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1 Introduction 

lnstantons are localized classical solutions of Euclidean field equations of any theory. 
They correspond to finite action integrals ([1]-[3]). It was expected that nonpertur­
bative instanton effects will lead to quark confinement in QCD ((4], [5]). But this 
supposition did not justify hopes in (3+ 1) dimensions. 

Vacuum conception is one of the main conceptions of quantum field theory. The 
instantons can drastically change vacuum state structure. In its turn any change of 
the vacuum structure can transform the theory properties. 

lnstanton solutions cannot be obtained in nonlinear theory, if nonlinear terms 
of fild equations are considered with respect to solutions of linear part of these 
equations by perturbation theory. Standard perturbation theory can be regarded 
as the particular case of quasiclassical method when fluctuations are quantized in 
neighbourhood of trivial classical solution. In nonperturbative theory we have to do 
the same in neighbourhood of nontrivial instanton solutions. 

The main property of instanton solutions in field theory is self-duality of them. 
This fact was first noted in ([6]) and was _being used by all authors when instanton 
solutions was being looking for. In spite of number of instanton properties repeat in 
different situations, a single general definition of instantons is absent now. There­
fore it is proposed here that in Euclidean gauge field theory instanton is self- or 
antiself-dual solution of equation F;,, = =f • F;,,, where F;,, - stress tensor of the 
gauge field A:, and • F;,, - dual stress tensor. Then the rest of the known instan­
ton properties followed this definition. Such approach permits us to generalize our 
instanton definition to field equations of theories in pseudo-Euclidean and pseudo­
Riemannian spaces. The correspondent solutions we shall name the hyperbolical 
instantons. Then absolutely new possibility is open. It is the possibility to obtain 
instantons in unified theory of all fundamental interactions equally gravity in real 
(3+1)-dimensional Riemannian space-time¼ ([7]). Here we discuss the properties of 
such instantons and their role in construction of vacuum state in General Relativity, 
QCD and unified gauge field theory. 

2 Different vacuum concepts 

2.1 Vacuum definitions 

In quantum and classical field theories there are used different vacuum concepts. 
The examples of such concepts are following: 

1. Gauge field vector-potential A: is zero: 

This is trivial vacuum definition. 



2. Gauge field stress tensor F;,, is zero: 

F:,, = 0, 

where F;,, = O[µA~1 - ½ft'cAtµA~1. This gauge field we name longitudinal one. 
Sometimes the gauge fields of such sort are named pure gauge, but this name 
do not correspond to its physical sense. Our definition means that this gauge 
field is experimentally invisible. Therefore we can not test existence of the 
gauge field by any experiment. Such gauge field is regarded as nonphysical 
one. 

3. Motion of particles in external gauge field is force-free one. Then all compo­
nents of energy-momentum tensor Tµ" are zero: 

Tµ" = 0, 

where Tµ" = ,n -Euler-Lagrange derivative of Lagrangian L relatively metri-
00µ1.1 

cal tensor gµv of space-time ¼. This is vacuum definition in GR. 

2.2 Force-free motion in detail 

Let us consider Einstein's equation 

1 
Rµv - 2gµvR = KTµv, (1) 

where Tµ" -energy-momentum tensor of any nongravitational source. 
When Tµ" = 0, we have vacuum Einstein's equation: 

1 
Rµv - 2gµ,,R = 0, or Rµv = 0. (2) 

These equations describe force-free motion of probe particles in_external gravity field. 
Such motion is only feasible along the geodetic lines of Riemannian space-time ¼ 
with metrics gµv• In reality it is nontrivial vacuum, which structure is invisible until 
some particles or real physical fields will appear. · 

When Tµ" =/- 0, we have Einstein's equation (1). This equation followed by 
covariant conservation law 

Tµ,,w = 0. (3) 

