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1 Introduction 

The cohomology of the symmetries algebra has important consequences for proper­
ties of the corresponding theory (1,2] and cohomological methods play essential role 
in many problems of moder~ field theory. For example, their application made an 
understanding of algebraic origin of gauge anomalies more clear. As it was shown 
in [1], one can consider axial anomalies of four-dimensional gauge theory in terms 
of infinitesimal cocycles in a representation of gauge group. 

- Another example is the BRST formalism which initially was formulated in terms 
of symplectic geometry of the phase space expanded by the ghosts and antighosts. 
Later it was understood (3,4,5,6,7] that the language of homological algebra is 
more de~ply related to physical ~~aning of this formalism: Inclusion of ghosts and 
antighosts corresponds to the construction of the chain of free modules (free.resol­
vent) on 'the phase space of the constrained system, where the constraints cannot be . . . 
resolved in a direct way. The operator corresponding to the BRST charge becomes 
the differential of the complex of these resolvents. Further the investigation of local 
BRST cohomology was performed with use of developed homological methods (see 
[8,9,10] and the citations there). 

In this paper, we consider a more modest problem. We study relations between 
the Noether identities and Telated phenomena for global symmetries of Lagrangians 
and cohomological properties of the algebra of these symmetries. 

Our considerations will be carried out for m<:!chanics but the scheme has the 
straightforward generalization to the case of field theo,ry Lagrangians. 

The standard statement (the Noether 1-st Theorem) is: if the Lagrangian L is 
invariant under the action of the Lie algebra g of rigid symmetries {Dk}, then to 
every symmetry Dk there corresponds the charge Nk(L) which is preserved on the 
equations of motion (11]. 

If the Lie algebra of vector fields {Xk = Xf 8!,.} (infinitesimal transformations 
of the configuration space) corresponds to {Dk}, then 

DkL = 0 = ft (Nk(L)) + Xf :F,,(L), 
where Nk(L) = Xk" ;f,. and :F,,(L) = ;;:, -1df,. 

is the left hand side (l.h.s.) of the equations of motion :F,, = 0 of the Lagrangian L. 
The statement of the Noether theorem is valid also in the case when the La­

grangian is preserved up to a total derivative of some functions {ak(q)} under th~ 
actions of transformations {Dk}, · 

(L2) 

To what extent is this total derivative essential? Redefinition of L by adding a total 
derivative L -+ L + df changes Ok to ak + Dk/. The algebra of symmetries of the 
Lagrangian can be considered generalized, if dak is not equal to O in (1.2), and it is 
essentially generalized, if it cannot be canceled by redefinition of Lagrangian with a 



total derivative, i.e., DkL = dak but the equations 

d(ak + 8d) = 0 (1.3) 

have no solution. 
Using the basic properties of the operators 8 and d: 82 = d2 = 0, do = 8d (see 

the Section 2) we obtain from (1.2) that 

0 = 82L = 8dak = doak, so (8a)km = Wkm = constant, {1.4) 

where (8a)km = £kam - Cmak - 4ma; and 4m are structure constants of the 
symmetry Lie algebra (£kam = Dkam is the Lie derivative of am along the symmetry 
vector field Xk)-

lt is easy to see that Wkm is a cocycle of algebra Q with coefficients in constants. 
In the case when Wkm is not a coboundary, one can see that the symmetries are 
essentially generalized. Indeed, if, according to (1.3), ak = -8d + tk, where tk are 
constants, then Wkm in (1.4) is a coboundary in const;ints: Wkm = (8t)km = -4mt;. 

Let us consider for example the algebra of space translations. This algebra has 
2-cohomologies in constants represented by antisymmetric tensors Bkm• (This alge­
bra is abelian, so 8B = 0 and the equation B = 8t has no solutions in constants.) To 
obtain Lagrangian which possesses generalized translation symmetries correspond­
ing to these cocycles, we note that for this Lagrangian ak = Akmqm. Redefining 
Lagrangian by a total derivative, one can reduce Akm to an antisymmetric tensor, 
and we come to the Lagrangian 

L = f(q) + qk Bkm</m, (1.5) 

If f( q) = !!f-, it is the well-known Lagrangian of a particle in constant magnetic 
field. 

In Section 5 we consider a similar statement for the Galilean group: one comes 
to the Lagrangian of free particle as to· a unique Lagrangian corresponding to the 
Bargmann cocycle of the Lie algebra of the Galilean &roup. 

We see that one of the reasons generalized symmetries arise is the existence of 
2-cohomology of the corresponding ,Lie algebra 1 . Of course a situation is more 
complicated. For example, by evident reasons for this phenomenon the de Rham 
cohomology of configuration space is responsible. If Linv is a Q-invariant Lagrangian 
and L = Linv + Aµ(q)ql', where Aµ(q)dql' is a closed differential 1-form which is 
not exact (Aµ(q)dql' -=/- df), then in general Lis not Q-invariant. It has the same 
equations of motion, but it differs from L;n,, by Aharonov-Bohm like effects [15]. 

1The role of 2-cohomologies of symmetry group on the level of classical Lagrangians maybe 
at first was recognized in (12). Many examples where physical properties of- weakly. invariant 
Lagrangians interplay with cohomology of configuration space and 2-cohomology of symmetry 
group and corresponding Lie algebra were actively investigated in physics. It is of great importance 
for clarifying geometry of quantization, for revealing the structure of Wess-Zumino terms. (See (1), 
[2), (13), (14) and references there.) 
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Even in the case when the de Rham cohomology is trivial and'the cocycle Wkm in 
( 1 .4) is a coboundary, the symmetries of Lagrangian can; be essentially generalized. 
The· coboundary condition W;; = -c~;tk is necessary but not sufficient for (1.3) to 
have a solution. It is other cohomologies of symmetry algebra which prev~nt a 
Lagrangian to be reduced to a Q-invariant by redefinition with a total derivative. 

The purpose of our paper is to investigate systematically these phenomena. 
. For the algebra g of vector fields on the•configuration spac~ M and a Lagrangian 

L(q,q) on M, we considered the following possible cases of generalized symmetries 
arising 

1) The action of g on a Lagrangian L produces a 2-cocycle on Q: 
DkL(q, q) = fiak(q), Wkm = .Ckam - .Cmak - 4mai, 

. 2) The action of g on a Lagrangian L produces a 2-cocycle, 
but i~ is trivial: ,Wkm = -4mti, , 

3) The Lagrangian L differs from the invariant one by a closed form: 
· L = L;nv + Aµ(q)qµ, (oµAv - o.,Aµ = 0) 

hence okL = ft(AµXt) and Wkm = 0, 

4) The Lagrangian L differs from the Q-invariant one 
by an exact form (total derivative): 

L = L;nv + Oµf(q)qµ == Linv + ftJ(q), 8kLinv = 0. 
One cari see that 

"4" =} "3" =} "2" =} "1" . 

(1.6) 

(1.7) 

We briefly discuss how generalized symmetries reveal themself in Hamiltonian 
mechanics and in a quasiclassical approximation of quantum mechanics [13,14]. 

If the Lagrangian is Q-invariant, then to the Noether charges Nk(L) in (1.1) in 
the Hamiltonian framework the charges Nfam = Xf pµ correspond. They generate 
a Q-algebra structure via Poisson brackets 

{Nham Nham}= Ci Nham 
k , m km , • (1.8) 

In quasiclassical approximation of quantum mechanics the operators Xf pµ cor­
respond to these charges. Their action on quasiclassical wave function in the config­
uration representation is reduced to a infinitesimal transformation of wave functions 
argument: 

iskw = w(qµ + okqµ) - w(qµ). 

In the case when the symmetry algebra is generalized, one can see that due to (1.2) 

N;am = xt pµ - Ctk • 

The corresponding operators act not only on quasiclassical wave functions argument 
but also on its phase: 

• aw(q) · 
DkW = -iXf-!l- - ak(q)W(q). . . uql' (1:9) 
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In the case when the Lagrangian does not possess the property "2" in (1.6), i.e., 
generalized symmetries lead to a non-trivial cocycle, the Lie algebra of Hamiltonian 
Noether charges N;ham is the central extension of the Lie algebra g which corresponds 
to the cohomology class of the cocycle Wkm: 

{Nham Nham}_ Ck Nham+ w·· 
i ' j - ij k I). (1.10) 

Respectively in this case in (1.9) an essentially projective representation of the 
Lie algebra g is realized. · 

In the case when the Lagrangian possesses the property "2" in (1.6), one can 
choose O:k such that (1.8) is satisfied and the quantum representation (1.9) of g 
becomes linear. But if this Lagrangian does not possess the property "4" in (1.6), 
then the action of quantum transformation on the phase factor cannot be removed 
by redefinition W -+ e•fw of the wave function corresponding to redefinition of 
Lagrangian with a total derivative. In this case one can say that the linear trans­
formation (1.9) is splitted into a space-like transformation + intrinsic spin-like 
transformation. Nevertheless if the Lagrangian possesses the property "3", i.e., it 
differs with an invariant Lagrangian by Aharonov-Bohm like effects, then the action 
on a phase in (1.9) can be removed locally [15]. 

We call a time-independent Lagrangian L(q, q) weakly Q-invariant if l.h.s. of its 
motion equations (1.1) is Q-invariant. For example, the_ Lagrangian L in (1.2) is 
weakly Q-invariant. One can show that if L is weakly Q-invariant Lagrangian, then 

8kL = q+wk, (1.11) 

where Ck are constants and Wk correspond to closed forms: Wk = Wkµ(q)qµ, where 
differential I-forms wkµ{q)dqµ are closed (see in details below). · 

If {wk} correspond to exact forms: Wkµ(q)dqµ = dak(q), Wkµ(q)qµ = Oµo:;(q)qµ = 
do:k(q)/dt and 

Ck= 0, (1.12) 

then we come to (1.2). In the case if (1.12) ·does not obey the corresponding Noether 
charges, 

8L 
Nk = xkµ oqµ - o:k - ckt (1.13) 

depend on time. 
We denote by Vo.a the space of weakly Q-invariant Lagrangians on M and by 

Vo.1 the subspace of Vo.a for which the condition (1.12) is satisfied. We denote by 
V,.1 (s = 1,2,3,4,) the space of Lagrangians for which the property "s" in (1.6) is 
satisfied. According to (1.7), 

V4.1 s;;; V3.1 s;;; V2.1 s;;; V1.1 s;;; Vo.1 s;;; Vo.a. (1.14) 

One can also consider subspaces {V •. o} of the space Vo.a 

V4.o s;;; V3.o s;;; V2.o s;;; Vi.a s;;; Vo.a, V,.1 s;;; V •. o, (1.15) 
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which correspond to {V •. i} if we ,ignore the condition (1.12): a ~eakly Q-inv~ri~nt 
Lagrangian L belongs to V1.o, if 8;L = da; + c;. It is easy to see that 80: is also a 2-
cocycle in this case as in (1.4). Moreover LE v;.0 , if this cocycle is trivial, LE V4 .0 , 

if o:; = 8;f, and LE V3.0 , if it. differs from V4.o by a closed form. Lagrangians in V,.o 
have time-dependent Noether currents (1.13) in general. · 

What else can we say about embeddings (1.14, 1.15)? Does weakly Q-invariant 
Lagrangian possess generalized symmetries'(l.2)? Can it be reduced to a Q-invariant 
one? Does there exist Lagrangian which belongs to the space V •. o and which does 
not belong to the space V,+1.o or V,.1? If an answer is "ii.o" what are the reasons? 

_To answer these questions, we establish a hiera~chy in the space of weakly Q­
inv!).riant Lagrangians. This hierarchy relates the phenomena discussed above with 
cohomology groups of the Lie algebra g and of the configuration space M. 

The scheme of our considerations is the following. We fix a configuration space M 
and a finite-dimensional algebra g of its transformations. Then we establish relations 
between weakly Q-invariant Lagrangians on M and the cohoinologies of the algebra 
g and of M. From the considerations above we_see that in the phenomena we are 
investigating two differentials are interplaying; 8 and dE.L, where the differential 8 
corresponds to the symmetries and dE.L is the prolongation of the exterior differential 
which acts on Lagrangians. It is the variational derivative, whose action leads to 
the Euler-Lagr~nge equation. (See in details Section 2.) These differentials, as well 
as differentials d and 8, satisfy the conditions: f? = ~-L = dE.L8. - 8dE.L = 0. 
We naturally come to the differential Q = dE.L ± 8 which is strictly related to our 
problem. For example the condition Q(L,o:;) = (dE.LL,0,w = 80:) corresponds to 
the condition 8L = do: in (1.2). The changing of the cochain (L, o:;) on a coboundary: 
(L, o:;) 1-+ (L, o:;) + Qf = (L+ df, o:;·+ 8d) corresponds to redefinition of Lagrangian 
by a total derivative L 1-+ L + df. 

