


1. Introduction

In this paper we construct a differential first order divergence-like operator on
a superspace endowed with an odd symplectic structure. This operator is applied
for constructing invariant differential objects in this superspace. In particular an
odd semidensity invariant under the transformations preserving the odd symplectic
structure of the superspace and the volume form is constructed in a geometrically
clear way. ' :

The odd symplectlc structure plays essential role in Lagrangian formulation of
the BRST formalism (Batalin-Vilkovisky formalism) [2]. In supermathematics it
is a natural counterpart of even symplectic structure [3,10]. On the other hand it
has some "odd” features which have no analogues in usual mathematics. Canonical
transformations preserving odd symplectic structure (non-degenerate odd Poisson
bracket) do not preserve any volume form. This fact, indeed, is the reason why
in the case-of odd symplectic structure some invariant geometrical objects have no
natural homologues as it is for the even symplectic structure, for which the super-
constructions are rather straightforward generalizations of those for the symplectic
structures in usual spaces. We consider some examples.

In order to construct geometrical integration objects one needs to consider a
pair, the volume form and the odd symplectic structure. This pair. is in fact the
geometrical background for the formulation of Batalin-Vilkovisky formalism (See
[2,5,13,7]). The so called A operator which plays essential role in this formalism
can be defined in the following way: its action on the function f is equal to the
divergence with respect to the given volume form (defined by the action of the
theory) of the Hamiltonian vector field, corresponding to the function f. It is'a
second order differential operator. In the case of even symplectic structure there
exists the volume form which naturally corresponds to this structure, and A operator
is evidently equal to zero (Liouville Theorem). Even if the volume form is arbitrary,
one arrives at a first order differential operator [5].

"The second example is the invariant volume form (density) which can be defined
on the Lagrangian supersurfaces embedded in the superspace endowed with an odd
symplectic structure and a volume form. It is nothing but the integrand for ‘the
partition function in the space of fields and antifields in the BV formalism [13,7].

We focus on the third example, on the problem of finding an analogue of Poincaré-
Cartan integral invariants for the odd symplectic structure. In usual mathematics
to the Poincaré-Cartan integral invariant (invariant volume form on the embedded -
surfaces) there corresponds the wedged power of a differential two-form which defines:
the symplectic structure. In case of even symplectic structure in spite of the fact
that differential form has nothing in common with invariant integration objects, the
superdeterminant of the two-form induced on the embedded supersurface from the
two-form which defines the symplectic structure leads us to the Poincaré-Cartan
invariant [8]. For the odd symplectic structure the situation is essentially different.
In [6] there was considered the problem of constructing of the invariant densities for
the superspace endowed. with an odd. symplectic structure.

g Rfﬂbtihuf';inbdﬂ LLTETYY
GRepELIE ECCheRIsinRl
BUSHHOTEKA



, Density i? the object which defines a volume form on embedded (super)surfaces.~
z = z(() is the local parametrization of a (super)surface then a density A is a

functi 8z 2% = 9z ¢
on of z(¢), 56 sap - A= Ai(z((), 501 565932"‘ . %’i’a() subject to the condi-

tion that izati ¢ i
ek k5 et e e v e i o i
e order < k (i.e. on the derivatives
of the ox:der < k). In usual mathematics densities are the natural generalization of
A g;)fjf:z:n.tlalfforms gif k = 1). In supermathematics even in the case of £ = 1 this
is of more importance, sincedi ial’ i i
e tevration ob. :Cts [3’4’,1 ,114].e differential forms in supermathematics are no
In the case of .sympléctic structure in usual mathematics as well as in the case
of even symplectic structure invariant densities are exhausted by densities of the
rank & = 1. which correspond to Poincaré-Cartan integral invariants [8], This is not
the case for the odd symplectic structure.. One can show:that on (p.p):dimensiona.l
non-degenerate supersurfaces embedded in a superspace E™* which is endowed with
a volume form and.an odd symplectic: structure there are no invariant densities of
the rank. k ="1 (except of the-volume form itself), and in the class of densities
of the rank k = 2 and of the weight o' (i.e. -which. are multiplied by the o-th
power of the superdeterminant of: thérepara.riletr.iza.tion) there exists a unique (u
to multiplication by a constant) semidensity (6 = )in the case of p = n —1 6] IE
fa.ct,‘in [6] this semidensity was constructed in a rfon-éxpiidt way in terms of d.ual‘
densities: If (n —'1.n —1)-dimensional supersurface M; is given by the equations
f = 0,0 = 0, where: f is even function and ¢ is an odd-:function then to this
semidensity there corresponds the function :

S GO AR (7Y IR (A (S IR )

A = Af - A = LR R CA T

o o) ( T F i e SR T AR ST T EAL L ’9”}})
V\.rhich depends on the second derivatives (k = 2), is invariant under the transf(SErlI;Bw
tions preserving the odd symplectic structure and the volume form, and is multiplied
by the square root .of the .corresponding Berezinian (superdetermihant) under ‘the
transformation f —-.af+ ap, ¢ — Bf+ by, which does not chahge the supersurface
M. The semidensity (1.1) takes odd values. It is an exotic analogue of Poinca.ré—
Cartan invariant: the corresponding density A? = 0, so it cannot be integrated
nontrivially over supersurfaces. .

