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1 Introduction 
In papers [1, 2] the procedure of Causal Analytization of perturbative quan­
tum chromodynamics (pQCD) has been elaborated. It implements a com­
bining. of two 'ideas: the RG summation of leading UV logs with spectral 
representation imposed by causality. This combination was first proposed 
and devised [3] in the QED context about forty years ago. 

For the QCD invariant (running) coupling a(Q 2/A2) = /31a,(Q2)/41r; 
/31 ( n) = 11- (2n) /3 ( defined in the space-like region), it results in a specific 
transformation into a form aan ( Q2 /A 2) free of ghost singularities. Here, by 
construction, 
the analytic coupling is defined via the Kallen-Lehmann representatio'I}, 

00 

aan(x) = .!:_ / p(a) da with the spectral density, p(a) = ~ a(-a), (1) 
7r <1 + X 

0 • 

calculated on the basis of "initial" RC-summed perturbation expression a( x). 

Generally, aan(x) differs from its "original input" a(x) by nonpertur­
bative1 additive terms, which "subtract" unphysical singularities like ghost 
pole - see, below, Eqs. (2) and (6). 

A detailed analysis revealed [1, 2] that the analytic coupling aan ( x) obeys 
several important properties. It turns out to be remarkably stable in the 
IR region, at Q < A, with respect to higher-loop contribution and to renor­
malization scheme dependence. Its IR limiting value aan(O) is universal in 
this sense. We review this subject quite shortly in Sections 2.1 - 2.3. 

On the other hand, the Causal Analytization of a physical amplitude 
F(Q, a) is not a strightforward procedure. A few different scenarios are 
possible. In papers [5, 6], a particular version, the Analytic Perturbation 
Theory (APT), has been proposed and elaborated. Here, due to specific 
analytization ansatz, instead of the power perturbation series common for 
theoretical physics and QFT, an analytic amplitude F(x) is presented in 
a form of an asymptotic expansion of a more general form, the expansion 
over an asymptotic set of functions An ( x). = [ an ( x) lan , the "n-th power of 
a(x) analytized as a whole". In the APT approach, the drasti~ reduction 
of loop and renormalization scheme sensitivity for s.everal observables has 
been found - see Refs.[5]-[7] . 

. 1On a deep connection between renormalization invariance plus causality and 
nonanalyticity in a, see our papers [4]. 



To understand the nature of the "APT's loop and scheme immunity", 
in Section 3 we study properties of a nonpower asymptotic set {An(x)} 
emerging from the APT recipe of an'alytization. · ·· 

In Section 4, we ap.alyse' the structure of possible variants of analytiza­
tion of expression for an observable and discuss the ·danger of inconsistency 
(more precisely - incompatibility with the inner structure of RG) for some 
of them. 

2 RG solution and analytization 

2.1 One-Loop Analytization of a(x) 

At the one-loop level, the invariant coupling a(x) = 1/ In x suffers from 
a pole singularity at x = 1 incompatible with the spectral representation 
(1). Here, analytization consists of analytic continuation of the 1/ In x 

expression into the negative x region and defining the spectral density 
via its imaginary part. The resulting spectral integral (1) with p(a) = 

rr. (ln2 a+ 1r2)-
1 

can be calculated explicitly 

1 1 1 
a(x) = -

1 
- ⇒ aan(x) = A(x) = -

1 
- - -- . 

nx nx x-1 
(2) 

The second term, precisely compensating the ghost pole, has a nonper­
turbative nature. At small aµ = a(Q 2 = µ 2

) it is not "visible" in Taylor 
series as it behaves like exp(-1/ aµ) . To see this clearly, one should re­
turn from A-parameterization to the one in terms of aµ, the renormalized 
coupling constant, and µ 2 , the reference momentum squared. 

Note that a relation between A/µ and aµ in the course of analytization 
transformation changes. Instead of the usual expression A 2 = µ 2 exp(l/ aµ), 
according to Eq.(2), we have the transcendental relation 

A2 = µ2 
J(a) ; 

1 1 a=--+---. 
In f(a) 1 - J(a) 

Here, at small a ( as well as in (2) at large x), one can neglect the second, 
nonperturbative, term. Meanwhile, at a ~ 1 (x :S 1) this term dominates, 
providing the IR fixed point at a = 1. 