It is the cohomology of the differential Q, which allows us to reveal the relations 
between generalized symmetries of Lagrangians and cohomologies of the configuration 
space and the symmetry Lie algebra. We do it in the following way. Using the 
technique of spectral sequences, we calculate the cohomology of Q via cohomology 
of dE.L by modulo 8, then vice versa via cohomology of 8 by modulo dE.L. Calculating 
cohomology of the operator Q in the first way, we come to the spaces { K.} which are 
expressed in terms of cohomologies of the Lie algebra and the configuration space. 
On the other hand, calculating the same cohomology in the second way, we come 
naturally to the space Vo.a of weakly Q-invariant Lagrangians and to its subspaces 
{V,_.,} (1.14,1.15). Natural relations, which arise between the results of calculations 
in the first and in the second way, lead to the sequence of homomorphisms between 
the spaces {V,_.,} and {K.} defining these spaces in_ a recurrent way via the kernels· 
of the corresponding homomorphisms. 

This construction establishes hierarchy in the space of weakly Q-invariant La­
grangians making links between the physical properties of Lagrangians and pure 
mathematical objects: the condition that Lagrangian belongs to some space V, ... 
and does not belong to the space V,+1 ... or V, ... +1 in terms of this hierarchy is re-
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formulated to the condition that the corresponding homomorphism does not vanish 
on it. The problem of analyzing the content of the spaces {V •. u} and differences 
between them is reduced to the problem of calculating the corresponding homomor­
phisms. For example in the case, when the space K. is trivial one has Vs-1.u = Vs.u• 
In particular, if all the sp~ces J( are trivial then all weakly invariant Lagrangians 
are invariant (up to a total derivative). 

The plan of the paper is as follows. . . 

In Section 2 w~ consider the complex of.Lagrangians and clarify its relations with 
corresponding complex of differential forms. 

In Section 3 we calculate cohom:ology of the differential Q. of the double complex 
of cochains on the Lie algebr.;: g and taking values in the functions on M and in. 
Lagrangian~. of classical mechanics. .Using the results of these calculations, in the 
Section 4, we establish hierarchy in the space of weakly invariant Lagrangians and 
consider soine general properties of this hierarchy. It is the main result of the_ paper. 
In this Section we consider also from our point of view the hierarchy for Lagrangians 
poly~omial in velocities. 

In Section 5, using this hierarchy, we calculate the content of the subspaces• V,.u 
in (1.14, 1.15) for some special cases of configuration spaces and symmetry algebras. 
In particular, we perform this analysis for so(3), Poincare and Galilean algebras. 

In Section 6, we give some motivations for the technique we used in this paper. 
In Appendixes we give a brief sketch on the notion of Lie algebra cohomology and 

calculation of double complexes cohomology via corresponding spectral sequeni,:es. 

2 The complexes of Lagrangians and Differenti~l 
Forms 

Let M be an n-dimensional manifold (configuration space) and g be a Lie algebra 
acting on it. It means that a homomorphism <I> from g in the 'Lie algebra of vector 
fields on M is defined: · · · 

g 3 xLx (fundamental vector field): [x, yJ = [x, yJ. (2.1) . 

We denote this pair by (9, M]. 
Let Szi(M) be the space of differential j-forms on M. The linear spaces f!i(M) · 

for any given j can be considered as Q-modules if we define the action of the algebra 
on forms via Lie derivatives along corresponding fundamental vector fields: how = 
£;.w. One can consi_der the Q-differential corresponding to this module structure 
and cohomology spaces Hi(g, f!i(M)), which are 9-cohomologies with coefficients 
in f!i(M). ( See e.g.(16} or Appendix 1). , 

Consider the de Rham complex {f!i(M), d} and extend the exterior differential 
d onto i-cochains Ci(g,fli(M)) = Ci(g) ® f!i(M) by setting d(c ® w) = c (Z) dw. 
The differentials d and. 8 commute with each other, d8 = 8d, and one can consider. 
the corresponding double complex { Ci(g, f!i(M)), d, 8}. 
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To include Lagrangians in the game, we extend the comple~ {f!i(M), d} of dif­
ferential forms to the complex {Ai(M), aE.L} of Lagrangians, following [17]. 

We define the space Ai(M) of j-Lagrangians (j 2:: 1) as the space of functions 
(Lagrangians) which depend on points qJJ of the manifold M and on derivatives 

~' ••• , 8{ 0 ~~-~={ 0 • of an arbitrary but finite order k of parameters (e1, ... , e) which 

take values in the j-dimensional space Ri. In the case j = 0 we put A0 (M) = n°(M) 
to be the space of functions on M. We say•that Lagrangian pas the rank k, if the 
highest degree of derivatives on which it depends is equal to k and we denote by A{ 
the corresponding subspace of Ai. The Lagrangians of classical mechanics considered 
in the following Sections belong to A~. 

If Lis a Lagrangian in Ai(M) then to every map (j-dimensional path) 

/J(tl ti)· Rj M q .. , ... ,.,. . -+ (2.2) 

corresponds the integral 

. J ( 8qJJ(e) 8kqµ(e} ') 1 · 
SL([q(e)]) = L q/J(O, BF' ... , aeo• .. : aeok dC ... ae. (2.3) 

This defines the natural fmbedding of the space f!i(M) of differential j-forms in 
A{(M): 

• ·. 8qJJ• 8qJJi 
w = w,, •... ,,,(q)dq/JI A .. : A dq/Ji I-+ Lw = n!W[µ, ... µ,](q) ae1 ..... 8{i . (2.4) 

The integral SLw([q(e)]) is equal to the integral ofthe differential form w over the 
surface defined by the map (2.2). It does not depend on the choice of parametrization 
q( e) of this surface: We say that Lagrangian Lw corresponds to the differential form 
w and later on we often will not distinguish between w and Lw. 

Remark In general, for an arbitrary Lagrangian the l.h.s. of (2.3) is not 
correctly defined on images of maps (2.2). It can be considered as a functional 
on embedded surfaces which does not depend on its parametrization in a case if 
Lagrangian Lis a density, i.e. under reparametrization q(e) -+ q({({)), one has L-+ 
L·det(8ef8{) and L defines the volume form on surface q(e) (see for example (18,191). 
The Lagrangians corresponding to differential forms are the ·special examples of 
densities. 

To define the complex of Lagrangians which generalizes de Rham complex we 
consider, following (17], the differential d E.L, using Euler-Lagrange equations of mo­
tion for the functional (2.3): 

· · ( 8qJJ 8kqµ ) 8qJJ 
dE.L: AJ-+ AJ+I, dE.LL q, aea- , ... , 8{"'' ... aeak = :F,,(L) 8{i+I' (2.5) 

where a= (1, ... ,j,j + 1),a = (1, ... ,j) and :F,,(L) are l.h.s. of Euler-'-Lagrange 
equations of the Lagrangian L, i.e. the variational derivatives of the corresponding 
functional (2.3): :F,,(L) == 6!,.SL([q({)]) 
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.For example, if L·E A{(M), L = L(q, *), then 

d L( ~ ~)--. . E.L q, ae•, ae-ae" -
. . .. (BL 82 L !!.t:_ 82 L ....!!:L_) ~ 
~I' °2:15a,.05i aq" - aqvaq~ ae" - aq~aq~ ae 0 ·~ ae1+1 · 

(2.6) 

(I ' ' Id AicA'j+i) n genera . E.L k _ 2k . . . 

One can show that itS \Vell as for exterior differential d, d2 = 0 [17] and consider• ..... , . -. . ~L 
the c6homology of the complex 

{Ai(M),dE_tJ: . A0(M)~A1{M)~A2(M)~., .. 
(2.7) 

From the definition of dE.L and from (2.4) it follows that Ldw = dE.LLw. The complex 
{!'li(M), d} of differential forms is subcomplex of the complex (2.7). 

The spaces Ai(M) of Lagrangians for any given j (and their subspaces AHM) 
for any given j and k) as well as f2i(M) can- be naturally considered as 9-modules 
if we define the acti~n of Lie algebra elements on Lagrangians, as follows: if x E Q 
and x = ll>x = Xl'(q)8/8ql' (see (2.1)), then 

(x o L) = .CxL = Xl' 8aL + (D0 XI') 
8
8

: + (D.oDaXI') 
8
8: + ... 

qi' qa, qo,/J (2.8) 

where Da ~ d1o = q~-% + q:.o~ + ... is the total derivative. If a Lagrangian • q ~ . 

corresponds to a differential form, then (2.8) corresponds to usual Lie derivative: 
.CLw = Lew- To the identity .C~w = dw J 1/ + d(w J 1/) for Lie derivative on forms tl:ie;e 
corresponds the identity .C,,L = 111':FiL) + D0 N"', which leads to Noether currents 
N"' in the case .C,,L = 0. 

Considering Q-differential o corresponding to this module structure we come· to 
the spaces Hi(Q, A[(M)) of Q-cohomologies with coefficients in A{(M); . · . 

In the same way as for differential forms one can extend the action of dE.L on the 
spaces Ci(Q, Ai) of i-cochains with values in Ai and consider the double complex 
{ Ci(Q, Ai), dE.L; o} because dE.L and h commute also for Lagrangians. The complex 
{ Ci(Q, f2i), d, h} is embedded in this complex. · 

The cohomology of the complex (2. 7) evidently differs from the de Rhain coho-
mology, but on the other hand one has · 

Proposition 12 

1. If Lagrangian Lis exact, L = dE.LL' and it is a density (see the remark above), 
then it corresponds to an exact differential form. 

2
The complex (2.7) differs from the standard variational complex (see for exaq:1ple [20,26]). 

It was introduced in [17] by Th. Voronov for the Lagrangians on superspace. This complex 
and Proposition are useful in supermathematics where the concept of usual differential form-is 
ill-defined [18,19,21). 
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2. If Lagrangian L is closed and it depends only on first derivatives, dE.LL = 
0, L E AL then it corresponds to a closed differ~ntial form up to a constant 

L = Lw + c, dw = 0. (2.9) 

In the case when Lin (2.9) is a density then one has c = 0. 

The 2-nd statement immediately follows from (2.6) and from the definition of 
the density. We do not need the first one here and we omit its proof. 

We use this proposition to consider the following subcomplex (C*,dE.L) of the 
complex (2.7), which will be of use in this paper: 

(C*' dE.L): A0(M)~A~(M)~dE.LA~(M)--+ 0, (2.10) 

where, like in (2.7), C0 = A0 (M) is the space of functions on M, C1 = AHM) is the 
space of Lagrangians L(ql', <jl') of classical mechanics defined on the configuration 
space M, C2 is the subspace of coboundaries in A~. It contains elements correspond­
ing to equations of motion of some Lagrangian from Al: a E C2 = dE.LAHM) iff 
there exists a Lagrangian L such that a= dE.LL. 

From the 2-nd statement of Proposition 1 it follows that the cohomology of this 
truncated complex is strictly related to the de Rham cohomology: 

H0 (C*,dE.L) = H0(M),H1(C*,dE.L) = H1(M) +R, H2(C*,dE.L) = 0. (2.11) 

. For our purposes, it is also useful to consider the following modification of the 
· complex (2.7). We consider the spaces {Ai}, where Ai = Ai /R, if j ~ 1 and 
A0 = A0 = n°(M). Elements of Ai (j ~ 1) are j-Lagrangians defined up to 
constants. We denote by T, the equivalence class of Lagrangian L in A. Instead 
the complex (2.7), one can consider the complex 

{Ai(M),dE.L}: A0 (M)¼A1(M)¼A2(M)¼ ... (2.12) 

and respectively the double complex {Ci(Q,M),dE.L,h} of i-cochains on Q with 
values in Ai. The differentials dE.L and 7i are well defined in a natural way: dj,_L).. = 
dE.L>.. and l,J., = o>.. where Xis the equivalence class of the cochain >.. in C•(Q,A•). 
The differential d E.L does not differ essentially from d E.L: If >.. is a cochain with 
values in Lagrangians, then it is easy to see that 

"JE.Lx = o, ~ dE.L>.. = o. (2.13) 

To (2.10) there corresponds the subcomplex 

(C*,di;;_L): A0 (M)¼Al(M)¼(dE.LA}(M))--+ 0 (2.14) 

of the complex (2.12). From (2.13) it follows that for the truncated complex C* one 
has 

H0 (C*,dE.L) = H0 (M), H 1(C*,dE.L) == H1(M), H2(C•,dE.L) = 0. 
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Non-pl~asant- const~nts do not aris~ here like in (2.11). The difference between 
the complexes {Gi(Q,Ai),dE.L>S} and {Gi(Q,Ai),dE.L'6} becomes non-trivial on 
the level of 1-cochains at least. It corresponds to the difference between time­
independent and time-dependent Noether charges. (See, e.g., Example 1 in Sec_tion 
5.) .. 