_ The forl.nula (1.1) was obtained in [6] by straightforward calculations. To clarify
its geometrical meaning in this paper a special geometrical object for odd symplectic
superspace is considered.. '

As it was mentioned above, to a symplectic structure in usual space there corre-
sponds a volume form (Liouville form):

dv = p(z)dz!...dc™ = \/det (U )dz’...dz*", (1.2)

where 0 = Qudz’ A dzF is the closed noh-degenérated two-form which defines the
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symplectic structure.

The volume form (1.2) is preserved under canonical transformations (i.e., the trans-
formations preserving the two-form ). I X = X i-2; is an arbitrary vector field
one can consider its divergence: ‘

. N Lxdv _ )4 ;0logp
divX = dv ~ 07 X ozt

In a symplectic space the canonical transformations preserve not only the volume
form (1.2) but also its projection on an arbitrary symplectic subspace. Moreover,
if L(z) is a projector-valued function such that Imi(z) is a symplectic subspace in
T.E then it is easy to see that to L(z) one can associate divergence-like invariant

(1.3)

‘operator whose action on an arbitrary vector field X is given by the expression

o (aXR 1,0 ) i
L O(L,X) = (a_xf + Exmgﬁm") Li. _ (1.4)

(Compare with (1.3) in case of L= id). :

The formulae (1.2)-(1.4) have the straightforward generalization to the case of
even symplectic structure in superspace (by changing determinant to superdetermi-
nant and adding the powers of (—1) wherever necessary). It is not: the casefor the
‘odd symplectic structure, where there is no any invariant volume form related with
‘this structure. ~ ~° e S e

Nevertheless, it turns out that the analogue of the formula (1.4) can be considered
for odd symplectic structure in a case where L is a projector on (1.1)-dimensional
symplectic subspace and X is the odd vector field which belongs to this subspace
and is symplectoorthogonal to itself. In the next two sections we perform the corre-
sponding constructions which are essentially founded on the following remark. Let
E'! be (1.1)-dimensional odd symplectic superspace and (z,6) be Darboux coordi-
nates on it: {z,0} =1, {z,z} = 0, where {, } is the odd Poisson bracket (Buttin
bracket) corresponding to this symplectic structure. Tet ¥ be an odd vector field in
this superspace which is equal to U(z,0)9/0y in these Darboux coordinates. Then
this vector field has the same form and its-divergence (9¥(z,0)/00) remains the
samne in arbitrary, Darboux coordinates, in spite of the fact that there is no invariant
volume form. (See Example 2.) o P .

In the 4-th Section we consider a (n—1.n—1)-dimensional supersurface embedded -
in an odd symplectic superspace Enn endowed with a volume form. The differential-
operator described above can be naturally applied to the odd vector field which is
defined only at the points of this supersurface and is symplectoorthogonal to itself

act that this field is not defined on the whole

and to this supersurface. In spite of the f
superspace one can define the invariant ”truncated divergence” of this vector field.

The analogue of this construction for usual symplectic structure is trivial. On the
other hand this construction can be considered as an analogue of the corresponding
operator acting on the vector field which is defined in a Euclidean (Riemannian)



space at the points of embedded surface. But the essential difference is that the
group of transformations which preserve metrics in Euclidean (Riemannian) space
is exhausted by linear transformations (the linear part of transformation defines
uniquely all higher terms) and this is not true for symplectic case where the group
of canonical transformations is infinite-dimensional.

In the 5-th Section we apply our geometrical construction to obtain the for-
mula for odd semidensity (1.1) in a geometrically clear way: it turns out that on

. (n— l.n — 1)-dimensional supersurfaces embedded in a (n.n)-dimensional odd sym-
plectic superspace endowed with a volume form one can define in a natural way the

_‘odd semidensity whose values are odd vectors, symplectoorthogonal to itself and to
these supersurfaces. The "truncated divergence” of this vector-valued semidensity
is invariant semidensity (1.1). '

It has to be noted that our formula for this semidensity is very similar to the
formula for the density corresponding to the mean curvature of hypersurfaces in the
Euclidean space. In the last Section to discuss this point we consider invariant oper-
ators in Riemannian geometry which can be treated as analogues of the geometrical
constructions of this paper.

2. Odd symplectic superspace.

. Let E™" be a superspace with coordinates z4 = z!,...,z", §,...,0" p(z') =
0,p(67) = 1, where p is a parity. We say that this superspace is odd symplectic
superspace if it'is endowed with odd symplectic structure, i.e., if an odd closed
non-degenerate 2-form

Q= ap()detd?, (@) =1, d2=0) 2.1)

is defined on it [3,10]. .

- To the differential form (2.1) on the superspace E™" one can relate a function
which at every point defines the following skewsymmetric (in a supersense) odd
bilinear form on tangent vectors: - ’

Q(X(2), Y(2)) = —Y(2), X(2))(-1)*Y,
QX(2),AY (2)) = AX(2)A, Y (2)) s ,
QY (z) + pZ(z),X(2)) = MUY (2), X(2)) + pQ(Z(2), X(2)),
p(QUX,Y)) =1+ p(X) + p(Y).

