,e,(c) by the total denvat.we,
tends to Lyonrer when ¢ — oco. ‘

-‘On- the ‘'other hand the condition that weakly g(7> )-invariant La.gra.ngla.ns in
(5.17) as well as in (5.21) are densities gives that they are equal to (5.22) and (5.23)
respectively (up to a total derivative). Indeed if (5.21) is-a density then b = 0 and
F(M) = AF(£) (see (2.16)). Hence F(f) = af and 1t isa tota.l derivative. The similar
considerations for (5.17) lead to (5.22).

We come to the following conclusion:

Every weakly G(Pe)-invariant La.grang1an-dens1ty in R‘1 belongs to the floor 1,
and is equal to Lyonre (up to total derivative). The value of homomorphism ¢, on it
is proportional to the mass of the particle. There are no non-trivial G(Pe,)-invariant
Lagrangians-densities on R*. The floor 4, contains trivial Lagrangians only.

For the Poincaré algebra every weakly G(P.)-invariant Lagrangian—density coin-
cides (up to a total derivative) with the G(P.)-invariant Lagrangian L, (c). On one

hand, when one contracts Poincaré algebra to the Galilean algebra, the Bargmann
cocycle arises. On the other hand, the unique nontrivial component V,; of the hierar-
chy diagram for the Poincaré algebra transforms to the unique nontrivial component
V1.1 of the hierarchy diagram for the Galilean algebra. :

Vanishing of H2(G(P.)) is the reason why in relativistic quantum mechanics the
projective representation of Poincaré symmetries in the space of states (which are.
rays in a linear Hilbert space) can be reduced to linear one, while because of (5.15)
it is not the case for nonrelativistic mechanics. The considerations of this example
reflect this phenomenon. (The detailed physical analysis see for example in [12],

(13].)
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6 Discussions

The problem considered here and the technique we used to study it can be general-
ized in several directions. The considerations of this paper can be easily translated
into Hamiltonian language. One can consider the classification of Lagrangians not
only for symmetries induced by point transformations of the configuration: space,
but also for so-called higher symmetries. For example, it is interesting to analyze
the generalized Runge-Lentz symmetries from this point of view (see the end of
" Example 3 in Section 5). :
Tt is interesting to apply this method to supersymmetrical case [14]. It seems
" to be interesting also to analyze the phenomenon of spin-like transformations (1.9)
arising for Lagrangians from the second floor of the hierarchy (4.7), in order to apply
it to the Dirac monopoles [24]. . \ ‘

We hope that a generalization of this method to field theory Lagrangians will be
fruitful. From this point of view we want to note the relations of our considerations
with the problem of the Ward identities anomaly absence in the case when field
theory Lagrangians possess classically the given symmetry [25,10].

To develop this technique for field theory Lagrangians, the first order formalism
and multisymplectic formalism become very useful [23]. We wish to develop these
considerations on the firm ground of investigations by A.M. Vinogradov and his
collaborators [26]: - - : , o

-On the other hand, to-our opinion, the method considered in this paper is maybe
more important than the problem we applied it to. - » o
* - We give here only three examples, one of them pure mathematical, where the
calculations of double complex cohomology (the method we ‘use in this paper) make
a bridge between the corresponding structures: -

1. Calculation of de Rham cohomology in terms of Chech cohomology.

When manifold M is covered by a family {U,} of open sets, one can consider
Chech cohomology of this covering. Then one can consider double complex of g¢-
forms which are defined on the sets {U,}. The differential @ of this complex is the
sum of the de Rham exterior differential and the Chech differential. Considering the
differential Q “perturbatively” near the Chech differential, one arrives naturally at
the de Rham:cohomology of M, hence the “perturbative” calculations near the de
Rham differential lead in general to calculation of spectral sequence which converges
to the de Rham cohomology of M. In the case when the covering is a Leray covering,
i.e., all the sets and their intersections are convex connected'sets, then Chech coho-
mology coincides with the de Rham one; application of the Poincaré lemma reduces
spectral seqiience calculations to trivial resolutions of so-called descent equations
[10]. But practically it is more convenient to use for calculations a suitable covering
which generally is not-a Leray covering (see for details e.g. [16]). -