Firially, we want to note that to every Lagrangian L on M there corresponds a 
density AL on the· space M = M x { space of parameters}: To the functional (2.3} 
there corresponds the integral of the density over the graph of the map (2.2). For 
example to Lagrangian L( qµ, !!f) of classical mechanics one can put into correspon­
dence the density 

( µ ~ dt) ( µ ~) dt • AL q , dr , d-r = L q , -t · -;[;:, 
'f . ' '( . ) th . A .. dT A (2.16) 

_1 T --+ T T , en L -+ dr' L •• 

To a path qi.i(t) there c;orresponds the curve (qµ(r),.t(r)) and one has SL([q(t)]) :;= 

SAL ([q( r), t(r)]) for any parametrization q( T ). (Thjs transformation is useful in the 
formalism where fields and space variables are on an equalfoC>ting (22).) , 

His easy to see that for densities AL the difference between complexes (2.10) and 
(2.14) is removed. To redefinition of.Lagrangian L by a constant c there corresponds 
redefinition of AL by the form cdL . . . . . 

3 Cohomology of Lagrangians Double Complex 
and ,its ~pectral Sequences . . 

Using now the complex~s constructed in the previous section we investigate system-
atically the problem which we considered in the· Introduction. · 

We study simultaneo_usly two double complexes, the double complex( E•·•, d E.L, 6) 
of cochains on g with values in the spaces of the complex 'C• defined by (2.10), 
{Ei•i,dE.L,6} = {Gi(Q,Ci),6,dE.L)}, and the double complex (E•·•,dE,L•S) of co­
chains on g with values in the spac,es of the complex c* defined by (2.14), 
{Ei-i,dE_i.,8} = {Gi(Q,Ci),dE.L,8)}. 

The complex (E*·*,dE.L>6) is as follows 

A0(M) ~ AHM) ~ dE_{AHM) 
d 
~ 0 

6 l 6 l 6 l 
G1(Q,A0(M)) ~ c1(Q,AHM)) ~ c1(Q,dE.LAt{M)) 

d 
~ 0 

6 l 6 l 6 l (3.1) 

G2(Q,A0 (M)) ~ c2(Q,AHM)) ~ c2(Q, aE_LAHM)) 
d 
~ 0 

6 l 6 l 6 l 

and the complex (E•·•., dE-L, 6) is represented in a similar way (by putting the "bar"s 
in corresponding places). 
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The differential of the complex E*·* is equal to 

Q = ( -1 )i 6 + d E.L , 

and Q = ( -1 )iS + d E.L for the complex E•·•. 

(3.2) 

The problem of weakly invariant Lagrangians classification can be now reformu­
lated in terms of these double complexes. 

To do this we consider their spectral sequences { E;·•}, { E;·•} and the transposed 
spectral sequences { 1E;·•}, { 1E;·•}. The relations between { 1E;·•} and {E;-•} lead 
to the hierarchy in the space of weakly Q-invariant Lagrangians with time-indepen­
dent Noether charges, the relations between { 1 E;·•} and { E;·•} lead to the hierar­
chy in the space of weakly Q-invariant Lagrangians with time-dependent Noether 
charges, and the relations between {E;-•} and {E;·•} lead to the relations between 
these two hierarchies. 

We denote by Vo.o (see Introduction) the subspace of weakly Q-invariant Lac 
grangians in the space E0·1 , f.e., Lagrangians of classical mechanics on M, whose 
motions equations l.h.s. -are Q-invariant: 

Vo.o = {L: LE A~ and 6dE.LL =:== 0}. (3.3) 

One can see that the cochain f = (dE.LL,0,0) is a .cocycle of the differential Q iff 
L E Vo.o- The cohomology class [(dELL, 0, 0)) of this cocycle belongs to H2 (Q). If we 
express the cohomology of differential Q via the stable terms of transposed spectral 
sequence { 1 E;-•}, i.e. calculating H*(Q) in perturbation theory, considering in (3.1) 
the differential 6 as zeroth order approximation for the differential Q, we see that 
[dE.L Vo.0) 00 = 1Er;;,2 is the subspace of H 2 (Q). On the other hand if we express the 
cohomology of differential Q via the stable terms of spectral sequence {E;-•}, i.e. 
calculating H*( Q) in perturbation theory, considering in (3.1) the differential dE.L 
as zeroth order approximation, we express H 2 (Q) in terms of {E~-i}. The relations 
between the space 1E!2 and the spaces {E~-i} lead to the relations between the 
space of weakly Q-invariant Lagrangians and cohomologies groups of g and M. 

The technique of spectral sequences calculations see for example in (16) or in 
Appendix 2. 

The spaces {E;•i} and {E;•i} 
We pay more attention to the calculations of the spaces'{ E;·•r The calculations 

of the spaces { E;·•} can be performed in a similar way. The spaces { E~-i} are equal 
to the cohomologies of operator dE.L: E~-i = H(dE.L,Ei•i). From (2.11) and (2.15) 
it immediately follows that 

R 
Gl(Q) 
c2(g) 

Ej'* 

H1(M)EBR ·o 
G1(Q, H1(M) EB R) 0 

0 
0 
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.Ei'* 

R H 1(M) 0 
0 1(9) 0 1(9, H 1(M)) 0 
0 2(9) O 

0 

(3.4) 



Hereafter we identify the differential forms with Lagrangians corresponding to them 
by (2.4) and the differential dE.L on these Lagrangians with the differential d on 
forms. 

The operator d1 acts in the columns of Et* and is generated by h. By definition 
E;•i = H(Ef•i, d1). It is easy to see that E~-0 = Hi(Q) is i-th c~homology group of 
the Lie algebra g with coefficients in R. · 

Now we prove that Er,1 = Eg·1• Indeed if c E Et1 is a constant ( c ER), then 
d1 C is evidently equal to zero. To 'prove that d1 H 1 ( M) = 0 we consider the following 
homomorphism -;r from the space of differential I-forms into the space of 1-cochains 
on g with values in functions on M (in the space A0(M)): . 

1rw(h) = wJh, (3.5) 

where h is the fundamental vector field ~h corresponding by (2.1) to the element h 
of the _Lie. algebra g. From the standard formulae of differential geometry it follows 
that . 

if dw = 0 then hw = d1rw and h1rw = 0. (3.6) 

Hence for the cohomology class [w] in H 1(M) one has d1[w] = [hw] = [d1rw] = 0 in 
Ef·1 

.' Consequently Er·1 = ~-1
. 

Now we calculate Er1
• If [ch E Ef-1 then 

c = L t<-~J ® w(.\) + t' + da, 
.\ 

(3.7) 

where t, t' belong to C1(Q) (are constants), the set {w(.\)} of closed differential 1-· 
forms constitutes a basis in the space H 1(M) of 1-cohomology and a is an element 
of E1.o_ Straightforward calculations using (3.5, 3.6) give 

d1 [c]i =}:[ht(.\)® wC.\) +ht'+ d( .. . )]= 0:::} ht(.\)= 0 and ht'= 0. (3.8) 
.\ 

On the other hand, coboundaries in Ef-1 are equal to zero because Et1 = Eg-1
• 

Hence from eq.(3.7) it follows that EJ-1 = H1(M) ® H1(Q) EB H1(Q). (In the case of 
complex Ef-1, t' in (3. 7) is equal to zero and from (2.13) it follows that (3.8) hoids 
also.) 

We arrive at the following tables 

E2·• E;·• 

R H1(M) EBR 0 R H1(M) 0 
(3.9) 

H1(Q) H1(Q) ® H1(M) EB H1(Q) 0 H1(Q) H1(Q) ® H1(M) 0 
H2(Q) 0 H2(Q) 0 

Ha(Q) 0 Ha(Q) 0 

One can show that the spaces {E;•i} in (3.9) as well as {E;·;}, which are of interest 
r ( . + . < 2) t bl Ei.i Ei,i E; i E;., E;., E'·' It 1or us z J _ are s a e: 2 = 3 = ... = ~ , 2 = 3 = . -- = oo • 
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is evident without any calculations for the spaces Eg·0 , EJ·0 , because differentials d2 

on these spaces go out of .the table and the boundaries are zero by the same reasons. 
The spaces Eg- 1 and E?·0 are stable, because the differential d2 ~ Eg-1 -+ Er0 is tri'vial. 
It follows from eq.(3,5): d2 [w].= [Q(w,1rw)] = [h1rw] = 0. The same arguments lead 
to the stability of the space EJ-1 • One can perform similar considerationidor the 
spaces { E;•i}. • · _ 

Hence, the tables (3.9) establish the relations between the spaces Hm(Q), H"'.(Q) 
(m = .0, 1, 2) and the spaces E:;,m-,i, E~m-i respectively (see Appendix 2). · 

Evidently H 0 (Q) = H 0 (Q) = R. Considering the terms {E~;1,.E;;0 } in (3.9), we 
see that 

H1(Q) ~ H1(Q) ·and H1(M) EB R = H1(Q)/H1
((]). (3.10) 

according to eq. (A2.ll). These relations define a canonical projection p1 ofH1(Q) 
on H 1(M) EB Rand an isomo_rphism t 1 of kerp1 on H 1(Q): If L = (L, a) is a cocycle 
of Q, then L = w+c, where w is a dosed form; c is a constant, and p1 ([L]) = [w] +c. 
If c = 0 and w = df, then a - hf is a 1-cocycle in constants which is equal to t1 ( [L]). 

Using' the homomorphism (3_.5) on~ can establis'h also the isomorphism 
' . . . 

H1 (M) EB H1(Q) EB R-'-+H1 (Q): · [w] + t + CH [w + c; t + 1rw] -(3.iij 

which corresponds to (3.10) and splits H1(Q) on components. , 
Similar consideration~ for.the table.Ei'* lead'to analogous conclusions: H1(Q) ~ 

H1(Q) and H1(M) = H1(Q)/H1(9); H1(M) EB
0

H1(Q)= H1(Q). . . 
Considering in the same'way the terms {E!2, E;;1, E!,0 } in_ (3.9), we see that 

H2(Q) ~ H2(Q) and H1(M) ® H1(Q) EB H1(Q) = H2(Q)/H2(Q). (3.12) 

These relations define the canonical projection 

P2= H2(Q) - H1(M)@ H1(Q) EB H1(Q), 

while on the kernel of p2 we have the isomorphism 

t2: kerp2 - H2(Q). 

We consider now (3.13) and (3.14) component-wise. 

(3.13) 

(3.14) 

Let f = [.r,>.,J] E H 2(Q) be a cohomology class of the cocycle (.r,>.,f): 
Q(.r,>.,J) = 0. d~.L). = -h.r,h>. = df,hf = 0,.. .r E E0

•
2 ,>. E E1.1,f E E 0

·
2

•• 

The space E 0·2 contains co boundaries only, so cocycle ( .r, >., !) is. cohomological to· 
(0,>.',f) where>.'=>.+ hL and L: .r ;= dE.LL, .. Since dE.L).' = 0, from Proposition 
1 it follows that 1-cochain '..V takes values in closed differentiall-forms + constants: 

Vh E g . >.'(h) = w(h) + t(h) ,. ' . (3.15) 

Using (3.7, 3.8) we see that to>.' thei-e\:orresponds'an el~ment of H1(M) ®H1(9) EB 
H 1(Q) which is nothing but P2(f). 
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In the case p2(f) = 0 it means that >.' = do:, where o: E E1.o and the cocycle 
(O,>.',f) is cohomological to (O,O,J-oo:). Since d(f-oo:) = 0 so f -oo:, is cocycle 
in Z2(g). The cohomology class off - fo in H2(g) is t2(f). 

Similar considerations for the second "antidiagonal" in the table E2·* lead to 
the analogous conclusions for H 2(Q): H2(g) ~ H2(Q) and H1(M) 0 H1(g) = 
H2(Q)/H2(g); p2: H2(Q) --- H1(M) 0 H1(g). An isomorphism ti: kerp2 -+ 

H2 (g) is defined on the kernel of p2. 
From the considerations above we see that natural relations between complexes 

( E*·*, d E.L, a), ( E•·•, d E.L ,6) lead to the isomorphisms 

H 1(Q) = H1(Q) © R, H2(Q) = H2(Q) © H1(g). 

The decomposition of H2(Q) defines the projection 

u: H 2 (Q) -t H 1(g). 

(3.16) 

(3.17) 

Here u(f) is equal to the element of H 1(g) in the r.h.s. of eq. (3.15). This pro­
jection will be useful for extracting Lagrangians whose Noether charges are time­
independent in the space Vo.o of weakly invariant Lagrangians. 