(2.2)

More precisely, a point of superspace E™" is A-point— 2n-plet (al,...,a™dl,...,a"),
where (a',...,a") are even and (a!,...,a") are odd elements of an arbitrary Grass-
mann algebra ' A. (We use the most general definition of superspace suggested by
A.S. Schwarz as'the functor on the category of Grassmann algebras [12].)

In the coordinates: - . ' = '

s = ~aa(-0% =0 (5 305 ) L 6l0s) = 1404 +2(B) . 23

4

We use the notation ~ for the parity of corresponding object. X(z), Y(z), Z(z)

are the vector fields X4 ()32 YA(2) 5%, ZA(z)5%%, the left derivations of functions

E‘n.n_
. (Differential form is usually considered as an element of an algebra generated by

2A and dz4, where the parity of dzA is opposite to the ;.aarity of .z“‘. .In.this case
Qs = QBA(-—I)M“)(B“) instead of (2.3). The slight difference is eliminated by

the transformation 24 — Qas(—1)P).
From (2.2, 2.3) it follows that .

) (XA(Z)%,YB(Z)E-‘Z—E) — XA(2)ap(2)YB()(-DYEY. (2.4)

In the same way as in the standard symplectic calculus one can relate to the odd
symplectic structure (2.1) the odd Poisson bracket (Buttin bracket) (3,10]:

{f)g}'= %(—l)fA+AQAB%1 (25)
z

i-+1)(B By i i ix to QuB :
where QAB = —QBA(=1)ANEH) = {z#,2B} is the inverse matrix to {lap

W on = o iltoni tor field
To a function f via (2.5) there corresponds the Hamiltonian vector e

=— 2.6
Dy = (£, md Dyig)={fig) ADD)=—{hst (O
The condition of the closedness of the form (2.1) leads to the Jacoby identities:
{f g h}}(—l)(i+1)(i‘+1) 4 cycl. permutations = 0. (2.7
’ y

Using the analog of Darboux Theorem [11] one can consider the coordinates In

ics i ttin bracket have the
which the symplectic structure (2.1) and the corresponding Buttin e Darhous

H A__(pl n 91 .
canonical expressions. We call the coordinates w=(z',...,2" 0",
coordinates if in these coordinates holds

3
o 9 9 9 _g¢ _‘?,_)=_5i,’
Q = Inpdwidw®: (——az‘.,_—aﬁ) =0,0 (—60‘.,801,) =0,Q (az-’ 50 ;

(2.8)
respectively af o
o g "~ (df dg ol 99
(z,0) =0, {6,0/} =0, {0} =67, {f.g} = D (?9‘5"67 (=) 55 8$‘) '
’ i=1 (2.9)

Now on t.he‘ odd symplectic superspace E™" .endowed wit¥1 an ;dd ‘;y(mpll;c:;
structure (2.1) we consider the following geometrical con?tructlons: et ¥(z)
odd non-degenerate vector field symplectoorthogonal to itself:

HE()) =1, HT(),¥() =0 (2.10)

5



(We call the vector non-degenerate if at least one of its components is not nilpotent.)
For example, to the even function f such that {f, f} = 0 there corresponds.the
Hamiltonian vector field Dy defined by (2.6), subject to condition (2.10).
Let II(z) be a field of (1.1)-dimensional subspaces (II(z) € TE™") which contain
the vector field ¥(z) and the symplectic structure induced on these subspaces is not
degenerate. It means that there exists an even vector field H(z) such that

¥(z),H(z) € I(z) and Q(H(2), ¥(2)) = 1. (2.11)

To this field of subspaces II(z) there corresponds the symplectoorthogonal projector

ﬁ(z) of the vectors in the tangent space on these subspaces:
1 T.E-T(z), ﬁln(z) =id, fiX=0 if X, =0. (2.12)

In the coordinates {24} to the projector IT there corresponds the matrix-valued
function ‘

s f 0 J - d lij
n5(z): 1 (374-) = Hﬁ(z)ﬁ so II (XA(Z)ng) = XA(z)Hi(z)EZ—B.
o ‘ (2.13)
Later on we call (II(z), ¥(z)) or equivalently (II(2), ¥(z)) an odd normal pair if
¥(z) and TI(z) are defined by (2.10—2.12). . '

3.Divergence-like operator on odd normal pairs

In this section for an odd rormal pair (II(2), ¥(2)) in an odd symplectic super-
space we construct a first-order divergence-like differential operator which transforms
it to a function on this superspace.

Let in a superspace E, X(z) and L(z) be a vector field and a linear operators
. field respectively, defined on T,E. If {24} are arbitrary coordinates then for the
pair (L,X) one can consider the function which depends on the coordinate system

24} :
A o .
o5, %) = 2 ooy _yxses, (3.1)
Expression (3.1) is invariant under linear transformations of the coordinates {z4}.
In the general case if {w*} and {24} are two different coordinate systems on E then
for the pair (L, X) we consider

(L, X){ = o(L, X)) — 8(L, X)) (3.2)
From (3.1) and (3.2) it follows that

N X)) = X9(T4y (< o), (DLA), 9
The(zl{w} {z}) = 552 5 (-1)° .

