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The degenerate character of the conventional Yang-Mills action 
for SU(2) gauge fields A~(x) 

S[A] = -~ J d4x F:vFaµv (1) 

leads to a restriction of the corresponding phase space spanned by 
the canonical variables (A0, P0a) as well as (Aai, Eai) due to the 
primary constraints Pg(x) = 0 and the secondary constraints, the 
non-Abelian Gauss law 

(2) 

Since they are first class 

(3) 

the dynamics of the system is not uniquely predictible. The main 
problem in the Hamiltonian formulation of Yang-Mills theories is 
to find the projection from the initial phase to the phase space of 
unconstrained gauge invariant variables with uniquely predictable 
dynamics. The conventional perturbative gauge fixing method [1] 
for solving this problem works successfully for the description of 
high energy phenomena, but fails in applications in the infrared 
region. The correct nonperturbative reduction of gauge theories 
[2]-[13], on the other hand, leads to representations for the uncon­
strained Yang-Mills systems which are valid also in the low energy 
region but unfortunately are very complicated for practical calcu­
lations. The problem is to state some practical form of the theory 
preserving all main properties of initial gauge theory which can ap­
plied directly to the solution of infrared problems. With this aim 
we follow the method of Hamiltonian reduction ([14] and references 
therein) in the framework of the the Dirac constraint formalism 
[15, 16]. In previous work [17] devoted to the case of the mechanics 
of spatially constant SU(2) Dirac Yang-Mills fields we obtained the 
corresponding unconstrained system desribing the dynamics of a 
symmetric second rank tensor under spatial rotations. 



In this letter we generalize our approach to field theory. We 
give a Hamiltonian formulation of classical SU(2) Yang-Mills field 
theory entirely in terms of gauge invariant variables. 

The non-Abelian character of the secondary constraints (3) is 
the main obstacle for the corresponding projection to the uncon­
strained phase space. The way to avoid this difficulty is to re­
place the non-Abelian constraints (3) by a new set of Abelian con­
straints \J! 0 which describe the same constraint surface1

. For the 
new Abelian constraints \J! 0 the projection to the reduced phase 
space can be simply achieved in the following two steps. One per­
forms a canonical transformation to new variables such that part 
of the new momenta P O coincide with the constraints \J! 0 • After 
the projection onto the constraint shell, i.e. putting in all expres­
sions P O = 0, the coordinates canonically conjugate to the P O drop 
out from the physical quantities. The remaining canonical pairs 
are then gauge invariant and form the basis for the unconstrained 
system. 

The problem of Abelianization is considerably simplified when 
studied in terms of coordinates adapted to the action of the gauge 
group. The knowledge of the local gauge transformations of the 
Yang-Mills action (1), Aµ ➔ A~= u-1(x) (Aµ - !8µ) U(x), di­
rectly promts us with the choice of adapted coordinates by using 
the following point transformation to the new set of Lagrangian 
coordinates Qi (i = 1, 2, 3) and Q* 

Aai (Q,Q*) = Oak (Q) Q~i -
2
1
gEabc (0 (Q) 8i0T (Q))bc , (4) 

where O is an orthogonal 3 x 3 matrix and Q* is a positive definite 
symmetric 3 x 3 matrix. 2 The first term on the right hand side of 

1There are known several methods of the Abelianization of constraints (see 
e.g: [14, 16] and references therein). 

2 The freedom to use other canonical variables in the unconstrained phase 
space corresponds to another fixation of the six variables Q* in the representa­
tion (4). This observation clarifies the connection with the conventional gauge 
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( 4) corresponds to the wellknown polar representation for an arbi­
trary quadratic matrix [18]. The transformation ( 4) induces a point 
canonical transformation linear in the new canonical momenta Pik 
and Pi. Using the corresponding generating functional depending 
on the old momenta and the new coordinates 

F3 [E; Q,Q*] := f d3z Eai(z)Aai (Q(z),Q*(z)) (5) 

one can obtain the transformation to new canonical momenta Pi 
and Pik 

- o F3 l ( ( * r ) ( ) Pi(x) := ( ) = --0.ir Di Q )0 E . , 6 
oQj X g ri 

* OF3 l ( T T ) ) P ik(x) := oQ* ( ) = - E O + 0 E . . (7 ik X 2 ik 

Here Oji := (1/2)E!im (or (Q) ao (Q) /8Qj)lm is assumed to be 
invertible matrix and Di( Q*) is the corresponding covariant deriva­
tive in the adjoint representation (Di( Q*) )mn := Omn ai + gEmkn Qki• 
A straightforward calculation based on the linear relations (6) and 
(7) between old and new momenta leads to the the following ex­
pression for the field strengths Eai in terms of the new canonical 
variables 

Eai = Oak ( Q) [ P*ki + Eki/ D;/(Q*) [( 0,-l P) 
1 

- S1]] . (8) 

Here* D-1 denotes the inverse of the matrix operator* Dik(Q*) := 

½EimjDm(Q*tk and 

Sk(x) := Cklm (P*Q*)lm - !a1PI1 · 
g 

(9) 

Up to divergence terms this vector coincides with the spin den­
sity part of the Noetherian angular momentum Si(x) := EijkAJEak 

fixing method. We shall discuss this point in forthcoming publications (see also 
ref. [6)). 
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after transformation to the new variables and projection onto the 
constraint shell. 