The spaces { 1 E;-i} and { °'igJ} 
Now we return again to the complex (3.1) and express the cohomologies H(Q) 

and H(Q) in terms of the transpos'ed spectral sequences { 1E;·•} and { 1E;·•}. 
For constructing I Ej"* and I Ej"* we have to consider the cohomology of verti­

cal differential '5 as zeroth order approximation: 1Ej"* = H(E*·*,o) and 1Ej"* = 
H(E•·•, '5). We arrive at the tables 

A?nv · ALnv dE.LVo.o 
tEt* = H1(g,A0(M)) Hl(g,AD 

H2(g,AO(M)) 

and 
A?nv Atnu._ dE.LVo.o 

tEj"* = H1(g,A0(M)) Hl(g,AD 
(3.18) H2 (g,-A°(M)) 

Here A?nv = C0 (g, A0 (M)) is the space of the functions on M invariant under the 
action of the Lie algebra g and ALnv is the space of g-invariant Lagrangians from 
Ai. The space Alinv contains the classes (Lagrangians quotiened by constants) 
whose variation under symmetry transformations lying in g produces g-cochains 
with values in constants: 7i. E Al;nv {::} '5A = 0 {::} '5;A = t;. These Lagrangians have 
linear time dependent Noether charges (see (1.13)). The space dE.L Vo.o is the image 
of the subspace Vo.o of weakly g-invariant Lagrangians under the differential dE.L 
(see (3.3)). From (2.13) it also follows that I E0 ·2 = dE.L Vo.o• 
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The differential 1d1 generated by d E.L acts in rows of the table I Ej"* ( compare. 
with the table (3.4)). For 1E2·* = H('E:-•, 't'd~) we_obtain 

R Hlnv(M) © R dE.L Vo.o/(dE.LALnv) 
1 E;·• = 1 E~-0 (3.19) 

Here Hfnv(M) is the space of closed g-invariant differential I-forms quotiened by 
the differentials of g-invariant functions. 

One can consider a similar table for I Ei"*. 
The space 1EJ·0 in (3.19) is the subspace of H1(g,A0(M)). It consists of the 

classes [o:) E H1(g, A0(M)) such that the equation do:= oL is solvable: (Compare 
with)l.2)). We see that the table (3.19) is not stable in the terms which we are 
interested in, because the differential· 1d2 acting from I EJ·0 in 1 

~-
2 is not trivial: 

1d2 [o:) = 1[dE.LL]2. The next table 1E3·* = H('E2·*, 1d2) is stable in the terms we 
are interested in: · 

R 
IE*·*= tE0.1 

3 3• 

H;~v(M) © R d,, l Vo.o/(d,,, ALa,) 
· ll('d:; 'EJ'.ll) 

(3.20) 

From the general properties of spectral sequences it follows that in (3.20) 1 Eg-2 = 
1E2} is the subspace in H2(Q) and the space 1Ef0 = 1Et0 (which is a subspace of 
1Er0) is the quotient space of H1 (Q) by the space 1Eg•1 = H;nv(M) © R (compare 
with (3.10)). Hence from the decomposition (3.11) of H1 (Q) it follows that 

1Ef0 ~- (/l1(M) © H1(g))/ Hlnv(M) • (3.21) 

Hfnv(M) is embedded in H1(M)©H1 (Q) via amonomorphism: [w]inv I-+ ([w],-:-1rw), 
where 1r is defined by (3:5). If [w]inv # 0 in Hlnv(M) and [w) = 0 in H 1(M),,then 
7rW =of# 0 in H 1(Q), where w ~ df. . ', .. 

On·'the other hand the element [a) in H 1(g, A0 (M))
0 

belongs to the subspace 
1 El·O if do: = oL such that dL = 0. 'Hence from Proposition l and (3.6) it follows 
that for this elenientthere exist such [w) ~ H1(M) and t E H1(g) that 

[a) = [1rw + t]. (3.22) 

The homomorphism ([w), t) 1-+ [1rw + t] E H 1(g, A0 (M)) relates (3.21) with (3.22). 
One can see also that in the case t = 0 this map induces an isomorphism 

:: ~ , •- • > " • ; 

H1(M)/Hl,.v(M). = 1E~·0/H1(g) •.. '(3.23)' 

Here Hfn.,(M.).,and H1 (g). are the images of natural homom~rphisms Hln.,(M) -+ 
H1 (M) and H 1(g) :--t _1El·0 respectively. . . . . ·. . 

'°'or the table 1E*·* one has 1E0·1 - H1 (M) · the spaces I E1·0 and I Et.0 
as . r' 3 , 3 - m.,, . I ~ 

well as the spaces I EJ-0 and;· 1 E}0 coincide, but on' the other hand I EJ·0 ~ t EJ·0. 
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In the tables (3.18)-(3.20), every space I E:·0 is a subspace of the previous one and 
respectively every space I E~·2 is the quotient space of previous one: We denote by 
IIr the homomorphism which puts into correspondence to every weaklf g.invariant 
Lagrangian its equivalence class in the space, 1 E~·2: 

IIr: Vo.a-+ 1E~·2
, IIr(L) = 1[dE.LL]r, ~II3 ~ H 2(Q). (3.24) 

Similarly Ilr: Vo.a-+ 1E~·2 • 

Comparing the content' of the spaces { 1 E:·0
} and { 1 E~·2 } in the transposed 

spectral sequences (3.18)-(3.20) with the above results for the spectral sequence 
{E;-•}, we come to · · 

Proposition 2 
a) To weakly g~invariant Lagrangians there correspond. elements of the space 

1Eg:2
, i.e.; of H 2(Q). Thus to these Lagrangians there correspond elements inEJ-1 

or in Ef0 via homomorphisms p2 and t 2 defined by (3.13), (3.14). 
b) To weakly g-invariant Lagrangians whose images in the space I Eg-2 vanisb, 

IIJ( L) = 0, there correspond elements of I E~-2 which belong to the image of the dif­
ferential 1d2 • Thus to these Lagrangians there correspond elements in I EJ·0 defined 
up to t_he space 1EJ-0 (see 3.21), which is the kernel of this differential. 

c) The space I EJ·0 is related to weakly g-invariant Lagrangians whose image in 
the space I E~-2 is equal zero: II2(L) = 0. · 

A_ similar statement is valid for the spaces { 1 E;·•}. In the next section, using this 

Proposition, we establish a hierarchy in the space of weakly g-invariant Lagrangians'. 

4 The calculation of the hierarchy . 

Now using the calculations of the previous Section for a given pair (g, M], we estab­
lish a hierarchy in the space of weakly g-invariant Lagrangians of classical mechanics. 

Let U be an arbitrary subspace in the space AHM) of the classical mech~~ics . 
Lagrangians on M. Let Uo.o b~ the subspace of weakly g.irivariant Lagrangians in U: 
Uo.o = V0;0 nU, \Vhere Vo.o•is the subspace (3.3) of all weakly g.invariant Lagrangians 
in AHM). From Proposition 1 and (3,3) it follows that for an arbitrary Lin U the 
condition L E Uo.o is equivalent to the condition that the cochain oL takes values in 
closed differential forms + constants: 

odE_LL = 0 {::} O;L = w;,,iJ" + t; and dw; = dt; ,= 0. (4.1) 

(Compare with (1.11)). Here o;L is the value of the cochain oL on a basis vector 
e; of the Lie algebra g. (As always, we identify differential forms with Lagrangians 
corresponding to them by (2.4).) · 

Using the homomorphism II3 defined by (3.24) and the projection homomor-
phism (3.17) u2 of H 2(Q) on H1(9), we consider the homomorphism · 

q, ::,· u o II3: UoD-+ H 2(Q)-+ H 1(9) 
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and we denote 
Ko= H 1(9). (4.2) 

Component-wise according to (3.15), W;(L) = t;, where t; is defined by (4.1). We 
denote by U

0
.
1 

the kernel of this homomorphism. In the case U = AHM) it is just 
the space Vo.I in (1.14) defined by the condition (1.12). 

Now using Proposition 2 we· define recurrently the homomorphisms { </>.} and 
respectively {¢.} on the subspaces of U0 .1. and on the subspaces of Uo.o, such that 
every homomorphism is defined on the kernel of the previous one. Moreover, the 
domains for these homomorphisms will be related via the homomorphism q,. 

Using the statement a) of Proposition 2, we consider the compositions 

</>1 = P2 o II3: Uo.o -· 1Eg•2 ~ H2(Q) -t E}·1 = H1(M) ® H
1
(g) EB H

1
(g), 

¢1 = p2 o Il3: Uo.o-+ 1Eg•2 ~ H 2(Q)-+ EP = H 1(M) ® H 1(9) 

and we denote 
K1 = H1(g) (8) H1(M). (4.3) 

From (3.15), (3.16) it follows that the restriction of ¢1 on the subspace Uo.1 
coincides with ¢>1. We denote by U1.0 the kernel of the homomorphism ¢1 and 
by U1.1 the kernel of the homomorphism ¢>1. The space U1.1 is also the kernel of 
homomorphism q, restricted on U1.0, Using again the statement a) of Proposition 2 

(see also (3.14)) we consider the compositions 

and we denote 

</>2 = t2 o Ih: U1.1-+ 1Eg-2 ~ H2(Q)-+ E~·2 = H2
(9), 

¢
2 
= I2 o Il3 : U1.0 -+ t El2 ~ H2(Q) -t E~-2 = H2(g) 

K2 = H 2(9). (4.4) 

The homomorphism ¢2 evidently coincides with </>2 on U1.1. 
For example, if the condition (4.1) is satisfied, for a Lagrangian L in U, i.e., 

L E Uo.o, then ¢1 ( L) is equal to the cohomology class of Wiµ. dqµ. in H
1 

( 9) ® H
1 

( M) 
defined by (3.7); LE U1.0 iff {w;µ.dql-l} are exact forms. In this case ¢2(L) is equal to 
the cohomology class of the cocycle f;i = (8a);i in H 2 (g), where da; = w;. If also 

t; = 0, then L E U1.1• 
We denote by U2.0 the kernel of the homomorphism ¢2 and by U2.1 the kernel of 

the homomorphism ¢>2. It is easy to see that U2.1 = kerll!lu2 _0 • 

For every Lagrangian L E U2.1 one has II3(L) = O. From statement b) of 
Proposition 2 it follows that one can consider the homomorphism 

<p3 = ('d2)-1 0II2: U2.1 -t 
1E~·2 -+ 1EJ·0/ 1EJ·

0 ~ 1
Ef·

0
f'E~-

0
. 

Using (3.18) and (3.21) we denote 

l{ 'El.0/tEl.0 Hl(g,AO(M)) 
3 = 1 3 = (H1(M) EB H1(g))/Hlm,(M) 

(4.5) 
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By similar considerations for the space U2.0 , we can define the homomorphism 
</>3 = ( td2)-1 o Il2 of the space U2.o into the same space l<3. 

One can see that in this case, as in the previous ones, </>3lu2_1 = <p3 and U3,1 = 
kerWlu3_0 , where by U3.1, U3.o we denote the kernels of </>3 and </>3 respectively. 

For example, in the case when Lin (4.1) belongs to U2.1, one can choose a; such 
that da; = w;µdqµ and (80);; = 0, because </>2(L) = 0. The equivalence class of a; 

in l<3 is <p3(L). 
In the case when L E U3,1, one has lh(L) = 0. It means that the value of 

the homomorphism II1 (see (3.24)) at this Lagrangian is equal to the value of this 
homomorphism at some Q-invariant Lagrangian: Il1(L) =dB.LL= dE.LLinv• From 
Proposition 1 it follows that L = Linv + w, where the closed differential 1-form w 
is defined uniquely up to a closed Q-invariant form and an exact form. This defines 
the homomorphism 

<p4(L): u3.1-+ H 1(M)/(Hi~v(M))~, 

which can be considered as taking values in the space t Ef0 / H1(9)., according to 
eq.(3.23). We denote 

l<4 = H1(M)/(Hi~v(M))• = tEf0jH1(9) •. (4.6) 

One can define_the homomorphism </>4(L): U3.0 -+ I<4 in a similar way. 
Similarly to the previous cases 4>41u3.l = <p4 and u4.1 = kerWlu •. o, where by u4.1, 

U4.0 we denote the kernels of <p3 and </>3 respectively. 
From the definitions of </>4 and </>4 it is evident that Lagrangians belonging to U4.1 

can be reduced to Q-invariant by the redefinition on exact form (total derivative). 
The spaces Us.u constructed here ( s = 0, 1, 2, 3, 4, u = 0, 1) coincide with the 

spaces V •. u considered in the Introduction (see (1.14), (1.15)) in the case U = AHM). 
These considerations can be summarized in 

THEOREM 
Let U be an arbitrary subspace in the space of classical m_echanics Lagrangians 

for a given pair [Q, M]. Let Uo.o be the subspace ofU defined by (4,1) which contains 
weakly Q-invariant Lagrangians in U. Then the following relations establishing the 
classification (hierarchy) in the space Uo.o are satisfied 

U4.1 ~ U4.o 
n1 n1 

l<4 
q,4 

U3.1 C f-- u3.o 
"¢. - l<4 

n1 n1 
l<3 

q,3 
U2.1 ~ U2.o 

¢3 
l<3 f-- -n1 n1 (4.7) 

I<2 
¢2 

U1.1 C U1.o 
¢2 

I<2 f-- -n1 n1 
I<1 

¢1 
Uo.1 C f-- Uo.o 

¢, - I<1 
i:r, ! 