(In (3.3) the components of L and X are in the coordinates {z#}.) .
From definition (3.2) of the T’ (i,X){w} it follows that for three different coordinate

{z}
systems {w4}, {z4} and {u"}

» w £ z 3 u} _ .
(L, X8 + 0L, X)) + 0, X)) = 0. (3.4)

a

Let F be a class of some coordinate systems such that for'a given pa.ir (L,X)
V{w},{w} e F I(IL,X){F=0. ~ = (3.5)

Then to the class F one can relate the first-order divergence-like differential operator

DZ N A $ w’
D(L,X) = 8(L, X) + I (L, X)), (3.6)

i inat 4 bitrary coordinates from
here {z4} are arbitrary coordinates on E and {w"} are ar
r;le clafss ;‘ From (3.2, 3.5) it follows that the r.h.s. of (3.6) does not depend on

the choice of these coordinates. - ,

Before going to the considerations for an odd symplectic superspace we consider
an example where we come to the standard definition of the divergence in superspace

using (3.1—3.6).

Ezample 1. Let E be a superspace with a volume form dv which in coordinates
{wd} = {z*,...,2",6',...,0™} on E is equal to

dv =dz'...dz"dg"...do™. Lo (3.7)

We define F as a class of coordinate systems.in which the volume form dv is

given by (3.7): w

F= () Ber (22) =11 (39)

(BerA is the superdeterminant of A.) It is easy to see that if L.= id is iAdentlty
operator and X is an arbitrary vector field then in arbitrary coordinates {2 }

' ‘62wk(z) z4(w) dlogp(z) (3.9)

. ' i_ ye —Sf
MEX)E = X @ apaa gur =X T

T ‘ 1 dzm+n

e {wA) are arbitrary coordinates from the class (3.8) and p(z)dz"... t

;the}:e \folur}ne form (3.7) in the coordinates {2} (p = ??r(aw/az))(.i. The condig

tion (3.5) is fulfilled and we come to the standard d(fﬁm.tlon of the 1vefgenc§ 3

a superspace endowed with volume form. For the pair (id,X) .and fordt-: asst (E t.he_
the operator D(id,X) is the divergence of the vector field X corresponding

volume form dv:

OXME), mard, pa0080E) g x @0

Now we return to the considerations of Section 2.

-
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For the su(perSpa.ce' E™" endowed with the odd symplecﬂti"c structure we consider

a field (1I(z), ®(z)), where {1I(z), ®(z)) is an odd normal pair in a vicinity of some

point. (See the end of the previous section.) We denote by Fp the class of Darboux

coordinates (2.8, 2.9) on E™" and apply constructions (3.1—3.6) in this case.
Lemma. If (II(z), ®(z)) is an odd normal pair in E™" then

V{w},{@} € Fp, T(11, ®){2 = 0. RN B §))

"Using the statement of the Lemma we consider the action of the operator Dg,,

_corresponding to the class Fp of Darboux coordinates by (3.6), on the odd normal
pair (TI(z), ¥(2)):
. OTA(z2) - L
D'CM(H,YT) = ( ps: + lIIQ(z)FsB(z {w}, {z})) 3(z), (3.12)

where {w*} are arbitrary Darboux coordinates. From (3.6) and the Lemma follows
Theorem. For an odd normal pair (II(z), ®(2)), Dean(I1, ®) is an invariant
geometrical object. ’ :
In particular if {wA} are arbitrary Darbouz coordinates then
L A . Ll
Don(ll, #) = S22 (3,19
does not depend on the choice of Darbouz coordinates {wA}. Before proving the
Lemma we will consider
Ezample 2. Let E'! be a (1.1)-dimensional superspace endowed with odd sym-
plectic structure (2.1). Let w = (z,0) be some Darboux coordinates on jt: {z,0} =
1,{z,z} = 0. It is easy to see that in this case the odd vector field obeying to (2.10)
is of the form : P ‘

'I' = \I"(:E, 0)80 ?

where ¥(z, ) is non-nilpotent even function. The projector operator (2.12) is evi-
dently identity operator. Hence a normal pair is of the form (id, ¥(x,0)d5) and

0U(z,0)
o0

One can see that if 2/, 0" are some other Darboux coordinates then they are related
with coordinates z, by canonical transformation
: 0. ’
7 —_ 0’ —_

T f(z)’ df(:c)/dz + ﬂ(z) ? (3‘16)
where f(:c) and B(z) are even and odd functions on E! respectively. (To obtain
(3.16) one has to note that in B {a',2'} = 0 — zj = 0.) It is easy to see
from (3.16) that ¥ = ¥(z,0)3/80 = (¥(z,0)/f,)8/88' and (3.15) does not change

(3.14)

Dm,.(i&, o) = (3.15)
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under transformation (3.16), so in this case the statements of the Lemma and of the
Theorem hold.

Indeed, for this case one can say more about (3.15). Let (y,7) be an arbitrary
coordinates on the E'! and a volume form dv on E'! is defined by the equation

dydn .
dv = —2—L . 3.17
. {v.n} (3.17)

.