2. Relations between the Hamiltonian reduction method and the BRST cohomol-
ogy for classical mechanics '
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One can say that the relations between these two.methods are encoded-in the
cohomology of the double complex differential Q = @ + §, in the case when con-
straints form a Lie.algebra (so-called closed algebras).- Here @ corresponds to the
Koszul differential of the complex generated by constraints and & is the differential
corresponding to Hamiltonian vector fields induced by these constraints. Perturba-
tive expansion of () near § leads to standard Hamiiltonian methods, and expansion
around 0 leads to BRST. In the case when cénstraints form so-called open algebra,
one has to consider the corresponding filtered space instead of this double complex
[3,4,6]. This approach seems to be very fruitful. :

3. Local BRST Cohomology g ’ : ;

Considering BRST physical observables as integrals of local functions, one comes
naturally to the differential Q = s + d, where s is the BRST differential, acting on
integrand which is a local function and d is the usual de Rham differential. It turns
out that the consideration of cohomology of this double complex is & very powerful
tool for BRST cohomology investigations in field theory; especially in Lagrangian
framework (see (8,9,10,27] and'refererices there). In spite of these examples, one
has to note that the method of spectral sequences was not used ‘actively in these
calculations.

Maybe the method of spectral sequences was applied in physics first- by J.-Dixon
in [8] to analyze local BRST cohomology. In series of works the so-called method
of descent equations which is in fact a special case, a reminiscent of this tech-
nique was applied successfully to these problems (see the review [10] and references
there). Nowadays the technique of spectral sequences seems to be not very popular
in theoretical physics. We hope to attract attention to importance of this technique
used, here in a simple physical framework. In principal, using the method “Deus
ex . machina” one can formulate the hierarchy without using ‘explicitly the method
developed in this paper which indeed seems to be very tedious. But:to our opin-
fon, this method is inherent to this problem and it is the adequate technique in
other important problems such as constrained :dynamics theory; it. may have useful
applications in future. S ‘
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Appendix 1. Lie algebré cohomologies

Let G be Lie algebra and A be a linear space which is module on G, i.e. the
action of G on A which respects the structure of the Lie algebra G and the space A
is defined:

- heGmeA (hym)—>homeA:
(Ah1 + pha) om = ARy om)+ u(hsom), (Mp€R) (AL1)
ho(Am; + pms) = A(h o my) + p(h 0 m2), )
h] [¢] (thm) - h2/0 (h1 om) = [hl,hz]om.

(I, ] defines commutator-in G. A and G are linear spaces on R). :

The complex (C¥(G, A),8) of cochains can be defined in the following way. Let
C%(g, A) be a space of skewsymmetric g-linear functions on G (g-cochains) which
take values in A (If ¢ = 0, C°(G,A) = A).. G-differential 6§ on {C%} 6:C? —
Ct!, §2 = 0 is defined in the following way: :

509 C'  (6c)(h)=hoc,(ceC®=A4A)
5:01 = C?  (8c)(hyha) = b 0 clha) — hz 0 c(ha) = ([, Ral), (412)

and so on:

§:C7 = CTH1 (6c)(h1y- s hor1) = Shcicarn (1) R0 (b oy hie s hor)
) 215i<j$q+l('l)'+16([hivhJ:],hl"'j’hiv"'.ihj""hq+1) ‘

( h; means omitting of the variable h;)). The cohomologies HI(G, A) of the

complex ({C?},68) are called cohomologies of Lie algebra G with coefficients in the

module A. (See in details for example (16].)
H9(G, A) = (ker8:C7 = 07) [ (38:C7" ~ C7) .

If module A is R and G acts trivially on it: Ao A = 0, C%G,R) is denoted by
C?(G) and correspondingly H 1(G, R) is denoted by H*(G). In this case cochains are
constant antisymmetrical tensors and G-differential § is expressed only via structure
constants {t7} of Lie algebra G. S . ek

" H%(G) = R, H'(Q) is defined by the solutions of the equation cfiby = 0 and it
is nothing but the space dual to the G/(G, 6l S :

In a case if G is abelian H(G) = C*(G) = (AG")? where G* is the linear space
dual to the linear space of G. . :

In a case if G is semisimple Lie algebra then H'G=H?G=0. This statement is
valid in a general case too. Very important Whitehead lernmas state that if G is
semisimple Lie algebra then H (g, A) = H¥G,A)=0 in'the case if A isan arbitrary
module which is finite-dimensional vector space on R [16] v
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Appendix 2. Double compléx and its spectral sequences.

N i ; .

fo calculations of sohomelogs ot dosms o2 SPPLY spectralsequences technique
o .