Using the representations ( 4) and (8) one can easily convince 
oneself that the variables Q* and P* make no contribution to the 
Gauss law constraints (2) 

I 

<Pa= Das[Q]n--:s;Pi = 0 . (10) 

The equivalent set of constraints 

Pa= 0 (11) 

is Abelian due to the canonical structure of the new variables. After 
having rewritten the model in terms of the new canonical coordi­
nates and after the Abelianization of the Gauss law, the construc­
tion of the unconstrained Hamiltonian system is straightforward. 
In all expressions we can simply put P = 0. In particular, the 
Hamiltonian in terms of the unconstrained canonical variables Q* 
and P* can be represented by the sum of three terms 

H = ~ j d3x[ Tr(P*)2 +Tr(B2 (Q*)) + ~.E2 (Q*,P*)]. (12) 

The first term is the conventional quadratic "kinetic" part, the 
second the trace of the square of the non-Abelian magnetic field 

Bsk(Q*) = Ekzm(81Q;m + %Esbc Q;lQ~m) · {13) 

The third term in the Hamiltonian is the square of the antisym­
metric part E of the electric field (8) after projection onto the con­
straint surface and is given as the solution of the partial differential 
equations 

* D1s(Q*)Es = gSz 

It describes a nonlocal interaction of spin densities (9). 
The electric lield E can be expanded Es = L~o E!n) 

with the zeroth order term 

E(O) - -1 (P*Q*) s - lsk Eklm lm , 
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(14) 

in 1/g, 

(15) 

where 'Yik := Qik - <\k Tr( Q*). The first order term is determined 
from the corresponding zeroth order term as 

E!1) := !,;i1 [(rot _E(O))l - akpkl] 
g 

{16) 

The higher terms are obtained via.the simple recurrence relations 3 

E!n+l) := !,;i1(rot E (n))l 
g 

(17) 

The initial gauge fields Ai transform as vectors under spatial rota­
tions. From the Noetherian expression of the total angular momen­
tum in terms of the physical fields (neglecting surface terms) 

Ii= j d3x Eijk ((Q*P*)jk + ~xkTr(P*8jQ*)) , {18) 

we find that the matrix fields Q* and P* transform as second rank 
tensors under spatial rotations. Any such tensor can be decomposed 
into its irreducible components, one spin-0 and the five components 
of a spin-2 field by extraction of its trace [19]. Decomposing the 
symmetric matrix Q* into the irreducible representations of the 
S0(3) group 

Q;i(x) = ~YA(x) Td + ~<P(x) Iij {19) 

with the field <I> proportional to the trace of Q* as spin-0 field 
and the five-dimensional spin-2 vector Y(x) with components YA 
labeled by the value of spin projection on the z- axis A= ±2, ±1, 0. 
4 I is the 3 x 3 unit matrix and the five traceless 3 x 3 spin-2 

3These expressions can be rewritten in terms of the covariant curl operation 
curlS(ei,ej) := (\le,S,ej) - (\le;S,ei) using the basis ei := (1'1l 2 )i/1i such 

that tij := (e;,ej)- . 
4 For the lowering and raising of the indices of 5-dimensional vectors the 

metric tensor rJAB = (-l)A8A,-B is used. 
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basis matrices TA satisfying the commutator relations [J0
, TA]_ = 

A TA with the S0(3) generators (Ja)ik := iEiak [19]. The canonical 
conjugate momenta PA(x) and P~(x) to the fields YA(x) and <I>(x), 
respectively, are the components of the corresponding expansion for 
the P* variable 

Pij(x) = ~PA(x) Ti1 + ~P~(x) Iij . (20) 

For the magnetic field B we obtain the expansion 

l A l O 1 
Bi1(x) = v"iHA(x) Tij + v"iha(x) Jij + v'3b(x) Iij (21) 

with the components 

. 1 (2) B g ( 1 * ) 
HA == 2cA,BBa.BY + v'3 v'2 YA - <r>YA 

._ 1 (1) B fi 
ha .- 2dOB"(a'YY + y 38a<P ' 

b := ~(!yAyA - <1>2) . 
v3 2 

(22) 

(23) 

(24) 