In ([8]) it was shown that conservation law (3) followed by equation of motion 

Pµ = F:,,j~, (4) 

where pµ is 4-momentum and j~ is current of particles. 
Equation ( 4) shows that if the gauge field is longitudinal, the motion of particles is 

as force-free one as under condition Tµ" = 0. When F;,, = 0 in Minkowski space-time 
the particle trajectories are straight lines. They are the integral curves of equation 

'Pµ = 0. (5) 
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But in Riemannian ¼ the correspondent integral curves of equation (5) are geodetic 
lines of this Riemannian space-time, and can be regarded as the straight lines in 
small neighbourhood of each point only. So in Riemannian space the second vacuum 
definition lead to the definition of geodetic motion in external gravity field. It is 
naturally because the condition F;,, = 0 leads to Tµ" = 0, but contrary assertion is 
wrong because Tµ" = 0 do not lead to F;,, = 0. 

So when F:,, = 0 or Tµ" = 0 and gravity is absent, ¼ is flat space-time, and the 
gauge field is experimentally invisible by any particle motions. 

Equation (5) can also appear when F;,, =/- 0, but F;,,j~ = 0. Then we have 
forceless configurations of the gauge field which are similar to forceless configurations 
of currents in external electromagnetic field. Such configurations are exrerimentally 
visible and known. 

2.3 Force-free motion and stationary states 

In quantum electrodynamics the definition of stationary state implies that wave 
function (state vector) <I>r is eigenfunction of energy-momentum operator Fµ ([9]): 

Fµ<l>r = pµi!>r, 

where pµ - eigenvalue of the operator ?µ-
Such definition of the stationary states followed by definition of vacuum state in 

the form: , 

Pµ = 0. 

In second quantized electrodynamics the operator Fµ is the image of classical energy­
momentum 4-vector Pµ, which is 

Pµ = j rin0 d3x = const. (6) 

This correspond to Schrodinger representation, where dynamical variables are char­
acterized by the time independent operators ([10]). 

The condition Pµ =const is integral conservation law of energy-momentum, which 
is obtained from differential conservation law in Minkowski ¼: 

oµTµ" = 0. (7) 

But in Riemannian space-time we have not this conservation law. Instead of equation 
(7) we have equation (3). Integration of equation (3) does not lead to the energy­
momentum vector Pµ in the form (6). Such Pµ in Riemannian ¼ does not exist! 

Perhaps for quantization in Riemannian ¼ (and unification of all interactions 
equally gravity) it will be useful to take energy-momentum tensor r; instead of 
energy-momentum vector Pµ- Then the vacuum definition can be taken in the form 
r; = 0, i.e. the vacuum state has to correspond to force-free motion and vacuum in 
GR. 
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3 Gauge fields, vacuum structure and energy-mo-
mentum conservation: unified approach 

3.1 General principles 

Why GR must be a gauge theory? Modern theoretical physics goal is unification of 
all fundamental interactions: mechanics, electrodynamics, nuclear forces and gravity. 

The ways of this problem decision being proposed now: 

1. Single big symmetry group G, generating all conservation laws for all interac­
tions (for example, Grand Unification); 

2. Single big wave function 1/; which components correspond to each particle or 
field (for example, supersymmetry); 

3. Single equation which components correspond to equations of each interaction 
(Kaluza-Klein theory and its extensions); 

4. Single construction principle of each interaction theory under conservation in­
dividuality of each interaction. 

In all cases the gauge invariance is used. Fourth way was proposed by me in 1967 
and published in ([8],[11]). It does not use any compensating procedure. In this case 
each gauge field theory can be produced by choice: 

• field variables; 

• symmetry groups (space-time symmetry and internal symmetry); 

• transformation properties of field variables under two types of symmetry groups; 

• order of derivatives of the field variables in Lagrangian. 

It is necessary and sufficiently for construction of variational and geometrical theory 
of any fundamental interaction. Including GR! 

So the base of construction of unified gauge theory of all fundamental interaction 
consist of: 

• Lagrangian formalism; 

• Lie's groups (local and global) and its representations; 

• Noether's theorems (first and second); 

• fiber bundle spaces geometry. 