Then one can check using (3.10) that D.,,(id, ¥) in (3.15) is the divergence of the
vector field ¥ by the volume form (3.17). For a vector field (3.14) and a volume
form (3.17) divgy¥ does not depend on the choice of coordinates (y,7). Proofof the

24 = wB LA + wBwOTh, + o(uw?) ‘ (3.18)

be arbitrary canonical transformation from Darboux coordinates {z} to Darboux
coordinates {w} in a vicinity of the point z = 0. Let (II(z), ¥(z)) be an odd normal
pair which is defined also in a vicinity of the point z = 0. For proving the Lemma
we have to show that for transformation (3.18)

Lemma. Let

ML e _ =0 (3.19)

(We can consider. (3.18) without loss of generality, since in Darboux coordinates

the translation is obviously the canonical transformation.) We include the Darboux
transformation (3.18) in the chain of Darboux transformations:

{2} (5} — {w}=F (@) (3.20)

which obey to the following conditions: -

a) The transformation {z} — {Z} is the linear canonical transformation such that

in the Darboux coordinates 34 = (i‘,...,a':",&l,...,é") H[z=~0 projects TEV;""IZ=0
on the subspace which is generated by the vectors 8/9%!,9/90": o
. 0 0 . a 0
_— = —_—= . 3.21
=0931  9zl’ s a9 o0 ( )

b) The transformation {w} ~— {w@} is the linear canonical transformation such that

BA = 34 4 o3). (3.22)
From (3.2, 3.4) it follows that
(L, ®){) = 111, ®){2} + 0(, @)1 + (i1, @)1 . - (3.23)

But F(ﬁ, 'I’)E,ﬁ and F(ﬁ, \Il)gi are zero because the corresponding transformations

are linear. To prove that F(ﬁ, T)E;?}}]zzo is also zero we note that from (3.21) and

9



(2.10) follows that W% _ = ¥5/8;,. (Compare with (3.14)). Hence from (3.3),
from the property (3.22) of the transformation % — % and from (2 9)follows that

92
991971 =

™). Hehce (3.19) is obeyed.

0, | (3.24)

{.’l"l,

: I‘(H \I:)f;“}}

o~ 2 FED

where 4 = (z1,...,2™,67,...,
Lemma is proved.
~.Considering ,a pair (L(z), X(z)) we constructed in this section the divergence-

like operator (3.12, 3.13) in an odd symplectic superspace in the case when Lisa

projector on an (1.1)-dimensional symplectic subspace and X is an odd vector in it
which is symplectoorthogonal to itself. In the case of even symplectic structure this
construction can be carried out in a more general case and it is trivial because in this
case there exists a volume form correspondmg to the symplectic structure. Indeed if
in a superspace E*™" endowed with even symplectic structure there is given a pair
(L(z),X(z)), where L(z) is a symplectoorthogonal projector on (2p.q)-dimensional
symplectic subspaces in T, E*™" and X(z) is an arbitrary vector field then to the
class F of the Darboux coordinates on this superspace there corresponds D(L X)
defined by (3.6) which is a straightforward generalization of (1.4).

4. Truncated divergence.

We consider in this section an odd vector field which is defined at the points
of (n — 1.n — 1)-dimensional nondegenerate supersurface embedded in the (n.n)-
dimensional odd symplectic superspace with a volume form. In case of this vector
field being symplectoorthogonal to this supersurface and to itself using the geo-
metrical object Dmn(I:I, ¥r) for an odd normal pair we define the linear operator
on it (truncated divergence) whose action on this field gives the function on this
supersurface.

Let M be an arbitrary nondegenerate (n — 1.n — 1)-dimensional supersurface
embedded in a superspace E™" which is endowed with odd symplectic structure
(2.1 ) and the volume form dv:

dv = p(z)dz"...dz"". ’ (4.1)

(The supersurface M is nondegenerate if the symplectic structure of E™" induces
nondegenerate symplectic structure on M.) Let z4 = 24({*) be a local parametriza-
tion of the supersurface M. The induced two-form Q,,;;d(”d(" on M according to
(2.2-2.4) is given by the following equation:

4 0 d 554

Uus(2(0) = 0 (054525, 325 ) = B0 O AN €155
(4.2)
Hereafter we use notations Oazf = (Q,a f= C°’ . for derivatives along super-

surface.
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The induced Poisson bracket structure on M {, }um according to (2.5, 2.6) is
defined by the matrix 2*# which is inverse to the matrix Q,5. Using this mduced
symplectlc structure one can construct the symplectoorthogonal projector on T'M,

P(¢): T,(OE — TyyM which can be expressed in terms of Q45 and Q°F:

P(0) = Qux(=(0) - {z5(0) 22(O)hm = R (2(0)BuzX (~1)RE+300 2 (4-3)

Q) =id-~,¢) - (4.4)
at every point 2z({) is a symplectoorthogonal projector on the (1.1)-dimensional
subspace I1(z(()) in T;(¢)E which is symplectoorthogonal and transversal to Tz(()M
because M is non-degenerate. (See 2.10-2.12.)

We consider an odd vector field ¥(¢) defined at the points of M which is sym-
plectoorthogonal to M, to 1tself and which is non-degenerate:

¥(¢) € T:(0)), P =0, ¥, W) =0, (4.5)

UAPD = 0, UAQ 40,25 (—1)K5+% = 0, 8,24PP = 9,25 . (4.6)

For example if the supersurface M is defined by equations f(z) = 0,¢(z) = 0,
then for arbitrary point zp on this supersurface, the vectors Dy(z) and Dy (z)
(see 2.6) are the basis vectors of the subspace II(z) and the odd vector ¥ =
@D; + ({f, F}/{F, (p})n¢)|za is subject to the conditions (4.5).