I<o 
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The spaces Us.u are intersections of U with the spaces V •. u defined in Introduction 
(see (1.6)-(1.15}}; the spaces I<, and homomorphisms "iI!,<f>.,<f>. (s = 0,1,2,3,4,) 
are defined by the eqs. (4,2)-(,f.6}, the double filtration {U •. u} is subordinated to 
thesf{jomomorphisms: 

U •. o = ker(</>.: U.-1.0-+ I<,), u •. 1 = ker(</>.: U.-1.1 -+I<.), 
u •. 1 = ker(W: u •. o-+ I<ti), <f>.lu,-1:1 = </>. · 

We denote the diagram (4.7) by V([Q,M],U) and call it the hierarchy diagram 
for the subspace U. In the case when U = AHM) is the space of all Lagrangians of 
classical mechanics on M, we denote the diagram V([Q, M],U) shortly by V([Q, Ml). 

The diagram V([Q, M],U) measures the differences in the spaces {Us.u} for an 
arbitrary subspace U. 

We say that a weakly Q-invariant Lagrangian L E U is on the floor s if L E U •. o 

and L 't- Us+l.O· All Lagrangians from u4.0 are on the fourth floor. 
We say that a weakly Q-invariant Lagrangian L is on the floor s+ if this La­

grangian is on the floor s and it belongs to U,.1. All other Lagrangians from the 
floor s are on the floors_. 

\) All Lagrangians which are on the "plused" floors have time-independent Noether 
charges, except Lagrangians on the zeroth floor. 

The Lagrangians which are on the floor s have non-trivial images in the space 
J<,+1 in (4.7). A Lagrangian on the floors_ have also non-trivial image in I<0 under 
the homomorphism W. 

The hierarchy diagram will be called trivial, if all the spaces I<, vanish. 
Returning to the table (1.6) in the Introduction, we can conclude that a La­

grangian which .possesses the property s in (1.6) and which does not possesses the 
property s + l in (1.6) has non-trivial image in the space I<,+1• 

An evident but important corollary of the hierarchy diagram is that a floor is 
empty, if the corresponding space I<, is trivial. For example, in the case when the 

1 first de Rham cohomology of the configuration space is trivial then I<1 = /(4 = 0, 
and the zeroth and the third floors are empty. In the case when the algebra g is 
semisimple, only the floors 2+, 3+,4+ can be nonempty, because in this case H1(Q) = 
H2(9) = 0 and hence 1(0 ;} 'I<1 = I<2 = 0. 

In general, the inverse)tatement is not valid. From the fact that the space 
~. _, , '•4 J<. is not trivial does not-'follow that the floor s - 1 is not empty, because the 

homomorphismlin (4.7) are not surjective in general. For example, homomorphism 
<p3 is not surjective in general because the map td2 which induces this homomorphism 
is defined on the subspace I E~-1 of the space H 1(Q, A0 (M)). 

We say that the diagram V([Q,M],U) is full on the floors+ (s < 4) if </>,+1 is an 
epimorphism onto the space I<., we say that this diagram is full on the floor s_, if 
the restriction of W on U,.o is an epimorphism. In the case if the diagram is full on 
the floors s+ and s_ we say that it is full on the floor s. 

For a given pair [Q, M], two subspaces U and U' in the space AHM) of classical 
mechanics Lagrangians on M will be called equivalent with respect to the hierarchy, 
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if the images of all the homomorphisms </is,¢>., Wlu,.o for the diagram 'D([Q, M],U') 
coincide with the images of the corresponding homomorphisms for the diagram 
'D( [Q, M], U). It is evident that in this case for arbitrary L E U there exists L' E U' 
such that L' - L belongs to the space U4 .i, i.e., 

L' = L + Linv + total derivative. (4.8) 

This construction can be used for defining in the space Uo.o a grading corresponding 
to the filtration (4.7) (see the examples in the next section). 

Now we use it for simplifying the diagram (4.7) for physically important subspace 
UP0I of Lagrangians which are polynomial in velocities. Let Uf = !V(M) be the 
subspace of formal Lagrangians in UP0I corresponding to differential forms by (2.4), 
and u•c = A 0 ( M) be the subspace of formal Lagrangians in UP0I which are functions 
on M. 

One can see that the space UP0I is equivalent to the space uJ ff)U80 with respect 
to the hierarchy. 

To prove it, we note that every L in UP0I can be represented as 

L(q, q) = L Ln(q,q) = L Ln(q, q) + Aµ(q)qµ + <p(q), (4.9) 
n?:O n?:2 

where Ln(q, q) is the polynomial on q of order n. Using the fact that the Lie deriva­
tive does not change the order of a polynomial: (i5L)n = i5(Ln) one can see from 
{._4.9) and the d:finitio~s of the homomo:phisms' \ll, ¢i.; ¢>. that \ll(L )i=.t( <p ), ¢i.(L) = 
¢i.(L) = ¢i.(Aµqµ). This proves the equn,:alence. ~,.,~.1 

The ·homomorphism \ll in this case takes values in the subspace of H 1(Q) iso­
morphk to the cohomologies ofHlnv(M) ,which are {tivial in H1(M): If D<p E H 1(Q), 
then 4'P E Hlnv(M); if w E Hlnv(M) and w = dip, then D<p E H 1(Q). 

. From these facts it follows that for the diagram D([Q,M],UP01 ) the followi,ng 
additional relations are satisfied: · · . 

U pol upol B upol u ffi A 
s.O = s.1 ff> , s.1 = 4.1 '17 • • ( 4.10) 

Here the quotient space B is equal to U0'.'o/U0~1 , where U0'.'o is the space ~of functions 
in A 0 (M) whose 'Q-syminetry variation is constant and U0\ = A?nv(M) is the space 
of Q-invarianf functions. Respectively A. = u! I are the corresponding subspaces of 
the space fl 1(M) of differential I-forms. · 

Weakly Q-invariant Lagrangians ~hich belong to the space Upol differ from the 
Lagrangians in Uf.;1 (Q-invariant Lagrangians up to a t~tal derivative) by the iriter­
action with "electromagnetic" field whose field strength is Qainvariant. In particular 
a Lagrangian on the floor s_ differs from a Lagrangian on the floor s+ by the inter­
action with "electrical field-I-form Eµ = fJip/fJqµ. The value of this I-form on every· 
symmetry vector field is constant: Eµ(q)ef(q) = t;, where {ef(q)} ate fundamerital 
vect~~ fields correspohdidg to the basis· { e;}'in the Lie algebra g via the map (2.1). 
The time dependence of the corresponding _Noether charge is proportional tot;. 

20 

-j-

'\ 
:I 

l 

l 1-. 

In general, for an arbitrary Lagrangian in V, these properties are not satisfied 
(see, e.g., Example 1 in Section 5). 

The second physically important example is the subspace Udens of Lagrangians 
on M which are densities (se_e the Remark in Section 2). 

It is easy to see that U •. 1 = U •. o in thi.s case, i.e., all the floors s_ are empty, 
because the homomorphism \ll is trivial. It follows from the definition of the homo­
morphism \ll and the considerations in the end of Section 2. 

We do not consider here systematically general methods to handle with calcu­
lations of the spaces I<. and corresponding homomorphisms for an arbitrary pair 
[Q, M], but we note only some points which can be useful for analyzing the con­
tent of the space /{3 in the hierarchy diagram and the groups H1 (Q,A.0 (M)) which 
generate these spaces. . 

First we note that the basic example of [Q, M] pair is provided by the following 
construction. Let M ~ N be a subspace of the space N and the action of a Lie 
group G be defined on N. The action of G on N determines a pair [Q,N] as well 
as a pair [Q,M], where g = Q(G) is the Lie algebra of the group G. This pair in 
general cannot be generated by a group action on M. 

We say that a pair [Q; M] is transitive, if fundamental vector fields span the 
tangent bundle TM: Vq E M 8'4>jq = TqM (4> defines the action of Q on 'M by 
(2:1)). For example this is the case, if a Lie algebra action on Mis generated by a 
transitive action of Lie group. · 

For a given [Q, M], we can consider the stability subalgebra 9st(q) for every point 
q EM: 9st(q) = {Q ~ x: 4>(x)lq = 0}. In the case the pair [Q,M] is generated by 
the action of a_group G, 9.t(q) is isomorphic to the Lie algebra of stability subgroup 
for any point 'lo• ' 

Let '[Q, M] be a transitive pair (the constructions below can be generalized on 
non-transitive case also). 

If a is a cocycle representing a cohomology class in H1(Q,A.0(M)), then at an 
arbitrary point q0 it vanishes on the vectors in the commutant [9st(q0 ),9st(qo)]. H 
this cocycle is generated by a I-form w via the homomorphism 1r,· deti'ned by (3.5) 
(a = 1rw),-then it vanishes at an arbitrary point q0 on all the vectors in 9.t(qo). 
Moreover, 1rw is a coboundary iff w is a c~boundary. T_hus for any point q E Mone 
can consider the homomorphisms 

H1(M)IjH1(Q, A.o(M))~H1(Q.~(q))' (4.11) 

which obey to the following conditions: [1r] is the monomorphism and pq o [1r] = 0. 
lffor every q, p9([a]) = 0 then [a]= 1r[w]. For example H1(M) = H1(Q, A.0(M)) if 
H1(9,t(q)) ~ 0. In the case when the pair [Q, M] is generated by a transitive action 
of a Lie group G (on N 2 M), then the image ofthe monomorphism [1r] coincides 
with the kernel of p9 for an arbitrary point q, because the homomorphisms p9 , for 
different points q, are related,by the adjoint action of the group transformation: 

V(q, qo), V( E 9st(qo) a(q, Ad9 () = a(qo, () if q =go qo. 
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Hence in this case K3 can be embedded into the quotient space of H 1(g.1(q)) for 
any q: 

K3 ~ H1 Wst(q))/~pqJH1 (Q). • ( 4.13) 

It gives an upper estimate for the dimension of the space K3 • 

The formula (4.13) follows from the definition (4.5) of K3 , the explicit realization 
(3.22) of elements of I EJ-0 and the properties of the homomorphism pq mentioned 
above. 

One can say more in the case when the pair (g, M] is generated by the transitive 
action of the compact connected Lie group on the same space M. In this case, taking 
the average of the group action on a cocycle one comes to the monomorphism of 
H 1 (g,A0 (M)) into H 1 (g): 

H 1 (g,A0(M)) 3 [a] 1-+ Vol~G) j o:9dµa E H
1
(g), (4.14) 

where dµa is invariant measure on G. 
For example, if the pair (g, M] is transitive and is generated by the action of 

semisimple compact connected Lie group on the space M, then all K. vanish and 
the hierarchy diagram is trivial. Indeed Ko = K 1 = K 2 = 0 since for semisimple 
algebra H1(g) = H2(g) = 0. From (4.14) and (4.11) it follows that H1(g, A0(M)) = 
H 1(M) = 0, because H 1(g) = 0. Hence K 3 = K 4 = 0 too. 

We wish to note that from (4.11) it follows that even if G is a semisimple algebra 
in general H 1(g, A0(M)) is not trivial, inspite the first cohomology group with coef­
ficients in an arbitrary finite-dimensional module over semisimple algebra is trivial 
(Whitehead lemma [16]). 

. The constructions above indicate that it is the interplaying of de Rham and 
symmetry algebra cohomologies which leads to the nonemptness of the second floor 
(K3 =/ 0) of the hierarchy diagram in the case of semisimple symmetry algebra. (See 
Example 3.) 

5 Examples 

In this section, using the hierarchy diagram ( 4. 7) and considerations below, we con­
sider some examples of weakly g-in'variant Lagrangians classification. 

Example 1 
This example is a model one. But here we describe in details how to use the 

construction ( 4.8) for establishing the grading corresponding to the hierarchy fil­
tration (4.7). We consider the following pair (g,M]. Let g be the Lie algebra R,3 

with the generators ei, e2, e3 such that [e1, e2] = e3, [e2, e3] = (e3, e1] = 0. Let a 
configuration space M be the cylinder: M =Rx S1 with the coordinates (z,c.p). 
The homomorphism 41 (see (2.1)) is defined by the relations · 

"" __ a "" _ a "" _ a 
'Me1 = e1 = ~' 'Me2 = e2 = z-;:;-, 'j!e3 = e3 = -;:;- . · uz uc.p uc.p 

(5.1) 
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This defines the pair (£3 , 5 1 x R]. For this pair we first calculate the hierarchy 
diagram 'D((t'3, 51 x RI). We consider as Uthe whole space .t\{(M). From (5.1) it 
follows that every £3-invariant Lagrangian has the form F(z) where Fis an arbitrary 
function. 