The analytic coupling (2) is a monotonous function in the whole interval 
(0, oo) with the finite IR limit. The second term quickly diminishes as 
x ➔ oo: it contributes about 5% at Q = lOA and only 1 % at Q = 25A. 
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The whole set of solutio·ns (2) with various A values, considered at the Q 2 

scale, fo~rris a ·bunch with a common limiting point a(O) = 1. This value, 
corresponding to a,,,n(O) = 4rr/(31 2, turns out to be universal. It does not 
change in 'the two- and three-loop approxim~tion as well - see Refs. [1, 2, 9]. 

2.2 Two- and three-loo)? cases 
For the two-loop case, the invariant coupling has to be defined by the tran­
scendental relation 

1 ( { ) . f32 ( . 64 . . ) 
~( )-bln l+b (2)() =lnx; b=f.12 = 8 at.n=3 
a . x .. . a . x . . . . . /Jl •.. 1 :, , 

(3) 

resulting from integratio~ of the two-loop RG differential equation. 
The iterath_'e procedure yields the explicit approximate solution 

1 
a;;]r(x) = £+bln(1+£/b)' £= lnx (4) 

used in our previous papers. 
The exact solution to Eq.(3) can also be expressed [8, 9] 

1 1 
a<2>(x) = -b. 1 + W(x) ; W(x) = W_1 (z); z = -e-lnx/b-1 (5) 

in terms of a special function W, the Lambert function (we use the notation 
of paper [10]) 

W(z)eW(z) = z, 

with an infinite number of branches Wn(z). Most part of the physical 
region x > 1 corresponds to the particular branch W _ 1 ( z) that is real and 
monotonous for z < -1/e. The relation between z and x in Eq.(5) is 
normalized to correspond with approximation (4) at x ~ 1. The branch 
W(x) = W_ 1(z) is complex below the ghost singularity at x = 1, z = -1/e. 

The qualitative analysis of Eq.(3) or its exact solution shows that at 
x = 1 + lei the ghost singularity has a form of the square-root type branch 
point 

a(2) (x ~ 1) = 1 1 
J2b(x - 1) - 3b + 0( v'x=!) 

2The effective flavour number at residue of the pole, evidently is n = 3. This 
gives O:'an (0) = 1.396. 
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that yields an unphysical cut between this point and the origin. 
To illustrate, proceeding from the two-loop _solution, (5), we define the 

analytic coupling by the spectral representation (1) with spectral density 
defined in· terms ofW, that is equivalent to subtraction of the "cut integral" 
related to the square-root singularity 

l . . 

. 1 1 / 'R.(a) dci 
A2(x)=-b(l+W(x))-;o a-x. (6) 

Note that iterative approximation (4) has a slightly different structure 
of ghost singularities. 

Nethertheless, in Ref.[8) it has been demonstrated that the analytized 
iterative solution is numerically very close3 to the analytized exact one, 
Eq.(6). As a practical result, this means that for the two-loop aan(x) one 
can use an expression in "the forin Eq.(1) with spectral density 

J(L) . 
P~b(L) = R2(L) + J2(L) 1 

O' 

L = In A2' (7) 

R(L) = L+bln ( £)2 (1r)2 b+L 1 + b + b , I(L) = 1r+barccos--;::=== 
' V(b+L)2+1r2 

At the same time, in Ref. [9) it has been shown that the exact three­
loop solution (with Pade transformed beta-function) can also be expressed 
in terms of the Lambert function 

aa(x) = - ! . 1 . z = -e- lnz/b+c-1 . c = /33/31 (8) 
. b 1 - c + W(z) ' ' {3~ . 

In what follows, referring to the three-loop case, we shall imply the MS 
scheme with {3fs = 2857 /2 - 5033n/18 + 325n2 /54. Here, at n = 3, we 
have /33 = 3863/6 = 643.833 ; c = 1.415. 