One can see that the vector field obeying to the conditions (4.5) is fixed uniquely
-up to the multiplication by an even non-nilpotent function of {, ¥(¢{) — f({)¥(().
In other words (4.5) define linear subbundle SN(M) in TE™"|,, .

A field ¥ obeying to these conditions and the pr03ector II form an odd normal
pair (II, @) at the points 2(¢) of the supersurface M.

Now on odd vector fields, sections of the bundle SN (M), we will define the
linear operator ”truncated divergence”. For this purpose we consider in a vicinity of

The operator

T e

‘ﬁ a given point z(¢) an odd normal pair (11(z), \i’(z)) in E™" which is a prolongation
of the odd normal pair (ﬁ(f), T(£)): \II|M =, HIM = 11 and define the truncated
I divergence in the following way:

Divtrune (¥(0)) = (div’d;,\il — Dol xi:)) |- @

In (4.7) 'Dca,,(ﬁ \i') is given by (3.12, 3.13) for the odd normal pair (I, ), divey ¥’
is divergence (3.10) of the. vector ﬁeld corresponding to the volume form dv defined
by (4.1).

One can see that the r.h.s. of equation (4.7) indeed does not depend on the
prolongation (ﬁ 'i') of the odd normal pair (ﬁ, W), moreover (4.7) is zeroth order
linear differential operator :

D“’trunc (f(()‘]?(()) - f(() Dzvtrunc (‘I’(C)) y (48)
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because W is symplectoorthogonal to M. - . R

Using the relation (4.4) between operators-II and P, the equation (4.3) for P, the
conditions (4.6) we arrive by straightforward calculations at the following expression
for (4.7): o :
Div.trunc (‘I’(O) =
; SR

log p(w)} P (RN : 55t 5) i

wr(Q) - L)) () Lp0.0P (00 (O) DR (49)
Here W(¢) = U4(¢)8/0w* is an odd ‘\"ector':ﬁe_ld obeying to (4.5), {w?} are ar-
bitrary Darboux coordinates on E™"; I4p is the. matrix of symplectic two-form
in Darboux coordinates (see 2.8), p(w) is the density of the volume form (4.1) in
these coordinates and w#(() is the parametrization of non-degenerate supersurface
Mr-1n-1 TR . e . i . —

In the case if there exist Darboux coordinates {w*} in which the volume form
(4.1) obeys to condition E NPT e T T s _
‘ dv=dv'..dw™, . (410)
“i.e. its density p(w) =1 then e N

Diveruns (¥(0)) = ~UA) apdp0a0® (OO (w())(-1)FE+HE . (4.11)
The analogous cbnstfuction in RJemannlan géométry: in kthe case if a vector field is
tangent to surface is reduced to the divergence along a surface and in the case if a
vector field is orthogonal to surface is reduced to a linear operator related with the
second quadratic form of this surface. (See the 6-th Section).

5. The odd invariant semidensity.
Now we are well prepared for w'ritbingﬁ:tmiléfforj’iinula for odd invariant semidensityv
using constructions (4.7-4.11) for truncated divergence. The constructions of this

section are founded on the following remark. Let M™~!*~! be an arbitrary nonde- -

generate (n — 1.n — 1)-dimensional supersurface embedded in the odd symplectic
superspace E™™ and a field ¥ on this supersurface obeys to conditions (4.5). Then
the r.h.s. of (4.7,4.9) by its definition is invariant under coordinate transformations
of the superspace E™" and does not depend on the parametrization 24 = 24(¢*) of
the supersurface M®~1"~1, So the equations (4.7,4.9) define a density of the weight
o = 0 on this supersurface. Moreover, if ¥ is a density of an arbitrary weight o
which is defined on non-degenerate (n — 1.n — 1)-dimensional non-degenerate super-
surfaces and takes values in the odd vector fields obeying to (4.5) then the truncated
divergence (4.9) of this density is the density of the same weight o which is defined
on(n—1.n— 1)-dimensional nondegenerate supersurfaces and takes numerical values.

Let, as in Section 4, E™" be a superspace which is endowed with odd symplectic
structure (2.1) and volume form (4.1), and M?~1n-1 be an arbitrary nondegenerate
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supersurface in this odd symplectidsu erspace. Now we will ¢ » ‘semi
density on the M which takes values ii)l thrf): odd vectc')‘rse ;lv}ghz(;rilztgrltlztcg;ilist?ﬁ;
(4.5). Let the vectors (ey, ..., en_1; fi, ...y fn-1) constitute a basis of the tangent space
T, oM at arbiprary point z(() of the supersurface M™~1"~1 (e; are even vectors
and f; are odd ones). Let ¥(z(()) and H(z(¢)) be respectively an odd and an even
vector fields which belong to TI(z(¢)) (see (4.5)) such that (II(z(()), ¥(z(()) form

an odd normal pair:

HUcll, Q¥,¥)=0 and QHT)=1. (51)