Corresponding mathematical technique permits us to find equations of particle mo­
tion and fields, conservation laws, constraints and so on by the single method for all 
interactions. 
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3.2 Global symmetry Gr 

The theory is invariant under transformations of Lie group G,, where r is number of 
group parameters. First Noether's theorem is true. 

If we have the Lagrangian L, field variables u and variations of the form u as 

Ju= aa(x, u, u', .. )fa, fa - the group parameters, 

we shall obtain following Noether's identities: 

, oL 
aa(x,u,u, .. )Ju =01,J:. 

Here ~~ - Euler-Lagrange derivative. Equations of motion correspond 
§1, =0 Ou . 

If ~~ = 0, we obtain the differential conservation law by (8): 

OµJ~' = 0, 1: - conservative current. 

(8) 

to the case 

Thus conservation laws exist and are nontrivial, when G,-symmetry is true. At the 
same time these conservation laws exist only on the solutions of field or particles 
motion equations (i.e. on extremals of action integral S). 

If ~~ = 0 =/- 0, we have the broken conservation law of the special form: 

OµJ: = 0aa(x,u,u', .. ). (9) 

Then it is spoken about broken symmetry G,. In this case we a.re working beyond 
the extremals of S, but really G,-symmetry of the Lagrangian L and act.ion integral 
Scan be conserve if (9) is fulfiled. Similar situation appears when 0 corresponds to 
the new terms in L ([11]). 

3.3 Local symmetry Goor 

The theory is invariant under the transformations of infinite Lie's group G00,, which 
are determined by r functions fa(x) and its derivatives up to k1h order. Second 
Noether's theorem is true. 

Variations of the form u are 

Ju= aa(x, u, u', .. )la(x) + b~(x, u, u', .. )(~µ· 

Second Noether's theorem identities are 

, )JL _ !.l ( µol 
aa(x,u,u, .. Ju =uµ baJu). 

If ~t = 0, these identities produce the trivial result 0=0. 
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But if G=r-symmetry is broken, i.e. 1~ = 0 # 0, we have nontrivial covariant 
conservation laws in the form: 

Oµ(b~O) - aaO = 0, 

which can be rewritten as 'v µj/; = 0, where j/; = b:O- conservative current. 
The covariant conservation law (3) in GR is namely of such nature. The conser­

vative current in GR is energy-momentum tensor r;. 

3.4 Integral conservation laws 

In Minkowski ¼ conservative charges ( dynamical constants) are the integrals of form 
([10]): Qa = J J~n0 d3 x = canst. When J/; = T/:, the dynamical constants are the 
components of energy-momentum 4-vector Pv: 

Qa = Qv = J rin0d3x, .. (10) 

This number of dynamical constants correspondents to the invariance of theory under 
displacement transformations of Poincare group. The displacements form abelian 
invariant subgroup of Poincare group. Therefore the components of Pv commute with 
each other and with the rest dynamical constants of Poincare-symmetrical theory. 

Pv of form (10) is a result of differential conservation law (7) integration by the 
Gauss theorem in Minkowski space-time. But in Riemaimian ¼ this procedure is 
impossible. 

In Riemannian space-time ¼ the symmetry of Minkowski space-time becomes 
local one. It acts in tangential space in each point of Riemannian ¼. Instead of 
Poincare group P10 we obtain two symmetry groups: 1) local Lorentz group G00r 

acting in flat tangential space in neighbourhood of each point of¼, and 2) group of 
arbitrary continuous coordinate transformations G004 of General Relativity. Second 
symmetry acts in the base of tangential fibre bundle space (i.e. in Riemannian ¼). 

In Riemannian space-time integration procedure is only determinated for external 
forms. But Tµv is symmetrical tensor of rank two and is not any external form. 
Therefore instead of integration of equation (7) it is necessary to integrate equation 
(3) by the modified procedure. Such procedure was proposed by J.L.Synge ([12]). It 
is integration along Killing's vector (/: trajectories by formula 

Qa = J rie:nod3
x. 