2.3 Stability of analytic coupling in the IR region 
The analytic coupling A(x) obeys several important properties in the IR 
region. It is quite stable, at Q < A, with respect to the higher loop contri­
bution and renormalization scheme dependence. Its IR limiting value · 

3The 3 + 4 per cent difference can be "compensated" by an 8% correction of 
the A value. ' 

\. 
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·A(0) = 1 (9) 

( corresponding to a,,an (0) = 41r / /31 (3) ~ 1.4) is universal in this sense. 
This remarkable property of universality was first noticed in our starting 

up paper [1). Later on, a detailed analysis [2, 11, 8, 9) has revealed that the 
A(0) value turns out to be insensitive .not only to higher loop terms in the 
beta-function but to the precise structure of the ghost singularity (removed 
by analytization) as well. This structure depends on approximation. 

For instance, instead of the square-root singularity of the two-loop exact 
solution (5), an iterative approximate solution, Eq.(4) obeys a pole at x = 1 
and a log's branch point at x. = e-b. In the three loop case, the Pade­
approximated solution obeys a pole and a branch point (discussed in detail 
in the paper [9]), to be compared with the (In x)- 1l 3 singularity of the 
solution with a non-transformed beta-function. 

Nevertheless, in all these cases, the final analytic results for A(x) obey 
the property (9) and their IR b~havior in the interval (0, 1) is very close [7) 
to each other. The analytization procedure "smoothing over all sharp an­
gles" makes all them equal. 

One can also say that the causality bounds from above the invariant 
coupling by this maximal value (9), "keeping it reasonably small". For 
instance, a usual beta-function in the MS scheme for n = 3, 

f3(a) = -a2 (1+0.790a+0.883a2
) ~ -c?(l+0.566a+0.453ci) (10) 

numerically looks quite good: its higher terms are reasonably decreasing in 
the usual physical region with a ~ 0.4 (a ~ 0.3). It is worthwhile here to 
introduce the "beta-function for the analytic coupling" 

dA(x) = f3an (A(x)) 
din x 

{11) 

which is a transcendental non analytic function f3an (A) of its only argument 
(with the IR fixed point at A= 1 ). In the one-loop case this function can 
be analyzed rather simply - see below Eqs.(14) and (15). It turns out that 
its maximum value f3an(l/2) = 1/12 is of the same order of magnitude {this 
statement remains valid in the higher loop case) as expression {10) taken at 

a= 0.3. 
Let us remind to the reader that the connection between analyticity of a 

function in the cut complex plane and its boundness were discussed several 
decades ago (see, e.g., Refs.[12)) in the context of a low-energy behavior of 
hadron scattering amplitudes. 
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2.4 Analytization of observables 

In papers [5, 6) a specific recipe for analytization of an observable M(s) 
has been introduced. First, one should relate M(s) possibly given in the 
time-like region, to some auxiliary function l(Q2) of a space-like argument 4 

which obeys the analyticity property in the Q2 plane compatible with a 
spectral representation of the Kallen-Lehmann type. This function I, after 
usual RG machinery, acquires a form of perturbative power series 

F (a(x)) = L lnan(x). (12) 
n 

By prescription first used in paper [5], the causal analytization means 

F (a(x)) ⇒ F(x) = L In An(x) (13) 
n 

with An(x) = [an(x)]an being "the n-th power of a(x) analytized as a 
whole". Here, each An (x) satisfies the Kallen-Lehmann representation with 
the spectral density Pn (a) defined as ~an (-a). 

Note that expansion (13) is not a power one as An(x)-/= [A(x)r at n-/= 1. 
The recipe (12) ⇒ (13) changes the nature of expansion ! 

The surprise feature of this particular recipe called the "Analytic Per­
turbation Theory" (APT), is the remarkable stability of its results with 
respect to a higher loop contribution [5, 6) and, in turn, with respect to a 
scheme dependence [7]. We are going to show that the origin of these phys­
ically important properties lies in the change of the type of perturbation 
expansion. 

The non-power set {An(x)}°is an asymptotic one at UV as 

An+1(x) ~ [InxJ-<n+l) = o(An(x)), x---+ oo. 