These conditions fix the vector fields H and W up to the transforﬁation
1 .
H-— =
— /\H+ﬂ‘I', U - P (5.2)

wl.lere Als an arbitrary even function (taking values in non-nilpotent numbers) and
B is an arbitrary odd function (compare with 3.16). Using transformation (5.2) one
can choose the vector field ¥ (but not the vector field H) in the unique way b

imposing the normalization condition via volume form (4.1): ¢

dv(er,...en1, Hify,...,f), ®) = 1. (5.3)

We arrive at the function

W = W(z({),e1,...,€n1; 1,00y Ta1) s - (5.4)

which depends on points 2(() of the supersurface M»~1"~1 and the basis (ey, ..., ,_1;
fl,...3 i:,,_l) in the T,yM™~1"=1 and which takes values in odd vectors ot;ey;ng—tc;
condition (4.5). This function is defined uniquely by conditions (5.1,5.3). It is easy
to see that under the change of the basis the function (5.4) is multiplied by the
square root O,\ the corresponding Berezinian. For exampleif e — \ej and f; — uf1
then.'Il — /4 ¥. Hence (5.4) defines semidensity. (It is interesting to note that these
c.on.s1derations for obtaining the formula for invariant vector-valued semidensity are
similar to the considerations for obtaining the formula for the invariant density on
the Lagrangian surfaces in E™" suggested by A.S. Schwarz [13].).

If 24 = 2A(¢?) is any parametrization of a supersurface M™~1"~1  where {¢*}
= ({l, ey €0, L, v*7Y) are even and odd parameters of this supersurface then
considering as the basis vectors

824 9 824 0 924 0 ' 8z4 0

€= e = g a s I = s =
1T 0 oA 11 et BEn=1924" ! 8V1324""’f"—1_au"‘15;4—’

we come from (5.4) to odd vectors valued semidensity ¥(z(¢), g—z) of the rank k =1

on nondegenerate (n— 1.n—1)-dimensional supersurfaces. The truncated divergence
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of this semidensity is the odd semidensity of the rank k = 2. Using the formula (4.9)
we arrive at this odd invariant semidensity:

2,4 . aw\ _
A(w(¢), 52 557) = Divirunc® ((0)-5¢) Ba+h)+a 4 dloge(w
¥ (w(0), 22) - (~LenBauwP (R (w(O)(-1e01s 4 egtal] | ) -
where {w4} are a.fbitrary Darboux coordinates in the E"'",.p(u.)) is the densitt)" of
the volume form in these coordinates and w(() is parametrization of supersurface
M™=17=1_In a case if there exist Darboux coordinates {w*} in Whlf)h volume fon‘n »
dv obeys to condition (4.10) (p(w) = 1) the formula (5.5) ficcordmg to (4.11) is
reduced to ' ’

(0,22 70 - g0 (w0 22)  1030,0P SO -1
A(w(C)1'a_C’ acac) =-V ( (C), aC) cBUp (56)

The semidensity (5.5) is nothing but the semidensity (11) obtained in [6] b;clfltuse
of its uniqueness. (See Ref.[6]). To compare (5.5) with (1.1) we do therfo 0\;11;
ing. Let M be (n —1ln=- 1)¢dimensional arbxtr?.ry non-degenerate supersu a.:t}e in
E™™ and z, be any point in M. One can consider Darbolux coox:ixfatles {w "_l—;

(z',...,z",0,...,6") on E™" and parameters {C"}4 = (f Y St ,...d,V )
such that this supersurface in the parametrization w*(¢®) is flat up toisecoril order
derivatives in a vicinity of zo : z" = o((?), 6" = o(¢?), :L:' = f.' +0(¢%),8 =v +.o(( )
if 1 <i<n-1and p(zo) = 1. The vector valued semidensity (5.4) at theApom—li f)o
in these coordinates and in this parametrization is equal to 8/9n, dadsw?|z =0,

hence semidensity (5.5) at the point zo is equal to

dlogp

agn ;
’ is supersurface M there correspond the functions =
gf::é%f;l g};aidontz. zl(lzz) inp(l.l), hence the dual density A in (1.1) at the point

2o 1s equal to

(5.7)

2=z9

_Ologp
2=29 T 30"

Af

and coincides with (5.7).

2=z

= divdVDf
Z0

z=

6. Discussions
In this section we consider analogues of the geometrical c.onstruc.tions (3..6), (4.7)
and (5.5) in Riemannian geometry. 1) Let E” be n-dimensional Riemannian space

endowed with Riemannian metrics G. Then for a p?.ir (L(z),h(z)), wheriL(:c) and
h(z) are a linear operator and vector field respectively, defined on T E", one can

consider divergence-like operator
‘ 2 i L i E
D(L,h) =Tr(L-Vh) = LEVih = (ﬁ + F,,ph") L, (6.1)
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where V is covariant derivative corresponding to the metrics G and Ti,. are the
components of the corresponding connection in the coordinates {z*}. In a caseif
E is locally Euclidean, i.e., there exists a class F,y. of local coordinates in which
G = 6;x, then it is easy to see that D(L, h) in (6.1) is nothing but Deuc(i,h) in
(3.6) corresponding to the class F,,. and (3.3) defines the components of the trivial
connection in the coordinates {z'}.