Now we calculate the spaces {/{,}. /{0 = H1 (g) = R 2 is generated by the 
cochains e1 and e2 ( {ei} are dual to {ej}: ei(ei) = oj). Component-wisely the 
elements of H 1 (g) are of the form t; = (a,b,0). The group H1 (M) = R is generated 
by the I-form dcp. Hence, /(1 = R2 is gener1:ted by cochains (dcp,0,0) and (0,dc.p,0). 
Now 1(2 = H2(g) = R2 because any cochain Iii is a cocycle which is the coboundary 
iff fi3 = ht = 0. It is easy to see that Hlnu(M) = R is generated by the I-form dz. 
The stability subalgebra at every point ( z, cp) is generated by the vector e2 - ze3 , 

hence from (4.11)-(4.13) and the result for H 1(g) it follows that 1(3 = 0. Note 
that the explicit calculations without using (4.11) give that H 1 (g, A0(M)) = R2 is 
generated by the cocycles o:; = (0,az + b,a); d(0,az + b,a) = (0,adz,0) = D;adcp, 
hence 1EJ-0 = 1Er0 = H 1 (g,A0(M)) and /(3 = 0. 

The space /(4 = R is generated by the form dcp. We co~e to the following result 

Ko= K1 = K2 = R2, K3 = 0, K4 = R. (5.2) 

We saw already that the second floor of 'D([t'3, 5 1 x RI) is empty. 
Special analysis of the homomorphism <p2 leads to the fact that the 1-st floor is 

empty too: the image of ¢>2 in /(2 is trivial because in this special case the subspaces 
1 E!2 and E!,0 of H2

( Q) have zero intersection. 
No;, we show that the diagram 'D((t'3, 5 1 x RI) is full on the all floors except of 

the fir~t one and study the contents of the spaces {V •. 1, V •. 0 }. 

Fo~this purpose, we consider the following 5-dimensional subspace of the formal 
Lagrangians, on 5 1 x R: 

• ·2 

U = {L: L = ar.p + bzr.p + cz + d~ + .'I 'f'. }, 
z 2 z 

(5.3) 

where ( a, b, c, d, q) are constants. 
We shall show that the diagram 'D([f.3, 51 x R], U) is full on all the floors except 

for the first one. From this fact and from the emptiness of first floor for the diagram 
'D([t'3, 51 x R]) it follows that the whole space V of classical mechanics Lagrangians 
on Mis equivalent to its subspace U with respect to the hierarchy (see (4.8)). 

Straightforward calculations show that for arbitrary Lagrangian from U one has 

81L = £.JLL = bdc.p + c, 
8z (5 4) 

82L = £ 2 .JLL = adz+ bzdz + d + qdc.p, 83L = £.ILL = 0. . 
~ ~ 

Comparing (5,4) with (4.1), we see that U = Uo.o-
Let us calculate the homomorphisms W, <p,, if>, for the diagram 'D([t'3, S1 x R], U) 

using (5.2)-(5.4). One has ¢>2 = ¢>2 = ¢>3 = ¢3 = 0. For any LEU we have lll(L) = 
(c,d,0) E K0. If c = d = 0, then LE U0.1 and </>1(L) = ef>1(L) = (bdc.p,qdcp,0) E K1, 
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If b = q = 0, then L E U1.0 and if c = d = b = q = 0, then L E U1.1. Hence, 
U3.0 = U2.0 = U1.o and respectively U3.1 = U2.1 = U1.0. One has <p4(L) = ¢4(L) = 
adcp E I<4 • If a = b = q = 0 then we come to U4.0. If also c = d = 0 then we come 
to U4.1 = 0. 

All these homomorphisms, except for ¢2, ¢>2 , are epimorphisms. Hence, the space 
A} ( M) is reduced to its subspace U with respect to the hierarchy. Moreover these ho­
momorphisms are isomorphisms on corresponding quotient spaces: 8''11 = Uo.o/U1.0, 
8'¢. = U,-1.1/U •. 1 and 8'¢>. = U,-1.0/U •. o ifs =/- 2. . 

From these considerations and from ( 4.8) it follows that for every weakly £3-
invariant Lagrangian there exists a unique Lagrangian in U such that their difference 

belongs to V4.1: 

VL E Vo.o3!(a,b,c,d,q): 
L = F(z) + total derivative+ ar.p + bzr.p +CZ+ df + r?. . (5.5) 

Finally we come to the following grading in the space Vo.o of weakly £3-invariant 
Lagrangians on 8 1 x R: 

v3.1 = V2.1 = V1.1 = v4.1 EB /(4 = v4.1 EB R, 
Vo.I = Vu EB I<1 = Vu EB R2, v •. o = v •. 1 EB Ko = v •. 1 EB R2

. 
(5.6) 

We also briefly consider the diagram 'D([f3, 8 1 X R],UP01 ), where UP01 is the subspace 
of Lagrangians polynomial in velocities (see the end of Section 4). It is easy to see 
that UP01 is reduced to the three-dimensional space UP01 which is a subspace of U 
defined by the additional conditions d = q = 0 in (5.3). The diagram 'D([f3, 8 1 x 
R),UP01 ) is not full on all the floors s_ and on the floors 0+ and 1+- In this case 
$s\ll = R =/- /(0 and $.r</)1 = R =/- I<1. The space U8.°p is parametrized by the 
three-dimensional space UP01 , up to Uf.~1

: UP01 = U8.~ ;u:.~ similar to (5.5, 5.6) with 
conditions d = q = 0. 

We note that in (5.5) the term d(r.p/z) responsible for time-dependent Noether 
charges cannot be considered as interaction with "electrical field" as in the case of 
Lagrangians in UP01 • 

We also want to note that all the considerations which lead to the formula (5.6) 
( except for the property of homomorphism <p2 ) based on general relations established 

by the diagram (4.7). 

Example 2 
Let M = Rn be the n-dimensional linear space which acts on itself by trans­

lations. It determines the pair [Rn,Rn) (we identify the affine space with the cor­
responding linear space and with abelian algebra of translations). It is easy to see 
that /(0 = Rn,/(2 = Rn I\ Rn,I<1 = l<3 = /(4 = 0. The space of Lagrangians on 
Rn is equivalent to the space U = {L: L = w2(q,q) + w1(q)} with respect to the 
hierarchy, where w2 , w1 are 2-cocycle and 1-cocycle respectively on the Lie algebra 
Rn. In the same way, like in (5.3)-(5.5) we come to the statement that every weakly 
9-invariant Lagrangian in this case has the form 

L = F( tj1, ... , ,t) + total derivative+ B;kq; l + E;l . 
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It describes the interaction with constant "magnetic" and "electric" fields ( compare 
with (1.5)). The corresp~nding Noether charges are N;(q, q, t) = 8F/8qi - 2B;kq"' -
E;t. The corresponding grading of the space Vo.o is the following: 

. ~ . 

V4.1 = V3.1 = V2.1, Vu = Vo.1 = Vu EB R 2 , V •. o = V •. 1 EB Rn. 

Th.is case is famous in literature as "arising of constant magnetic field as a central 
extension of translations algebra" [2). · 

Example 3. ·so(3) algebra. 
In this example; we consider the Lie algebra so(3) which is a special case of· 

semisimple algebras. Let M = R3 be the 3-dimensional linear space with the Carte­
sian coordinates (x1, x2

, x3
). We consider first the pairs [so(3), R~] and [so(3), 8 2), 

where 8 2 is the sphere xixi = 1 in R 3 and the action of so(3) on R 3 is generated 
by the standard action of the group 80(3) on R3 : if { e1, e2 , e3} is a basis in so(3) 
such that (e;,e;) = e;;kek, then ~(e;) = L; = -e;;kxi{)/{)xk. For the pair (so(3),S2) 

the hierarchy diagram is trivial because 80(3) is a semisimple compact group (see 
the end of the Section 4). 

Alternatively one · can see it· by the following explicit calculations: From the 
commutation relations it is evident that H1(so(3)) = H2(so(3)) = O. Hence, !(0 = 
I<1 == 1<2 = K4 = 0. If a, is a cocyde with values in functions on 8 2 , then 
0 ,;,, 60: = L;ak - Lka; __:_ e;jkak. Hence, L2a;. = Lk(L;ai) = LkF and O:k = 6F is a 
coboundary, where F = LI l(f:.ir F 1 is defined by the expansion over the spherical 
harmonics of F. The term F 0 vanishes because it leads to a cocycle in· constants 
and H 1(so(3)) = 0. Hence K3 = 0 as well. 

The calculations and the result are the same for the pair [so(3), R3). All weakly 
so(3)-invariant Lagrangians of classical mechanics on R3 and on 8 2 are exhausted 
by so(3)-invariant ones (up to a total derivative). 

Now bearing in mind the construction (4.11) we inodify a little bit this example 
considering instead of the sphere 8 2 the domain in it, the sphere without Nprth pole 
(punctured sphere) 82\N (x3 =I- 1). Thus we come from the pair [so(3), 8 2) to the 
pair (so(3), 8 2\N). In the same way, we come to the pair (so(3), R 3\L+J, taking out 
the ray L+ (x1 = 0,x2 = 0,x3 ~ 0) from R3 • · · 

The essential difference of these pairs from the previous ones is that they cannot 
be generated by the action of the corresponding Lie group. 

We perform the calculations for the diagram 'D((so(3), 8 2\N)). 
It is evident that for this diagram Ko = K 1 = K 2 = /(4 = 0 as well. Now we· 

show that for this diagram K3 = R and that this hierarchy is full. 
The stability algebra for this pair is ~ne-dimens~onal, hence from {4.11)-(4.13) · 

it follows that K3 :;:; 0 or K3 = R. It remains to prove that K3 is not trivial. 
To show it, we consider· the La.grai:J.g1an L which corresponds to .the differential 

form A= -(l+ cosO)dip on the punctured sphere S 2\N, O,cp being the spherical 
coordinates. The 2-form dA = sin OdO I\ dt.p corresponding to its motion equations is 
_;So(3)-invariant, hence this Lagrangian is weakly so(3)-invariant. On the other hand 
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it ~annot be reduced to a so(3)-invariant one by redefinition on a total derivative 
df because a so(3)-invariant I-form on the sphere is equal to zero. Hence, since all 
other spaces K. are equlll to zero, this Lagrangian belongs to the floor 2+. We come 

to the following result: 

K3 = H 1(so(3), A0 (S2\N)J;;; R a~d <h(A) E K3 =/. 0. (5.7) 

For this special case·, the explicit realization of (4.11), (4.13) is the following: We 
identify the vectors with the elements of so(3) by the linear map 1: ( x1, x2, x

3
) f-+ 

x1e
1 
+ x2 e

2 
+ x3 e

3
• For any point x E s2, the corresponding stability subalgebra is 

generated by 1 (x). To (4.Il)-(4.12) there corresponds the following statement: If o 
is a 1-cocycle with values in function~ on the punctured sphere, then 

• ~ ,J 

o(x,7(x)) = xio;(x) is a const11:nt on the sphere,. 5 8 
thi_s constant is equal to zero iff this cocycle is a coboundary. ( · ) 

This statement can be easily proved in a straightforward way without using (4.11), 

(4.12). 
We proved that K3 = R and all other K. are equal to zero and presented in 

(5.7) the Lagrangian with nontrivial image in K3 • Hence, the hieraichy diagram 
'.D([so(3), S2 \N]) is fulI on all the floors and the space of classical mechanics La­
grangians is equivalent to the one-dimensional space U =;: { L: L = -q(l + cos O)cj,} 
with respect to this hierarchy. So using (4.8) we arrive to the following statement: 
every weakly so(3)-invariant Lagrangian on the punctured sphere has the forril. 

L = L;nv + totald~rivati~es - g(l + cos0)cj,. . (5,9) 

In the.case g =/. 0, it belongs to the floor 2+'ofthe hierarchy. 
The calculatfons for the·diagram '.D[so(3),R:}\l+} are similar and the result is the 

same: every weakly so(3)-invariant Lagrangiari on R3 \l+ has the form (5.9) .. 
One can see that in the case when L;nv is the free particle Lagrangian, then (5.9) 

corresponds to the Lagrangian which describes the interaction cif a particle with the · · 

Dirac monopole [15}. 
Explicit calculations for (5.7) give that <P2(L) for the Lagrangian (5.9) is equal 

to the cohomology class in H1 ( so(~), S 2\N) of the following cocycle: 
_ 9 · ·_ 9 • . _ ' 

o 1 _ -gcot_2 c~scp, o 2 -:-7· ~gcot2 s1ncp, . 03 - 9, (5.10) 
and o;x' = -g, (8L = do, 80 = 0). 