This means that the series (13), generally, should be treated as an asymp­
totic expansion of the function F(x) over an asymptotic set {An(x)}. Its 
convergence features are determined, on the one hand, by the coefficients 
In calculated on the basis of n-loop Feynman diagrams and, on the other, 
by the property of the set {An(x)}. Turn to the discussion of this set(s). 

4 As, e.g., the e+e- annihilation cross-section ratio R(s) is related to the Adler 
function D(Q2 ). 
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3 . S.et of expansion functions 

3.1 One-loop expansion functions 

The simplest set {[an(x)]an} = {An(x)} consists of analytized powers of the 
one-loop pQCD expansion parameter a(x). Besides (2) it includes 

1 • X (1) 
A2(x) == ln2 x - y(x)·; y(x) = (1 - x)2 = y ; ; 

1 X 1 X 1 2 y(x) 
A3(x) = ln3 x+ (1....: x)3- 2 (1.- x)2; ~ 4 (x) := ln4 x -y (x)-T; 

These "analytized powers" obey a specific symmetry 

An(x.) = (-ltAn(l/x); (n > 1) 

and are related by recursion relation with the help of the operator 

V = -x(d/dx) 

(14) 

1 1 X - 1 
An+i(x) = -VAn(x) = -,vn+l lnAo(x) with Aa(x) = -1 - (15) 

n n. x n x 

being the generating function. 
In particular, 

daan(x) _ ( _ (1)( () _ (1)( / )) ( d In X - -A2 x) = /Jan llan X ) -/Jan llan(l X • 16) 

Here, /Ji~ (a) is a non-analytic function of its argument. 
An attempt to express An(x) via A(x) = aan(x), the analytic coupling, 

gives 
2 1 

A 2 (x) = A 2 (x) -
1 

_ xA(x) + 1 _ x; (17) 

) 3 3 2( ) . 3 ( ) X + 2 
A3 ( X = A ( X) - 1 - X A X + ( 1 - X) 2 A X - 2 ( 1 - X )2 

-a sort of a "mixed" representation, combining polynomial and nonper­
turbative (via x = Q2 / A 2 argument) dependencies. It can be argued (see 
below Section 3.2) that this representation is not interesting from a prag­
matic point of view. 

In the two-loop case, to relate solution (6) with higher analytized powers, 
one can use the operator 

V = ~~ __ 1 + W(x) 8 2 1 
2 b aw - W(x) · X OX ' so that A~21(x) = ,v;A~2l(x). (18) n. 

.7 



Note also, that Vin Eq.(15) can be treated as an operator of differentia­
tion over an "effective time variable" t = In x. An analogous interpretation 
of V2 gives 

1 d - d b 1t ( t')d I V2 = b ( ) • -d = -d ; T = t + a e t , 1 + a2 e1 t r o 
(19) 

with r(t) = t2, an "effective two-loop time". For large t values one has 
T ~ t + blnt. 

3.2 Subtraction Structures and behavior at "the 
low Q region" 

The rational structures Pn(x) = An(x) - an(x) that subtract ghost singu­
larities 

1 x x(l+x) 
P1(x) = 1- x; P2(x) = (1 - x)2; p3(x) = 2(1- x)3; 

x(x - x+)(x - x_) · r,:; 
p4(x)=- ( )4 , (x±=2±v3); ... 

6 1- X 
(20) 

are connected by a recursion relation analogous to (15) and, except p1 , obey 
(anti)symmetry under x-+ 1/x. 

As can be seen from this recursion relation, all Pn?: 2 (x) at the origin have 
the first-order zero that provides a property 

An (0) = 0 ; n ~ 2 (21) 

valid in the higher loop case as well. 
For a quantitive orientation it is useful to study the An(x) behavior 

around the x = l. At the one-loop case this can be done explicitly with the 
help of (20) 

1 E 1 19 2 A(x = 1 - E) ~ - - - · A2(x) ~ - + -E 
2 12' 12 60 

A3(x) ~ + 
2
:

0
; A4(l) ~ -

7
~

0 
+ 0(E2

}. 

These numerical results are rather instructive. Together with Eq_.(21) 
they show that in the "low Q region", at Q ::; A, we have 

IAn(x)I ~ An(x), 

8 

(22) 

) 

) 

an important estimate, which, at the very end, is responsible for a low level 
of sensitivity of APT results with respect to the higher loop and scheme 
effects - see, e;g., observations made in Refs. [5] - [7]. The last estimate is 
valid also in the two- and three-loop cases. 