(16).) ‘ g%' ! 01A1 e comPlexes. (See for the details for example

Let E* = {EP7} (p,g = 0,1,2,...) b Tvo :

. ,4=10,1,2,...) be a family of abelian groups d -

spaces) on which are defined two differentials 8, and 9, wh%ch geﬁ(rizoc desl, Vectf)r
rows and in columns of E** and which commute with each other: Ompiexes in

O1: BP9 — BP9 52 = 0, 0,: BP9 — EPY19 62 =0 8,9, = 8,0 (A2.1)
4 3 H - ath. .

{E**,0,,8,} is called double cbmplex. »

( It is convenient to consider EPY f i . .
p<Oerge0) ider for all mteger’s P and ¢ fixing tha't‘Ep.q =0if

One can consider "antidia, onals”‘ - '
: DB o= P~ _ ..
complex with differential g » {EPm-r} (P = 0, 17...,‘m) which form

v , Q~_—<(_1)<162_{_3>1 - '
. ) A2.2
which evidently obeys to condition Q%=0. : T ( : )
. 0— 'DO—Q»’DI‘_Q;D2 . o ’ ‘(A2 3)

The cohomologies H™( f thi ‘ - .
complex (E**, 8, 0;). (@) of this complex are called the cohomlogies of double

The ns ‘ X '
of rows and the columns complexes d‘eﬁne the cohomologies H(,) and H(3,)

One can consider the filtration corresponding tothe double complex { E‘;'* 01, 0,}
2 U1, 02

LLCXTCX™ C L CcxCXO (A2.4)
where Xk = @ Er
98 (A2.5)

and sequence of the spaces {EP9} (r = 0,1,2,. .. corresponding to this filtration
BN = ZP[BPY (EY? = EP9)., (A2.6)
n (A2.6) 279 ("r-th order cocycles ") is the space of the elements in EP9 which are

leader terms of cocycl i i
(Arg) cycles of the differential Q up to r—th order w.r.t. the filtration .

Zray - . & » ) | A
{289} = {EP95 ¢ 3c=c(mopr+1)suchthatQE=O(mopr+;.)}. (A2.7)

It means that there exists & ’
e exists ¢ = (c f.g—i
Qlc, 1,25y Croy) C Xpyr : (c,e1562,. .. ,021) 'where ¢ € EPia=i guch that

1€=0,02¢ = Bic1, 0501 = Byc3, ..., ey = B1roy, 50 QE = ooy € Xpir -
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Correspondingly B! is the space of up to r-th order borders: .
A{BM}={EM>c 3b € Xp_ryr such ‘that Qb= c. (A2.8)

It means that there e’)::i.st i= (bo, b1, b2, - - ,br_i) where b; ‘G Ep—iati ’a.nd' »
Q(bo, bl, bg,‘. . ,,b,._l) = C . ..

" Bubo+ Oaby = ¢, Biby + Oaby = 0,10y + Dyby = 0,..., b = 0. (A29)

For example E}? = H(0, EP). . o Lo :
We denote by [c], the equivalence class of the element c in the EP9 if ¢ € Zp4.
It is easy to see that the sequence {EP9} r = 0,1,2,... is stabilized after finite
number of the steps: (E?? = ER%, = ... = EL’, where ro = maz{p+1,q+1}.
Let H™(Q, X,) be cohomologies groups of double complex truncated by filtration
(A2.4) (we come to H™(Q, X,) considering-{D N X?,Q} as subcomplex of (A2.3),
H™(Q) = H™(Q, X°). We denote by (, H™(Q) the image of H™(Q,X,) in H(Q)
under the homomorphism induced by. the embedding DU X, — D. The spaces

»H™(Q) are embedded in each gther o
0C mH™(@Q) S m-nH™@Q)E .. WH™(@) € @H™(Q) = H"(Q)- (A2.10)

The spaces ELY considered above are related with' (A2.10) by: the following

relations:

2P =) H(Q) e H™ (@) T (A201)

~In particﬁla.r -ESC;’“ is canonically embedded in H™(Q).

The formula (A2.11) is the basic formula which expresses the cohomology H(Q)
of the double complex {EP9,8;,8,} in terms of {EE7}. From (A2.10, A2.11) it
follows that I :

H™Q)~ P E. : (A2.12)

. 1=0 ,

The essential difference of (A2.12) from (A2.11) is that in (A2.12) the isomorphism
of Lh.s. and of r.h.s. is not canonical. :

‘The importance of the sequence {E}*} (r=0,1,2,.. .) is explained by the fact
that its terms (and so { E%*}) can be calculated in a recurrent way. Namely one can
consider differentials (See for details [16.]) dr: EF? — Eptrat1=7 sych that {E}™*,d, }
form spectral sequence, i-e. ’

L ‘ Ery = H(d:, E7™). g . {A2.13)

The differentials d, are constructed in the following way: do = 6y: EP9 = EF? -
E”"H_’l — Eg.q+l. : ) :
If c € EP9 and d1c = 0 & [y € EP then dy[c] = [0z}, di: E{"Z Y
In general case for [d], € EP? d,[c], = [QF], d;: EP? — Eptrati=r)

Whete & c— & € XP" (see the definition (A2.7) of ZP).