.'; . .. ,. . 

Finally, we make the following remark about the Lagrangian (5.9). Via stereogra­
phic projection of the.punctured sphere·on R2 one cbmes from the pair [so(3],S

2
\N] 

to the pair [so(3), R2], where the fundamental vector field corresponding'.to·e3 is the 
infinitesimal rotation and fundamental vector fields corresponding to ei, e2 are non­
linear infinitesimal transformations. The weakly so(3)-invariant Lagrangian (5.9) 

' ' transforms to · 
(. · 2 ·2) . . · · L == . m u + v'. .. ·+ .. ;uv .-.vu 

. ;, -2(1 +· 2 + .2)2• .91 ± 2,+ 2 . . , , U .· V .• . . ... • .. 'IL. . V. . 

(5.llf 
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in the case when Linv is the free particle Lagrangian. ( u, v are the Cartesian coor­
dinates on R 2.) 

In the case g = 0 the Lagrangian (5.11) is strictly related to the Lagrangian de­
scribing the interaction of a free particle in 2-dimensional plane with the Coulomb 
potential. To the vector fields ei, e2 there correspond so called ·hidden symmetries 
of Coulomb interaction which lead to Runge-Lentz vector (23].· So, the Lagrangian 
(5.11) leads to the Lagrangian which possesses essentially generalized hidden sym­
metries of the two-dimensional Coulomb potential. These consideration deal with 
the so called higher symmetries which are not in the frame of this paper. 

Example ,{. Galilean and Poincare Lie algebras 
We consider the action of Galilean and Poincare algebras on the 4-dimensional 

space R 4 with the Cartesian coordinates (t, x1, x 2, x3).· The lagrangians on R 4 are 
. L(t,xi,i,:i:i) (i = 1,2,3) where:i:i,i means derivatives with respect to "time" r. 

To threat these algebras simultaneously, we consider a I-parametric family of 
the Poincare Lie algebras g(Pc) (c is the "velocity of light"). Their action (2.1) on 
the space R4 is generated in a standard way via the 'following fundamental vector 
fields: 

a 
Po= ot' 

a 
Pi= oxi' 

~ a 1 JJ 
B; = t oxi + c2 X ot' 

.a 
~ x'--, L; = -C:ijk ·axk (5.12) 

which correspond to its basis. The relations (5.12) define the pair (g(Pc), R4]. 

In the case c -t oo, Lie algebra g(Pc) is contracted to the Lie algebra of the 
Galilean group (nonrelativistic limit), which we denote also by g(P,"'). All the 
commutation relations of the basis. vectors in g(Pc) do not depend on c, except for 
the relations [B;,Bk] = -l/c2C:;jkLk,[f,;,Bk] = -l/c2p08;k which tend to zero, when 
c tends to infinity. 

Correspondingly to (5.12), the action of the Galilean Lie algebra g(P00 ) on R4 

is generated by the vector fields 

a 
at' 

a 
oxi' 

a . a 
t71'7, . L; = -C:ijkX'-;,-_ k·. 
ux• ux · 

(5.13) · 

It defines the pair (g(P00), R4]. (The vector field corresponding to Lorentz boost 
transforms to vector field corresponding· to special Galilean transformation.) 

The first two cohomology groups for algebras g(Pc) are 

H 1(g('Pc)) = 0, H2(g(Pc)) = 0, if C =/. 00 

H 1(g('P00)) = R, . H 2(g(P00)) = R. 
(5:14) 

The first and the second cohomologies groups of the Galilean Lie algebra are gen­
erated by the 1-cocycle c1 and the 2-cocycle CB (the Bargmann cocycle) respectively, 
whose nonvanishing components in the basis (5.13) are 

c(Po) = I, CB(P;,B;) = -cB(Bj,pi) = 8;;. (5.15) 
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The relations (5.14) make trivial the calculations of all the spaces Ks except 
for the space K3 for the hierarchy diagram V(Q(Pc),R4 ). Fro~ the formulae (4.5), 
( 4.11) it follows that K3 = 0, because the stability subalgebra of every point (to, x~) 
in R4 is isomorphic to' the subalgebra generated by the vectors (L;, B;) which has 
only trivial 1-cocycles ~nd /f1(R4 ) = 0. . _ .. _ 

·,. Now we·study the space of weakly Q(Pc)-invariant Lagrangians on ll,4 • First of 
all we note that from (5.12) ft follows that Q(Pc)-invariant Lagrangian is an arbitrary 
function of the square of velocity in Minkovsky space if c -=Joo and Q(P00)-invariant 
Lagrangian is an arbitrary function.of velocity·t component: r 

Linv = F(c2i2 - LXi:i/) .if C -=/·00 1 Linv == F(i) if C = 00. (5.16) 

1) Poincare Lie algebra (c -=Joo) In this case the hierarchy diagram V(Q(Pc), R 4) 

is trivial because·all tlie spaces Ks are equal to zero. Every weakly .Q(Pc)-invariant 
Lagrangian is invaria_nt one (upto a total derivative) and it belm!gs to.the floor 4+. 

Uo.o 9 L = F(c2i2 
- Lx'x;)+total derivative. (5.17) 

2) Galilean Lie algebra (c = oo): 
ln'this case Ko'= K2 = R;I<1 = K3 = 0. 
We consider the following 2-dimensional subspace of Lagrangians o,n R4 

U={L: m(L, x;x;) + bt}, 
L = 2i (5.18) 

where m and b are constants. One can see by s_traightforward calculations that for 
a Lagrangian in U 

CpoL = b, i:,~;L = CL;L = 0, CB;L ~ mxi. (5.19) 

Comparing (5.19) with (4,l) we see that U = Uo.o, i.e. U is the subspace of weakly 
Q(P00 )-invariant Lagrangians. The calculation of homomorpl}isms W and ¢,2 on the 
diagram V([Q(P00 ), R 4

], U) gives . 

'11(-L) = b[c1], </>2(L) = m[cB], (5.20) 

where (c1], [cB] are cohomological classes in Ko and K2 respectively of the cocylces 
(5.15). . . . 

Hence the hierarchy diagram1J([Q(P00), R 4J, U)is full and the space U in (5.18) is 
equivalent to the space of all Lagrangians on R 4 with respect to th_e hierarchy. From 
(5.18), {5.20) and (4.8) it follows that every weakly Q(P00)-in~ariant tagi:angian on 
R 4 is of the form: • · · · . 

. m(L, x;x;) . . 
Uo.o 3 L = F(t) +. 

2
i + bt + total derivative. {5.21) 
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It belongs to the floor l+ if b = 0 and m -=J 0. . 
Physically it is more interesting to consider the hierarchy diagram for· the sub­

space Udens of Lagrangians which are densities in R4. The space of Lagrangians 
L(t,xi,dt/dr,dxi/d;) in R4 _is more wide than the space of classical mechanics 
Lagrangians L(x\dx;/dt) on the configuration space R3 with coordinates xi (i = 
1, 2, 3,). To every Lagrangian in R3

, according to (2.16), there corresponds a La­
grangian which is a density in R 4 . On the other hand, to every Lagrangian Lin R 4 

which is a density and which does not depend explicitly on time, there corresponds 
a classical mechanics Lagrangian, if we put the parameter T to be equal t. For ex­
ample, to the Lagrangian of a free relativistic particle there corresponds the density 
in R4 

L,e1(c) = -mc✓c2i2 - ~xixi. (5.22) 

and to the Lagrangian of a free nc:m-relativistic particle there corresponds the density· 

L . m"" •;•· 
nonrel = __ ~_i X x• 

2i 
(5.23) 

The Lagrangian L,e1(c) + mc2i; which differs from L,e1(c) by the total derivative, 
tends to Lnonrel when c - oo. 

On the other hand the condition that weakly Q(Pc)-invariant Lagrangians in 
(5.17) as well as in (5.21) are densities gives that they are equal to (5.22) and (5.23) 
respectively (up to a total derivative). Indeed if (5.21) is a density then b = 0 and 
F(>.i) = >.F(i) (see (2.16)). Hence F(i) = ai and it is a total derivative. The similar 
considerations for (5.17) lead to (5.22). 

We come to the following conclusion: 
Every weakly Q(P00)-invariant Lagrangian-density in R 4 belongs to the floor 1+ 

and is equal to Lnonrel (up to total derivative). The value of homomorphism </>2 on it 
is proportional to the mass of the particle. There are no none trivial Q(P00)-invariant 
Lagrangians-densities on R 4

• The floor 4+ contains trivial Lagrangians only. 
For the Poincare algebra every weakly Q(Pc)-invariant Lagrangian-density coin­

cides (up to a total derivative) with the Q(Pc)-invariant Lagrangian L,e1(c). On one 

hand, when one contracts Poincare algebra to the Galilean algebra, the Bargmann 
cocycle arises. On the other hand, the unique nontrivial component V4•1 of the hierar­
chy diagram for the Poincare algebra transforms to the unique nontrivial component 
V1.1 of the hierarchy diagram for the Galilean algebra. 

Vanishing of H2(Q(Pc)) is the reason why in relativistic quantum mechanics the 
projective representation of Poincare symmetries in the space of states (which are 
rays in a linear Hilbert space) can be reduced to linear one, while because of (5.15) 
it is not the case for nonrelativistic mechanics. The considerations of this example 
reflect this phenomenon. (The detailed physical analysis see for example in [12], 
[13].) 
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6 Discussi~ns 

The problem considered here and the technique we used to study it can be general­
ized in several directions. The considerations of this paper can be easily translated 
into Hamiltonian language. One can consider the ciassification of Lagrangians not 
only for symmetries induced by point transformations of the configuration space, 
but also for so-called higher symmetries. For example, it is interesting to analyze 
the generalized Runge-Lentz symmetries from this point of view (see the end of 

· Example 3 in Section 5). 
It is interesting to apply this method to supersymmetrical case [14]. It seems 

to be interesting also to analyze the phenomenon of spin-like transformations (1.9) 
arising for Lagrangians from the second floor of the hierarchy ( 4. 7), in order to apply 
it to the Dirac monopoles [24]. 

We hope that a generalization of this method to field theory Lagrangians will be 
fruitful. From this point of view we want to note the relations of our considerations 
with the problem of the Ward identities anomaly absence in the case when field 
theory Lagrangians possess classically the given symmetry [25,10]. 

To develop this technique for field theory Lagrangians, the first order formalism 
and multisymplectic formalism become very usefui.[23]. We wish to develop these 
considerations on the firm ground of investigations by A.M. Vinogradov and his 
collaborators [26];, · 

·· On the other hand, to our opinion, the method considered in this paper is maybe 
more important than the problem we applied it to. 

We give here only three examples, one of them pure mathematical, where the 
calculations of double complex cohomology (the method we'use in this paper) make 
a bridge between the corresponding structures, · 

1. Calculation of de Rham cohomology in terms of Chech cohomology. 
When manifold M is covered by a family {Ua} of open sets, one can consider 

Chech cohomol~gy of this covering. Then one can consider double complex of q­
forms which are defined on the sets {Ua}- The differential Q of this complex is the 
sum of the de Rham exterior differential and the Chech differential. Considering the 
differential Q "perturbatively" near the Chech differential, one arrives naturally at 
the de Rham cohomology of M, hence the "perturbative" calculations near the de 
Rham differential lead in general to calculation of spectral sequence which converges 
to the de Rham cohomology of M. In the case when the covering is a Leray covering, 
i.e., all the sets and their intersections are convex connected'sets, then Chech coho­
mology coincides with the de Rham one; application of the Poinc.are lemma reduces 
spectral sequence calculations to trivial resolutions of so-called descent equations 
[10). But practically it is more convenient to use for calculations a suitable covering 
which generally is not a Leray covering (see for details e.g. [16)). · 

2. Relations between the Hamiltonian reduction method and the ERST cdhomol­
ogy for classical mechanics 
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One can say that the relations between these two.methods are encoded in the 
cohomology ·of the double complex differential Q = a+ o, in the case when con­
straints form a Lie algebra (so-called closed algebras). Here a corresponds to the 
Koszul differential of the complex generated by constraints and o is the differential 
corresponding to Hamiltonian vector fields induced· by these dmstraints. Perturba­
tive expansion of Q near o leads to standard Hamiltonian methods, and expansion 
around a leads to BRST. In the case when constraints form so-called open algebra, 
one has to consider the corresponding _filtered space instead of this double complex 
[3,4,6). This approach seems to be very fruitful. 

3. · Local ERST Cohomology 
Considering BRST physical observables as integrals of local functions, one comes 

naturally to the differential Q = s + d, whe~e s is the BRST differential, acting on 
integrand which is a local functibn and d is the usual de Rham differential. It turns 
out that the consideration of cohomology of this double complex is a· very powerful 
tool for BRST cohomology investigations in field theory, especially in Lagrangian 
framework· (see [8,9,10,27) and;'refererices there); , In spite of these examples, one 
has to note that the method of spectral sequences was not used actively fo these 
calculations. 