It is not practical to use expressions like (5), (8) and (18) for explicit 
analysis of asymptotic sets {An(x)} at two- and three-loop cases. For a 
short quantitative discussion we rather use results of numerical calculation 
via an adequate spectral integral. They show that in the interval O ::; Q ::; A 
in addition to relation (22) we have 

Ai.+1(x) ~ [A(x)]1+2
1< • 

In other words, numerically, in the "low Q region" the real expansion 
parameter is closer to A2(x) rather than to A(x) 5

• Naturally, as Q/A 
grows and power terms diminish, all An(x) tend to their natural limits 
[A(x)t ~ an(x). 

Moreover, as it follows from the representation (20) and property of sin­
gularity ln-n x at x = 0, the expansion functions An+2(x) obey precisely n 
zeroes on the interval (0, X (A)) with X (A) being the upper boundary of the 
region where a power nonperturbative correction ~ x-1 = A2 /Q 2 is essen­
tial. Hence, the set under discussion consists of quasi-oscillating functions. 
This feature makes the problem of estimating the resudial term (that is an 
error) in the asymptotic expansion Eq.(13) more complicated. Quite prob­
ably, in the IR region we have to deal here with an asymptotic expansion a 
la Erdelyi. 

Note also that the sets {An (x)} both in the one- and two-loop cases obey a 
peculiar structure. Their neighbouring i terms are connected by differential 
relations (15) and (18). 

4 Discussion 

We have analysed a particular version of "Causal, Q 2-analytic perturbation 
theory", the APT version, which, by convention first introduced in paper 
[5], uses a set {An (x)} for analytization of observables. It can be,considered 
as a "non power analytization", to distinguish it from another possibility, 

5 In particular, this means that a "mixed" representation in powers of A(x) 
with nonperturbative coefficients is not reasonable due to big cancellation inside 
the r.h.s. ofrelations analogous to Eq.(17). 
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th~ "power analytization" with the help of a power asymptotic set {A"(x)} 
by the recipe . . . . 

P(a(x)) => F(A(x)) = 'Efn [A(x)]", (23) 
n 

inst.ead of (13). 
Just the nonpower analytization yields intriguing results with respect 

_t<:>. loop and scheme stability. At the same time, the power analytization, 
. Eq.(23), results in a moderate change.of usual pQCD pi:actice mainly-in the 
IR region. 

This, technically simpler, second version has an advantage from a the­
oretical point of view related to the issue of Consistency of analytization 
with the RG structure - see below Section 4.2. To clarify, let us make a 
comment on the structure of the RG algorithm and on "noncommutativity" 
of analytization with some of its elements. 

4.1 On ambiguity of analytization procedure 

The procedure of the renorm-group method, in addition to deriving func­
tional and differential group equations; consists iri a few steps 
[1] ·Calculating beta-function(s) and anomalous dimensions; 
[2] Solving RG differential equations (RGDEs) for invariant coupling(s) a(x); 
[3] Solving RGDEs for other functions f(Q2, a), e.g., propagator amplitudes, 
effective masses and "physical amplitudes" 6 with the use of explicit expres­
sions for beta-function of Step [1] or invariant coupling(s) a(x) obtained in 
Step [2]. The resulting F (a(x)) can be expressed as a power series (start­
ing, possibly with logarithmic term). 

The invariant coupling analytization adds an additional step that follows 
the Step [2]: 
[2a] a(Q 2

) -t A(Q 2
). • 

However, analytization of propagators and observables can now be per­
formed either by modification of Step [3] -
[3m] Using explicit expression A(x) in the process of RGDEs for J(Q2, a) 
solving 

or as an additional Step: 
[4APT] Analytizing the result of Step [3], i.e., by applying the analytization 
procedure to the power series for F (a(x)) => F(x). 

6 Like , Adler functions, structure function moments, etc. 
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The sequence 

[1] + [2] + [2a] + [3] + [4APT] = [APT] 

was used in Refs.[5]-[7]. Just this procedure yields nonpower asymptotic: 
expansion (13). 