Here like in a case of even symplectic structure (1.4) we do not need to put
special conditions like (2.10, 2.11). 2) The construction analogous to (4.7) can be
also carried out without special conditions on the dimension of embedded surface
and.on the vector field. _ : ' : '

Let M be an arbitrary surface embedded in the Riemannian space E™ and h be
an arbitrary vector field which is defined at the points of M.

It is useful to recall here the following standard formulae from Riemannian dif-

ferential geometry [9]: if u, and uy are arbitrary vector fields which are defined on
M and are tangent to M then

I?(Vu1 ug) = (VM)u,-u«h P is orthogonal projector TE",, »TM,

I(Vy,uz) = A(u,,u,), 0 is orthogonal projector TE™|,, — TM*L | (6-2)

where Vs is covariant derivative o_ri M induced from E™ and A(uy, u,) is bilinear
symmetric form on the TM which takes values in the vectors orthogonal to M.
To arbitrary vector field h which is defined at the points of M there correspond

number-valued symmetric bilinear form ap and related to it linear operator A, on
TM such that T

an(u, uz) = G (uy, Ap(ug)) = G(h,vA(ﬁl‘, [12)‘) . (6.3)

In the case if M is hypersurface and n is the field of unit orthogonal vectors then ap
is nothing but its second quadratic form. Trace of Apn defines the mean curvature
at the points of M and determinant of Ap defines Gaussian curvature.

Using (6.1) we consider the following expression as an analogue of the formula
(4.7) for truncated divergence:

Divgpunch = (divﬁ — Tr(iI- vﬁ)) |, =Tr(B-vh),,, (6.4)

where like in (4.7) h, fI, P are prolongations of h,II, P respectively, in a vicinity of
M. From (6.4) and (6.2) it follows that :

. _ [a) divph ifhis tangent to M .
Divirunch = {b) —TrAy  if his orthogonal to M . (6.5)
In the components orthogonal projector P is given by the expression (compare it
with (4.3)) ' o

PF = Gi;0.37g*P dpz* . - (6.6)
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k \ ™ is the
i ization of the surface M, gap = 0aZ™Gmn0Opz" is
where z(£) is the parametrization o e M, . .
metrics i(nduced on the surface M and g*# = (g)aé is inverse m}(l:tr;cs tensor
So if h is orthogonal to M then (6.5b) in components has the form

Divgpanc(h) = —h¥(6)Gi;050p77 (€)9°? (2(£)) (6.7)

i i i i tesian coordinates on it (Gij = &i;)-
in the case if E" is Euclidean and {z'} are cartesian . .
111111 thz case if E™ is not Euclidean the eq. (6.7) also defines (6.5b) at any given point
: . . - . " — 0-
£o if coordinates {z'} are Euclidean at ’thls point, i.e. I‘k,,., #(60) N
We see that in case (6.52) the truncated divergence 1s reduced to t Z in duced
divergence operator on M and in case (6.5b) it is reduced to zeroth or etrh emOdd
differential operator which corresponds to (4.9, 4.11). 3) Now we compare ;
semidensity constructed in Section 5 with the mean curvature of the }.1ypersu}r1 ac:::
In analogy with considerations (5.1-5.4) of Section 5’01112 ca.n1 CO}I;'SIE? 1(::5 v);{)ues
i invari i 0¢) of the rank k = 1 which ta.
rfaces in E” invariant density N(z(£),0z/ k=1wt \
:: tﬁzeiectors orthogonal to hypersurfaces. By these conditions 1t 1s fixed uniquely
(up. to multiplication by a constant):

N (z(g), %25) = n(m(‘f‘),g%)’ : W , - (68)

where +/det(gap) = 1/det(Paz’GikOpz*) is the density of the volume form dlvM 1}111-
byper . 9z) is it v thogonal to the
duced on the hypersurface z(£) and n(z(§), -3-5—) is t?ée) urélt ;:(I:)t;rn :r{ og
i a .
tors Oz /0¢ which are tangent to hypersurface z . .
vec erply?égE(GA) to vector-valued density (6.8) and using (6.5b) we come in antalof.y
with I()5 5) to the density of the second rank corresp_g_ndlng to the mean curvature:

‘31’82» o k 6.9
H(x(s),éz,_gﬁ—;%);—Trfxg-_\/«zft(ga ). (69)

Sucli oordinates {zi} are cartesian then according
In the case if E* is Euclidean and the coordinates {=*} are‘.ca,r

to (6.7) :
0z O’z : (€)% Jet(9°? , (G =86;). (6.10)
1 (200,95, o) = = Gstadue’ ™ Ao ¢

(Coggzr\?v:w::r t(()5rf)2,;a) that in spite of the fact that odd semidensity (5.5) canno.td‘t:;
integrated over surfaces (A? = 0, so it leads to trivial volume form) one lfra.fzcic;nisli er
the equation Al,, = 0 which extracts the class of (n —1.n—1) supeis e
odd s(;rmplectic superspace endowed with a volpme form. For. e;(:nﬁpcz,n rg)e deﬁ.ned
5.7) it follows that to this class there belong supersurfaces*whic _

coordinates in
by equations z" = §"'= 0, where (z',...,z", 0" .,8) are Darboux
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which the density of the volume form obeys to condition (4.10) (if such Darboux
coordinates exist).

The analogous condition for mean curvature (6.10) H{,; = 0 is the solution of
the variational problem for minimal hypersurface.
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