


1. Introduction

The Hamiltonian mechanics (HM) is in the ground of mathematical de-
scription of the physical theories, [1]. But HM is in a sense blind, e.g., it does
not make difference between two opposites: the ergodic Hamiltonian systems
(with just one integral of motion) and integrable Hamiltonian systems (with
maximal number of the integrals of motion).

By our proposal, Nambu’s mechanics (NM) [2] is proper generalization of
the HM, which makes difference between dynamical systems with different
numbers of integrals of motion explicit.

In this paper we introduce a system of nonlinear ordinary differential equa-
tions which in a particular case reduces to Volterra’s system, [3] and integrate
this system using Nambu-Poisson formalism, {2, 4].

In Sec.2 of this paper we introduce the dynamical system In Sec.3 and
Sec.4 we construct a complete set of integrals of motion in two particular cases
for which we found the general solutions in quadratures. In Sec.5 we found
some integrals of motion in the general case and present our conclusions.

2. The system

In this section we introduce the following dynamical system

14
Tn ="Yn Z (ez,,+,,. — 62"'"'),
m=1
TptN = Ty, (1)

where 4, are real numbers, and [a] means the integer part of a.
The system, (1) for 7o = 1, p =1 and z, = Inv,, becomes Voltera’s system

Up = vn(v'n+1 - vn—l)a (2)
then it is connected also to the Toda’s lattice system, [5]
gn — eyn-H‘—!In 4+ eyn"yn—-l.
Indeed if

Tn = Yn — Yn-1,
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then

- T Tn-1
zn:e"“—e" .

If v, = 1 and p > 1, the system (1) reduces to the so-called Bogdiavlensky
lattice system, [6]

14
Up = Up Z (vn—{-m —* Un—m)- (3)
m=1 :

For N = 3, p =1 and arbitrary ~v,, (1) is connected to the system of three
vortexes of two-dimensional ideal hydrodynamics, [7, 8].

3. Thecaseof N=3,p=1

It is well known that the system of N vortexes can be described by the
following system of differential equations, [7]
N
=iy 4)
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where z, = €, + iy, are complex coordinate of the centre of n-th vortex.
For N =3, it is easy to verify that the quantities
T, = In|zs — 23l (5)
Ty = In|zs — 2,
z3 = Injz; — 23]
satisfy the following system
&1 =1(e” — ),
S‘Cz = ’)’2(613 e 611),
T3 = y3(e™ — e™) ‘ (6)
after change of the time parameter as

elzitza +x3)

=& g — elmitTates)/2 '
dt 5 dr=e Rdr, (7

where S is the area of the tri:;,ngle with vertexes in the centres of the vortexes
and R is the radius of the circle with the vortexes on it.
The system (6) has two integrals of motion

m=y, (s)

and can be presented in the Nambu-Poisson form, (8]
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{ 1 2} 3] i Tk
where :
Wijk = €ijkP; (10)
P ="N"273

and the Nambu-Poisson bracket of the functions A, B, C on the three-dimensional
phase space is

' 8A 9B 8C
The fundamental bracket is
{z1, T2, T3} = wije. (12)

Then we can again change the time parameter as
du = pdr (13)

and obtain Nambu’s mechanics, [8]

o, 01y

| ;= C;jk—-——axj Bxk .
4. The next important case is N =4 and p =1,

&1 = 1€ — ™),
$g = yo(™ — €™),
&3 = y3(€™ — €72),
T4 = Y€ — €™). (14)

Like as N = 3,p = 1 case, for (14) we have two integrals of motion
Ty a2 61‘3 Cz‘

Hm=+"—+=—+=—, (15)
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For the mtegrablhty of the system (14), we need one more integral of motion,
Hs. To find that integral let us take Nambu s form of the system (14)

B OH, 0H, 0Hs .
= {zn, Hl,Hz, H3} = 717273746nmkla : alk P (17)
We found from (17) a solution for Hs
1 .
Hy=—3(2 2423 (18)

Because we already have three 1ntegrals of motion, we can 1ntegrate the
system (14). From (16) and (18) we get’ :

(H2 + 2H;3 .’132)
= V4 H ) o Ty ) ‘

2 3 z)
I3 = Y3(——-— — — 19
3=m(— 71,) | (19)

and (15) gives us
z1 ) (Hg —2H3) (H2+2H3)
il ye™ O - e b =H. (20
N Y2 ] Y4

So z, is an implicit function of z,, o = ny(zy, Hy, He, H3). When

B 4,42, 43,4, (21)
Y2 L

the function n; reduces to the composition of the elementary functions. When

% — 41,492, 43,4, (22)
1 .

we have z; as a superposition of elementary-functions of z2. Similarly we can

consider the cases for the ratios %% and %

Now we can solve the equation for z,

&) = (e — ) = ny(z1), (23

by .one quadrature, S
; [T o dx
N(z1) = /

Ti0 N2 (.’L‘)

=t—t,. (24)

5. Conclusions

As is well known, Nambu mechanics is a generalization of classical Hamil-
tonian mechanics introduced by Yoichiro Nambu, [2]. In [9, 10] it was demon-
strated that several Hamiltonian systems possessing dynamical symmetries can
be realized in the Nambu formalism of generalized mechanics.

In this paper we invented the system (1) and investigate the integrability
properties of the particular cases of the system by elementary methods using
Nambu—Poisson reformulation of Hamiltonian mechanics. ‘

For the general case we have two integrals.of motion for the system (1)

. . N 61'"
H, = Z o (25)
: n=1 Tn
N
H=Y = (26)
n=1 7"

For even N, N = 2M, we found a third integrél of motion

H3 = %% ﬂﬁa (27)

n=1 ’7’1

but when N > 5, for integrability, we need extra integrals of motion. The
integrability properties of the system (1) in the general case are under investi-
gation, [11].
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