Maybe the methqd of spectral sequences was applied in physics first by J. Dixon 
in [8) to analyze local BRST cohomology. In series of works the so-called method 
of descent equations which is in fact a special case, a reminiscent of this ·tech­
nique was applied successfuily to these problems (see the review [10) and references 
there).' Nowadays the technique of spectral sequence~ seems to be' not very popular 
in theoretical physics. We hop~ to attract' attention to importance of this technique 
used_ here in a simple physical framework. In principal, using ,the mt,thod "Deus 
ex .machina". one c~n formulate the hierarchy -withqut using explicitly the method 
developed in. this paper which indeed seems to be very. tediou's. , Bµ.t to our opin­
ion, this method is inherent to this probl~m and it is the ad~quate t~chnique in 
other important problems such as constrained dynamics theory; it may have useful 
applications in future. 
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Appendix 1. Lie algebra cohomologies 

Let g be Lie algebra and A be a linear space which is module on 9, i.e. the 
action of g on A which respects the structure of the Lie algebra g and the space A 

is defined: 

hEQ,mEA (h,m)-+homEA: 
(>-.h1 + µh 2) om= >-.(h1 om)+ µ(h2 om), (>-.,µER) 
ho (>-.m1 + µm2) =>-.(ho m1) +µ(ho m2), 
h1 o (h2 om) - h2 o (h1 om)= [h1, h2] om. 

(Al.I) 

([,] defines commutator in Q. A and 9 are linear spaces on R). 
The complex ( Cq ( g, A), 8) of cochains can be defined in the following way. Let 

Cq(Q,A) be a space of skewsymmetric q-linear functions on g (q-cochains) which 
take values in A (If q = 0, C0(Q,A) = A). Q-differential 8 on {Cq} 8:Cq -+ 

Cq+l, 82 = 0 is defined in the following way: 

8:C0 -+ c1 

8: c 1 -+ c2 

and so on: 

(8c)(h) =hoc, (c E C0 = A) 
(8c)(hi, h2) = h1 o c(h2) - h2 o c(hi) - c([h1, h2]), 

(Al.2) 

8: cq-+ cq+l (8c)(h1, ... 'hq+1) = E1<i<q+l(-lfl-lh; 0 c(h1, ... 'k; ... 'hq+i)+ 
Lt:5i<i$q+l(--l)i+ic([h;)~l, hi, .. :, k;, ... _, h; ... , hq+i) 

( h; means omitting of the variable h;)). The cohomologies Hq(Q, A) of the 
complex ( { Cq}, 8) ai:e called cohomologies of Lie algebra g with coefficients in the 

module A. (See in details for example [16].) 

Hq(Q,A) = (ker8:Cq-+ cq+l) I (~8:cq--l-+ cq). 

If module A is R and g acts trivially on it: ho).. = 0, Cq(Q, R) is denoted by 
Cq(Q) and correspondingly Hq(Q, R) is denoted by Hq(Q). In this case cochains are 
constant antisymmetrical tensors and Q-differential 8 is expressed only via· structure 

constants { tfd of Lie algebra 9. 
H 0 (Q) = R, H 1(9) is defined by the solutions of the equation c:'kbm = 0 and it 

is nothing but the space dual to the 9/[Q,Q]. 
In a case if g is abelian Hq(Q) = Cq(Q) = (J\Q*)q where g• is the linear space 

dual to the linear space of g. 
In a case if g is semisimple Lie algebra then H1Q=H2Q=O. This statement is 

vaiid in a general case too. Very important Whitehead lemmas· state that if 9 is 
semisimple Lie algebra then H 1(9, A)= H 2(9, A)= 0 in'the case if A is an arbitrary 
module which is finite-dimensional vector space on R [16] 
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Appendix 2. Double complex and its spectral sequences. 

Now we give a brief sketch on the topic how to apply spectral sequences technique 
for calculations of cohomology of double complexes. (See for the details for example 
(16].) 

Let E** = {Ep.q} (p,q = 0, 1,2, ... ) be a family of abeliangroups (modules, vector 
spaces) on which are defined two differentials 81 and 82 which define complexes in 
rows and in columns of E*·* and which conimute with each other: 

81: Ep.q-+ Ep.q+l ,8; = o, 82: Ep.q-+ EP+I.q, 8~ = o, 8182 = 8281. (A2.1) 

{ E**, 81 , 82 } is called double complex. 
( It is convenient to consider Ep.q for all integers p and q fixing that Ep.q = 0 if 

p < 0 or q < 0.) 
One can consider "antidiagonals": V"' = {Ep.m--,p} (p = 0, I, ... ,·m) which form 

complex with differential 

Q=(-IF82+81 

which evidently obeys to condition Q2 = 0. 
(A2.2) 

o-+ v 0Sv1Sv2 -+ . . . . (A2.3) 

The cohomologies Hm(Q) of this complex are called the cohomologies of double 
complex (E**,81,82). 

The rows and the columns complexes define the cohomologies H(81) and H(82) 
of E••. 

One can consider the filtration corresponding to the double complex { E*·*, 8
1

, 8
2

} 

. .. ~ xm ~ xm+i ~ ... ~ xi ~ xo (A2.4) 

where xk = E9 Ep.q (A2.5) 
q~0,p~k 

and sequence of the spaces { Etq} ( r = 0, 1, 2, ... corresponding to this filtration 

Etq = ztq/Btq (Eg·q = Ep.q).. (A2.6) 

In (A2.6) Ztq ("r-th order cocycles") is the space of the eiements in Ep.q which are 
leader terms of cocycles of the differential Q up to r-th order w.r.t. the filtration 
(A2.4), i.e. 

{ Z~·q} = { Etq 3 c: 3c = c( mod Xp+i) such that Qc = 0( mod Xp+r)} . ( A2. 7) 

It means that there exists c = ( c, c1 , c2 , •.• , c,. ... 1) where e; E EP+i.q--i such that 
Q(c, c1, c2, ... ,c,. ... i) ~ Xp+r: 

81 C = o, 82c = 81 Ct' 82c1 = 81 c2, ... '82cr--2 = 81 C,. ... 1' so Qc = 82C,.--1 E Xp+r . 
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Correspondingly Brq i~ th!! space of up to r-th order _borders: 

{B:,q} = {E:·q 3 c: .:lb E Xp-r+l such that Qb = c .. 

It mea:ns th~t there e~ist c = (bo, bi, b2, .· .. , b,_1) where b; E Ep-i.q+i and 

Q(bo,b1,b2,: .. ,b,-1) = c: 

81bo + 82b1 '= c, 8ib1 + 82b2 = 0, 81b2 + 82b3 ~ 0, ... , 81b,-1 = 0. 

(A2.8) 

(A2.9) 

For example Ef'q = H(81,Ep.q). 
. We denote'by [c], the equivalence class of the element C in the E:,q if CE zrq. 

It is easy to see that the sequence { E:,q} r = 0, 1,-2, ... is stabilized after finite 
number of the steps: (E:~q = E:~~1 = ... =Et,\ where r0 = ma:z;{p + l,q + 1}. 

Let Hm ( Q, Xp) be cohomologies groups of double complex truncated by filtration 
(A2.4) (we come to Hm(Q,Xp) considering {V n XP,,Q} as subcomplex of (A2.3), 
Hm(Q) = Hm(Q,X0 ). We denote by (p)Hm(Q) the image of Hm(Q,Xp) in H(Q) 
under the homomorphism induced by the embedding 1) U Xp -+ V. The spaces 
(p)Hm(Q) are embedded in each other 

0 ~ (m)Hm(Q) ~ (m-l)Hm(Q) ~ .. • (l)Hm(Q) ~ (o)Hm(Q) = Hm(Q). (A2.10) 

The spaces Et,q. considered above are related with· (A2.10) by the following 
relations: · · ·· · 

E~"'.-p =(p) Hm(Q)/(p+l)Hm(Q). · (A2.11) 
. ' . 

In particular E!,m is canonically embedded in Hm(Q). 
The formula (A2.ll) is the basic formula which expresses the cohomology H(Q) 

of the double complex {Ep.q,81,82} in terms of {Et,q}. From (A2.10, A2.11) it 

follows that m 

Hm( Q) ~ EB Ep-i.i. (A2.12) 
i=O 

The essential difference of (A2.12) from (A2.11) is that in (A2.12) the isomorphism 
of l.h.s. and of r.h.s. is not canonical. 

The-importance of th~ sequence. {E;·*} (r = 0, 1, 2, ... ) is explained by the fact 
that its terms ( and so { E;;,•}) can be calculated in a recurrent way. Namely one can 
consider differentials (Seefor details [16.]) d,: E:,q -+ E:+r.q+l-r such that { E;-•, d,} 

form spectral sequence, i.e. 
E;:;

1 
= H(d., E;·*). (A2.13) 

The differentials d, are constructed in the following way: do = 81: Ep.q = Eb.q -+ 

Ep.q+l = Eb•q+l. . 
If c E Ep.q and 81c = 0 +4 [c]i E Ef'q then d1[c] = [82c], d1: Ef'q-+ El:'+1.q. 
In general case for [c], E E:,q d,[c], = [Qc], d,: Ip:,q -+ Er+'•q+l-r, 

where c: c - c EXP+• (se~ the definition (A2.7) of z:,q). 
One can show that definition of d, is correct, cl; = 0 and (A2.13) is obeyed (16]. 
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Using (A2.13) one come·after finite number of steps to Et} calculating each E{q 
as the cohomology group of the E:!1 : Ef'q = H(d0 ,Ep.q), Ef"q = H(d

1
,Ef'q a~d so 

on. 

The spaces E:,q can be considered intuitively as r-th order (with respect to 
differential 82) cohomologies of differential Q . The operator 8

1 
is zeroth order 

approximation for differential Q. The cakulat'io'us of Et,q via (A2.13) can be con­
sidered as perturbational calculations. One can develop this scheme considering in 

perturbative calculations not the oper~tor 81 , but 82' as zeroth order approximation. 
Instead filtration (A2.4) one has consider the "transposed" filtration 

. .. ~ txm ~ txm+I ~ ... ~ txl ~ XO 

where txk = EB Ep.q 
p~O,q~k 

and corresponding transposed spaces { 1 E:,q}. For example 

Ef'q = H(8i,Ep.q), 1E:,q = H(82 ,Ep.q). 

(A2.14) 

Instead spectral sequence { E;·•, d,} one has to consider transposed spectral sequence 
{tE;·•, td,}: 

do= 81,-+ 
1
do = 82 ;d1(c]i = [82ch,-+ 1d1(c]i = [81c]i, 

and so on. 

The relations between spaces {Et,q} and {1Et,q} which express in different ways 
the cohomology H(Q) is one of the applications of the method described here. 

Example. Let c = (eo,c1.c2) where Co E E 0·2,c1 E E1.1,c2 E E 2·0 ,be cocycle of 
the differential Q: Q(eo,c1.c2) = 0 i.e. 81eo = 0,82eo = -81c1,82c1 = 81c2'. To the 
leading term Co of this cocycle w.r.t. the filtration (A2.4) ·corresponds the element 
(eo]oo in E!,

2 
which represents the cohomology class of the cocycle c. in Er/;,2 • · · 

In the case if the equation (eo,c1.c2) + Q(b0 ,bi) = (0,<;,Si) has a solution, i.e. 
the leading term Co of the cocycle c can be cancelled by changing of this cocycle on 
a coboundary, then the element [<;]00 E E~1 represents the cohomology class of the 
cocycle c in E~1• 

In the case if the equation ( Co, c1 .c2)+Q( bo, b1) = (0, 0, c2 ) have a solution; i.e. the 
leading term and next one both can be cancelled, by redefinition on a coboundary, 
then [c2]00 E Et0 represents the cohomology class of the cocycle c in Et0 ., 

To put correspondences between the cohomology class of the cocycle c and corre­
sponding elements from transposed spaces I E'/;,2 , 1 E~1 1 E~1 we have to do the same, 
changing only the definition of leading terms, which we have-to consider now w.r.t. 
the filtration ( A2.14). 

To the leading term c2 of this cocycle w.r.t. the filtration (A2.14) corresponds 
the element [c2]00 in I Et0 which represents the cohomology class of the cocycle c in 1 

E!,
0

• In the case if the equation (Co, c1.c2) + Q(b0 , bi)= (Gi, c~, 0) has a solution, i.e. 
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the· leading term eo-ofthe cocycle' c' can be· cancelled by changing of on a co boundary, 
then the element [cfi.] 00 represents the cohomology class of the cocycle c in I E~1

• 

In the case if the equation (eo,c1.c2) + Q(b0 ,b1) = (eo,0,0) has a solution, then [eo] 
represents the cohomology class of the coc1de c in ·i E~,2. 
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