Ohe can show that definition of d, is correct, d? = 0 and (A2.13) is obeyed [16].
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Using (A2.13) one come after finite number of ster - tin ch BP9
er of steps to E24 calculating each EP9

as the cohomology group of the EP%: EP9 = P VR

e ooy st 4 < 65, 5 5

The spaces EPY can be considered intuiti ' V
‘ : P . itively as r—th order (with

dlﬂ’ereI}tlal .32) coho.mologles of differential Q . The operator 61( is zerrs:lﬁ) e(f:dfao

approximation for d}ﬂerentlal Q. The calculations of EP4 via (A2.13) can b :

sidered as perturbational calculations. One can developOZhis sC - fing in

perturbative ca.lct'ila.tions not the operator 8, but 8, as zéroth order appfoximation
Instead filtration (A2.4) one has consider the "transposed” filtration - .

and so

heme considering in

LLCIXMCIX™H L C txl c xO v (A2:14)>:
where txk = EB EP4 |
S p20,9>k

and corresponding transposed spaces {*EF7}. For example
E}* = H(6,,EP9), 'EP9= H(0,, EP9).

Instead spectral sequence { E**, d. } one has to consider transposed épect‘ral vsequence

{tE:.-’ tdr}:

dy'= 0y, — ‘dp = 025 dy[c]y = [Ozc)y, — tdl[cll = [31011 )
and so on. o . : |
e Th}(le rela.ltions betwe'en spaces { EZ} and {*EP:9} which éxpfess in. different ways
}30 omology H(Q) is one of the applications of the method described here. ..
he d;{;;mptlfa.l Iéet 5(: (co,c1.¢2) where ¢y € E°2,¢; € EM, ¢, € E* be cocycle of
rential ¢): Q(cp,c1.c;) = 0'ie. Biep = 0, Fycp = )
¢ \ , 200——6161 6gcl=6c. To th
%eaidx“_g tg.fll.;l co ?f »thlS cocycle w.r.t. the filtration (A2.4) cdfr’esponds tlhz:‘élerﬁenft3
Co }o lltlh o wl}lch represents the cohomology class of the cocycle ¢ in E®2.
e 1I(:ad‘e case if thg equation (co, ¢1.c2) + Q(bo, by) = (0,6, ¢,) has a soﬁfibn; ie.
R CObouu(lig terrtl;l o o}f1 thelz cocycle ¢ can be cancelled by changing of this cocyclé on
ndary, t ! 1.1
cocycle ¢ in )é ;‘;l.en ee emeét [i]e € Em represents the cohomology class of the
leadIiI:]th: case if the equation (co, ¢1.¢2)+Q(bo, b1) = (0,0, &;) have a solution;‘i.e.‘. fh‘e
0 g term axzug next one both can be cancelled, by redefinition on a coboundary, -
er’} [cz]oz € EZ represents the cohomology class of the cocycle ¢ in E£20 ’
0 put correspondences between the cohomology cl ' ca
: ] e ¢ gy class of the cocycl -
ziond}ng elements from transposed spaces *E%2, TELITELL we Haveyt(:oed(:oailllli (s::::::
anging only the definiti i i ha i )
o ﬁltrationy(Ag_M(; nition of leading terms, which we have to consider now w.r.t.
theZ?e:IfZl ie[ad]ing. tetrngz of.this cocycle w.r.t. the filtration (A2.14) ‘corresponds
(g6 o zzs o 1fn hEoo wh.lch represents the cohomology class of the cocycle ¢ in
oo e if the equation (co,cl.c2)+Q(bo,bl) = (), ¢}, 0) has a solution, i.e.

35



the'leading term co of the cocyclé’c can be cancelled by changing of on a coboundary,
then the element [c}]co represents the cohomology class of the cocycle ¢ in 'EL}.
In the case if the equation (co, €1-¢2) + Q(bo, b1) = (0,0,0) has a solution, then [&]
represents the cohomology class of the cocycle ¢ in *EJ2. y
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