The structure constants c~~c and d~11'Y are defined via the algebra 

[ ] 
(2) [ ] (1) . TA, TB - = cAB'YJ'Y and la, Tn + = d0 'YBJ'Y respectively, and the 

five-dimensional vector 

*Y, ·- d(2) yAyB 
C .- CAB (25) 

via the structure constants d~1c from [TA, TB]+ = !1JAnl + 0d~1cTc. 
Note that for a complete investigation of the transformation 

properties of the reduced matrix field Q* under the whole Poincare 
group it is necessary also to include the Lorentz transformations. 
But we shall limit ourselves here to the isolation of the scalars under 
spatial rotations and can treat Q* in terms of "nonrelativistic spin-
0 and spin-2 fields", in accordance with the conclusions obtained in 
the work [4]. 
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In summary, we have shown how to project SU(2) Yang-Mills 
theory onto the constraint shell defined by the Gauss law. How­
ever, several questions in connection with the global aspects of the 
reduction procedure are arising at ths point. It is well known that 
the exponentiation of infinitisimal transformations generated by the 
Gauss law operator can lead only to homotopically trivial gauge 
transformations, continuously deformable to unity. However, the 
initial classical action is invariant under all gauge transformations 

. including the homotopically nontrivial ones. How does this fact re­
flect itself on the properties of the obtained unconstrained theory? 
In order to discuss the global aspects of the Hamiltonian reduction, 
we compare the wellknown exact zero energy solution [20] of the 
Schrodinger equation in the extended quantization scheme, where 
the Gauss law is implemented on the quantum level, with the corre­
sponding solution of the unconstrained Schrodinger equation. For 
the original constrained system of SU(2) gluodynamics in terms 
of the gauge fields Af(x) this exact but nonnormalizable solution 
w[A], which satisfies both the functional Schrodinger equation with 
zero energy eigenvalue and the Gauss law constraints is 

w[A] = exp (±81r2W[A]) , (26) 

with so-called "winding number functional [21] W[A] := J d3x K 0 (x) 
defined via the zero component of the Chern-Simons vector 
Kµ(A) := -(l61r2)-1cµv,n.Tr (Fv11 A11; - igAvA11 A11;) . The winding 
number functional is known to be invariant under small but not 
under large gauge transformations. 

In terms of the new variables Q* and Q the zero component of 
the the Chern-Simons vector Kµ can be written 

K 0 (A(Q*, Q)) 
0 g .. k 

K (Q*) - -EiJ Tr (n-n-nk) 357r2 i J 

g ijk8 Tr (Q*" ) --2 E i jHk . 
247r 

(27) 

Here we have used the SU(2) matrix Qi := Q1iri, with the Pauli 
matrices Ti, and the SU(2) one-form components 
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grli(Q) := u-1(Q)oiU(Q) = rl1sT8 (oQifoxi), with the SU(2) ma­

trix U(Q) related to the orthogonal 3 x 3 matrix O(Q) defined in 
the transformation (4) via Oab(Q) = ½Tr(U(Q)-r0 UT(Q)-rb)-

The wave functional w[Q*] obtained from (26) by replacing A by 
Q* is ·a zero energy eigenstate of th~ corresponding unconstrained 
Hamiltonian (12). This follows fro~ two important properties of 
the potential terms of the Hamiltonian (12). Firstly, the reduced 
magnetic field Bij ( Q*) can be written as the functional derivative 
of W[Q*] Furthermore, the nonlocal part of the physical electric 
field in the unconstrained Hamiltonian annihilates W[Q*] 

Ez[Q, b"Qt(x)]W[Q*] = 0. (28) 

Taking into account that the magnetic field Bi = * Foi satisfies the 
Bianchi identity D/ Foi = 0. 

The second and third terms in (27) are both surface terms. 
The third term gives no contribution if we assume the physical 
variable Q* to vanish at spatial infinity. About the behaviour of the 
unphysical variables Qi at spatial infinity we have no information. 
The requirement of the finiteness of the action usually used to fix 
the behaviour of the physical fields does not apply for the unphysical 
field Q. Using the usual boundary condition U(Q) -+ ±I at 
spatial infinity, the integral over the second term reduces to an 
integer n representing the corresponding winding of the mapping of 
compactified three space into SU(2). 

Hence we obtain the relation 

81r2 . 
w[A] = exp[±-

2 
n]w[Q*] 

9 
(29) 

between the groundstate wave functionals w[A] of the extended 
quantization scheme and the reduced w[Q*]. We find that the 
winding number of the original gauge field A only appears as an un­
physical normalization prefactor originating from the second term 
in (27) which depends only on the unphysical Qi. Furthermore we 
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note that the power 81r2n / g2, is the classical Euclidean action of 
SU(2) Yang-Mills theory of self-dual fields [22] with winding num­
ber n. 
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