Killing's vectors (/: obey to equation: 

(aµ;v + (av;µ = 0. (11) 

The solutions of these equations determine the algebra of symmetry group (group of 
motions) of Riemannian ¼. This group conserves the metrical tensor 9µv : Jgµv = 0. 
Coordinate transformations can be written as Jxµ = (/:fa(x). 
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When Riemannian curvature tensor Rµv-r>. is zero (¼ is flat), the solutions of 
equation (11) generate Poincare algebra. If Rµv-r>. # 0, we have no any group of 
motions which has 4-dimentional abelian invariant subgroup. Therefore the energy­
momentum 4-vector Pv does not exist in Riemannian space-time. 

4 Gauge field vacuum and GR 

In the unified theory of all fundamental interactions the vacuum concept is closely 
connected with correct definition of the gauge field energy-momentum tensor rJiJl 
and, consequently, with Einstein's equations. 

In unified geometric theory of the gauge fields ([8]) the main equation system is 
analog of Hilbert-Wheeler-Misner equation system in geometrodynamics ([13]-[14]). 
This equation system was obtained in 1970 by me in ([15]). It has the form: 

frµv = 0 
a iV 

1 
Rµv - -g R = rt9 Jl 2 µv µv 

(12) 

(13) 

where TJi1Lstress-energy tensor of any gauge field which has Maxwell-type form: 

T (gf) _ pa F" _ ~ pa p>.-r _ (Fa _ · •pa )(F T + · *F -r ) µv - µT a v 4 9µv >.-r a - µ-r Z µ-r a v Z a v (14) 

Let us consider the gauge gravity theory with 9µv and Ricci connections Llµ(ik) 
as field variables ((GR+SO(3, 1))-gauge gravity). Its equation system is analogous 
to geometrodynamics one and equations (12)-(13) of any gauge field in Riemannian 
¼. Such a theory takes into account the extend of real objects and describes the real 
gravity forces acting on them, i.e. tidal forces. In the case of (GR+SO(3,1))-gauge 
gravity the equation system (12)-(13) transforms to following: 

R,µv(ik);v = 0 

R l R- T(9 l µv - 29µv - K, µv , 

where the energy-momentum tensor of tidal gravity forces TJi> has the form: 

Tµ(~) = (Rµ,,(ik)R:(ik) - ~9µvR>.,,(ik)R>."(ik)) = 
4 ' 

(R:(ik) - • R:"(ik))(Rvu(ik) +. R:u(ik)) 

(15) 

(16) 

(17) 

With respect to 9µv we have here the gauge gravity theory of higher order ([16]). 
Rµv ( ik) is analogous to the stress tensor F;v of any gauge field. In this theory 
vacuum can be defined by condition Tµv = 0 as it is in GR. Then the gravity 
vacuum definiton is: rJi> = 0. Besides trivial solution Rµv(ik) = 0 this equation has 
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nontrivial solutions. These solutions are analogous to the electrodinamics solutions 
which obey the duality equations: 

Fµv = ±i • Fµv 

Nontrivial solutions of duality equations are named the instantons. They minimize 
the action integral S = J FµvFµvdv and transform it into the topological constant. 

In the case of the gauge field the instantons are nontrivial solutions of the equa­
tions TJfl = 0 and duality equations 

F:v = ±i *F:v 

They minimize .the action integral S = J F;vF:v dv and transform it into the topo-
logical constant (Pontryagin's index). . 

In the case of the gauge gravity the equation TJf,l = 0 implies arising of the 
vacuum state of the real gravity and the transition to GR. All solutions of vacuum 
Einstein equations are the solutions of the gauge gravity equations. Let us show it. 

Instead of duality equations 

RTA = ±i. RTA 
µv µ11 (18) 

it is necessary take twice dual equations 

RTA = ±. R*TA 
µv µ,v (19) 

which are followed by 
Rrv = ± • R;v (20) 

The duality equations (18) which are analog of electromagnetic conditions of 
duality have only trivial solutions in the case of gravity (Euclidean Vi). 