On the other hand, in parallel witJi step [4APT] there exists a simpler 
possibility: 
[4an] Substituting expression A(Q 2

), like in (23), in the result of Step [3]. 
The sequence 

[1] + [2] + [2a] + [3] + [4anl = [ICA] 

can also be used for analy~ization of observables. This procedure, involv­
ing just the 'invariant coupling analytization' (ICA), yields power asymp­
totic expansion (23) differing from the usual one, Eq.(12), by substitution 
a(Q 2/A2

) => A(Q 2/A2
) only, 

We see that, generally, a causal analytization is not a unambiguous proce­
dure. Quite remarkably, the above-mentioned ambiguity is of a functional 
nature (not in possibility to introduce an adjustable parameter). 

4.2 Analyticity vs RG structure ? 

Meanwhile, the sequence [1] + [2] + [2a] + [3m] contains an inner contra­
diction. E.g., Step [3m], used for the gluon propagator amplitude 7, yields 
an expression that, at the very end, is not compatible with the result of the 
previous Step [2a]. At one loop level, it gives [14] 

dka(x) = [a(x)]"' => [A0 (x)]"' 

with A0 (x) defined in (15). However, as it follows from basic RG relations, 
the product of a vertex and appropriate powers of propagators forms an in­
variant coupling. In the case under consideration, one obtains A0 (x) rather 
than aan(x) = A(x) used as an input. 

Quite analogously, there is a subtlety with the Step [4APT] implementa­
tion. The point is that for some objects (e.g., for propagator amplitudes) 
the result of Step [3] at the one loop level starts with fractional power (or 
logarithm) of a(x) that gives rise to a branch point. The analytization of 
expression like [In x]-" is equivalent to subtraction of a cut contribution, 

7 Compare with the Step (4an] used in Ref.[8]. 
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i.e., yields a two-term structure of a specific form 8• It is easy to see that 
the appropriate produc~ of such structures ,cannot give expression (2) for 
invariant coupling. · Taken' literally, this observation means that the APT 
procedure also faces a con,trad\c.tion with the RG structure. 

Conclusion 
1. Our analysis in Section .3 reveals that the APT expansion, Eq.(13), 

for an observable function, generally, repres_ents an asymptotic expansion 
over a nonpower asymptotic set {An(x)}. The latter obeys quite different 
properties in various ranges of the x variable. In UV it is close to the power 
set {an(x)}, commonly used in the current practice of QFT pertirbation 
calculation. Hence, the APT converegence property in UV is completely 
determined by expansion coefficients fn• On the other hand, in IR the 
asymptotic set {An(x)} is of a more complicated structure. In the "low Q 
region" the behayior of the functions An ( x) ; n ~ 3 is osdllating. Due to 
this, the contribution of higher terms in the APT expansion is suppressed. 
The APT expansion, Eq.(13), in IR has a feature of asymptotic expansion 
a la Erdelyi. This tentative conclusion raises hopes that the pettubative 
approach to QCD may be fruitful in the region Q ~ 1 GeV where the QCD 
running coupling is not a small quantity. 

2. In Section 4.1, we have shown that the general program of Causal 
Analytisation, being quite a definite procedure for effective coupling, is not 
"rigid" enough when applied to other objects. In particular, it contains a 
degree of freedom in analytizing observables. 

This ambiguity together with a "proximity to contradiction", discussed 
in Section 4.2, poses a question of looking for an additional ansatz in the 
whole Causal analytic approach. The APT possibility is too interesting to 
be "abandoned without a struggle". 