Taking into account that equations (17) followed by R =· 0 we can transform 
them to the form ([15]) 

Ri = -K(Rµ<TTA - • R*µ<TTA)(Rvar>. + • R~ar>.) (21) 

Therefore TJf,l = 0 if either 

RTA = +. R*TA 
µv µ.v and Rrv = + • R;v = R,.v - ~9rvR f--t R = 0 (22) 

and we have not any new solution, or 

RTA = - • R*TA 
µv µv and R,.~ = - * R;v f--t R,.v = 0. (23) 

So all vacuum Einstein spaces are the hyperbolical instantons by definition in the 
frame of (GR+SO(3, 1_))-gauge gravity theory ([16]). Therefore all solutions of vac­
uum GR-equations describe the vacuum structure of the gauge gravity theory and 
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Schwarzschild solution is one of them. The hyperbolical signature is not an obstacle 
to being instanton. 

Thus it is shown that the gravity (including Einstein's GR) has to be consider the 
gang<' field in the single scheme with other interactions and quantization procedure 
has to he analogous to that of any nonabelian gauge field. It is necessary to note 
that under condition Tµv = 0 we obtain always the Einstein gravity vacuum equation 
independently of the gauge field type. Thus all gauge field instantons can take part 
in creation of space-time vacuum structure: 

5 Summary 

If vacuum definition is 1:,,, = 0, then a) gauge field equation system followed by 

F,~v = =Fi • F,~v, 

and corresponding solutions are named the ins tan tons ( after transition to Euclidean 
signature of metrics); b) ( GR+SO(3, 1) )-gauge gravity equation system followed by 

R1,ar,\ = =f • R:<TT,\, 

and corresponding solutions are named the hyperbolical instantons. Nontrivial so­
lutions of type a) exist in space of Euclidean signature only. Nontrivial solutions of 
type b) exist in Riemannian space of hyperbolical signature. 

As a result of hyperbolical instantons definition 

• All Einstein's equation vacuum solutions are the hypcrholical instantons: 

• All gauge field instantons correspond to vacuum Einstein's equations, force-free 
motion and the vacuum space-time structure. 

lnstantons properties. 
The main properties of instantons are following: 

1. If 1:w = 0 and gravity is absent, the instantons detcrmim' nontrivial Y,H"UUlll 

structure of Minkowski Vi and force-free motion in each gauge• fic•ld with 'f'(_qfl = 
'"' 0. 

2. IfT1w is a source in Einstein's equation and gravity is prc•scnt.. tlwn (h1• instan­
tons determine nontrivial vacuum structure of Riemannian span•-t i1111· \ :, hy 
Einstein's equation 

1 ' Rµv - 2,9µvR = T,w• 

When T,w = 0, we have force-free motion in gravity field. 

3. The real gravity forces correspond to the tidal fo1-rc•s and '/;\f,l #- 0. \V])('n 
1;\r,> = 0, we have the gravity hyperholiral instant.ems. 
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4. Gauge field action integrals are minimized by instantons and hyperbolical in­
stantons and turn into the topological constants (Pontryagin's index): 

5<9n = j Fa Fµ.v dv = j Fa * Fµ.v dv = const 
min µv a µv a , 

5<9 > = j R , Rµ.vr.\dv = j R • R•µ.vT.\dv = const· min µVTA µvr>.. , 

These integrals are absolute minimum of the corresponding action integrals 
independently on the field equations. 

.5. lnstantons don't propagate in Vi because all dimensions are occupied and in­
tegration must be done throughout the whole space-time Vi- lnstantons and 
hyperbolical instantons are the special configuration of Vi; 

6. Topological charge variations characterize creation and annihilation of holes in 
Vi, but not exchange between quasi particles. Singularities of manifold enclose 
its contributions in the topological charge as well. 
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