3. In our opinion, one more funny lesson of the considered non power con-­
struction is a seiniquantitive observation that the APT approach is equiva­
lent to the usual pQCD practice with one strange amendment: "To restrict 
calculation to only the leading QCD contribution"; by the way, forgetting 
about all headaches of higher-loop diagram calculation, scheme dependency 
and expansion convergence. This intriguing feature could be formulated 
as a suspicion that the pQCD is an effective theory 9 and its higher order 

8 For explicit expressions we refer, e.g,, to Refs.· [3, 8]. . 
9Like, e.g., higher order perturbation contributions of the effective four-fermion 

Fermi weak interaction in QFT and of the BCS model Hamiltonian in the theory 
of superconductivity. 
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contributions have no clear physical content. 
Aclp1.owledgements. . 
It is a pleasure to thank Dr. Igor' Solovtsov for important advices and 

help in numerical calculations, as well as LJa. Arefeva, B.A. Arbuzov, 
V.S. Vladimirov, A.L. Kataev, N.V. Krasnikov, B.A. Magradze, and A.A. 
Slavnov for useful discussion. Partial support by RFBR 96-01-01860, 96-
15-96030 and INTAS 96-0842 grants is•gratefully acknowledged .. 

References 

[1] D.V. Shirkov and LL. Solovtsov, "Analytic QCD running coupling with 
finite IR behavior and universal a, (0) value", JINR Rapid Comm: No. 
2(76)-96, 5-10, hep-ph/9604363. 

[2) D.V. Shirkov and LL. Solovtsov, "Analytic model for the QCD running 
coupling with universal a, (0) value", Phys. Rev. Lett. 79, 1209-12 
(1997), hep-ph/9704333. 

[3) N.N.Bogoliubov, A.A.Logunov and D.V. Shirkov, "Dispersion Rela­
tions Method and Perturbation Theory", )I{3T<P 37 (1959) 805-15, 
Sov. Phys. JETP 10 {1959) 574-581. 

[4) D.V. Shirkov, "Causality and Renormalization Group", Lett. Mat. 
Phys. 1 {1976) 179-82; "Nonanalyticity in coupling constants and trou­
bles of ultraviolet analysis", Lett. Nuovo Cim. 18 (1977), 452-456. 

[5) K.A. Milton, LL. Solovtsov and O.P. Solovtsova, "Analytic Perturba­
tion Theory and Inclusive r Decay", Phys. Lett. B 415, 104 (1997), 
hep-ph/9706409. 

[6] K.A. Milton, LL. Solovtsov, and O.P. Solovtsova, "The Bjorken 
Sum Rule in the Analytic Approach to Perturbative QCD", Preprint 
OKHEP-98-03, hep-ph/9809510; "The Gross-Llewellyn Smith sum 
rule in the analytic approach to perturbative QCD", Preprint OKHEP-
98-07, hep-ph/9809513. 

[7) LL. Solovtsov and D.V. Shirkov, "Analytic Approach to Perturbative 
QCD and Renormalization Scheme Dependence", to appear in Phys. 
Lett. B; for preliminary version, see hep-ph/9711251. 

13 



, 

[8] B.A. Magradze, "The gluon propagator ih Analytic Perturbation the­
ory", talk presented at the Intern. Conf. "Quarks-98'", Suidal, 'May 
1998, hep-ph/9808247; 

'[9] E. Ga~di; G. Grunberg and M. Ka~liner, "Can the QCD ru~ning cou­
pling have a causal analyti~ity str~cture?"' hep-ph/ Q80(l462; JHEP 07 
(1998) 007. . . , , 

[10] R.M. Corless et al., "On the Lambert W function", Adv. in Comput. 
Math. 5, (1996) 329. 

1 
..• ; : : • 

[11] D.V. Shirkov, Nuc_l. Phys. B {Proc. Suppl.) 64, 106-9. (19~8), hep-
ph/9708480. . 

; 

[12] A.V. Efremov, D.V. Shirkov, and H.Y. Tzu, "A Neutral Model for the 
Pion-Pion Scattering", )I{3T<P 41 (1961) 603-11, Sov. Phys. JETP 

· 14 432-7 (1962); "The Pion-Pion Scattering at Low Energy", JINR 
preprint D-757; Scientia Sinica 10 (1961) pp 812-36 - see also Section 
11.3 in the monograph Ref.[13]. 

[13] D.V. Shirkov, V.A. Meshcheryakov and V.V. Serebryakov, Dispersion 
Theories of Strong Interactions at Low Energy, North-Holland, 1969. 

[14] A.V. Nesterenko, private communication. 

Received by Publishing Department 
on October 30, J 998. 

14 


