


I. INTRODUCTION

As known, pion production in NN collisions, in particular the channel NN — d,
has been investigated by many theorists and experimentalists over the last decades. An
earlier study of this reaction [1,2] and [3] show that the excitation of the A-isobar is a
crucial ingredient for explaining the observed energy dependence of the cross section.
A lot of papers are based on multichannel Schrédinger equations with separable or
local potentials {4,5], {6,7] and [8]. However, this study was performed within the
nonrelativistic approach. Early attempts to develop the relativistic approach were
made in {9,10], [11,12]. Both the pole graph, i.e. one-nucleon exchange, and the
rescattering graph presented below were calculated in this papers. As shown (see,
for example, [12]), this diagram can result in a dominant contribution to the cross
section of the discussed process. By the calculation of this one, some approximations,
in particular the factorization of nuclear matrix elements, neglect of recoil etc., were

introduced which lead to an uncertainty of the final results. A more careful relativistic
study of the reaction pp — dn™ was made in [13-16]. The pole and rescattering
graphs were shown to be insufficient to describe the experimental data; high order
rescattering contributions should be taken into account. However, in this approach
there was no successful description of all the polarization observables, especially the
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asymmetries Ay, i71;. Really, analyzing reactions of the type NN — dm, there occurs
a problem related to the off-mass shell effects of nucleons inside the deuteron. When
the pion is absorbed by a two-nucleon pair or the deuteron, the pion energy is shared
between two nucleons. So, for example, the relative momentum of the nucleon inside the
deuteron increases at least by a value ~ /mp = 360MeV if the rest pion is absorbed
by the off-shell nucleon what corresponds to intra-deuteron distances of the order of
~ 1//mii =~ 0.6fm. This means that the absorption process should be sensitive to the
dynamics of the n NN system at small distances. In this paper we concentrate mainly
on the investigation of the role of these effects and the contribution of the P-wave of the
deuteron wave function [17,18]. The sensitivity of all the polarization observables to
these effects is studied, and it is shown that some polarization characteristics can change
the sign by including the off-mass shell effects of nucleons inside the deuteron. The
detailed covariant formalism of the construction of the relativistic invariant amplitude
of the reaction NN — dr and the helicity amplitudes for this process are presented
in chapter 2. We analyse in detail both the pole graph, one-nucleon exchange, and
the triangle diagram, i.e. the pion rescattering graph, in sections 3. The inputs by
this consideration, the covariant pseudoscalar 7 NN and deuteron d — pn vertices, are
discussed in detail. The discussions of the obtained results and the comparison with
the experimental data are presented in chapter 5. At least the conclusion is presented
in the last section 6.

II. GENERAL FORMALISM

e Relativistic invariant ezpansion of the amplitude

We start with the basic relativistic expansion of the reaction amplitude NN — dn
using Itzykson-Zuber conventions [19]. In the general case, the relativistic amplitude
of the production of two particles of spins 1 and 0 by the interaction of two spin 1/2
particles has 6 relativistic invariant amplitudes if all particles are on-mass shell and
taking P-invariance into account. It can be written in the following form:

Usy (P2) e,(d)
‘ Ay ) M8, o (5, t,4) = Ty (p2) X" (5, 1, Wty (P1)e, D (d)on (1)

u”l(pl) Pr

where u,, and ©,, are the spinor and anti-spinor of the initial nucleons with spin

projections o and o3, respectively; e,(d) is the deuteron polarization vector, px is the
m-meson field; s,t,u are the invariant variables determined in Appendix L

For example, for the pp — dr* process, this amplitude should be symmetrized over
the initial proton states, and therefore it takes the form:

- 1 P

Mgz,al = ﬁ [Mgz,al (S, t, u) + (_1) Mg;,az (S, U, t)] (2)
The second term in (2), corresponding to the exchange of two protons, is equivalent to
the exchange of the t— and u— variables.

The amplitude x,, for the process NN — dr can be expanded over six independent
amplitudes [19]:
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e Helicity formalism.

To calculate the observables: differential cross sections and polarization character-
istics, it would be very helpful to construct the helicity amplitudes of the considered
process NN — dr. So, we use for this reaction the helicity formalism presented in
Ref. [20]. Let us introduce initial nucleon helicities u1, 2 and the final deuteron A, and
helicity amplitudes M;\Lz’m (W,9) depending on initial energy W in the N — N cms.
and scattering angle ¥ analogous to [13]. This amplitude M3}, ,, (W,) corresponds to
the transition of the NN system from the state with helicities pi, o = +1/2 to the
state with A = £1,0.

With respect to discrete symmetries, we have from parity conservation [20]:
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Time - reversal symmetry leads to

/\/1A = (_1)(uz—u1)—kM§zm7 (5)
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where np = ~1)%~$1752 = (—1); n;, 5; are internal parities and spins of particles.
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Introducing 6 helicity amplitudes as [13]

@y = ME; ¢ = My Oy = ME; (6)
which satisfy the following symmetry equations
@, 5(0) = =@ 3(m — 9);
By5(0) = Op5(m — )5
¢4‘5(19) = (DGA(T( b 19) ) (7)

one can calculate all the observables over a range of 0 < ¥ < 7/2.
All the amplitudes M2 (W, ) should vanish at forward and backward angles, and

pHap
therefore we use the amplit\;des introduced by Ref. [20]:



W, 9), (8)
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where (p = py — p2) and M"ﬁm(W, 1) are the non-vanishing amplitudes at 9 = 0 and
J=m.

Let us present now the relation of helicity amplitudes {®;}¢_; to the invariant
functions {X;}2.,. We choose the axis z along the nucleon momentum 7. Using
expansion (3), one can get the following form of the helicity amplitudes:
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where X,-(‘” (s, t,u) are symmetric and antisymmetric combinations X1} = (x;(9)
X;(m — 9))/v/2. All symmetry properties (7) are satisfied by these amplitudes.
The helicity amplitudes are decomposed into partial waves by (see [13])

WM W,0) = 5 2258 (7))

A

di,—A(I) 5 (10)
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where z = Cosd, and the azimuthal angle ¢ is taken to be zero. Using orthogonality
relations for the d—function, one obtains

nap

(MJ(W)):”“: /_tdi_l(z)/ﬂ* Wo)ds (1)

and from symmetry relation (6) one can find that @] = (—~1)7+'®{.
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III. REACTION MECHANISM

o One-nucleon exchange (ONE) and n N N -vertex.
Within the framework of the one-nucleon exchange model, the amplitude x,, can
be written in a simple form:

D2 L d
) n Xp = gthy (”2)f‘#(d)‘s}'(”)r‘r ) (12)
Y2 r, T

where T',(d) is the deuteron vertex pn — d with one off-mass shell nucleon, Sx(n) =
(7 ~m+ '170)'l is the fermion propagator; the value of the coupling constant is gt =
V2¢° = V29, ¢*/4m = 14.7, and n? = (d — p2)? = t; the function hy(n?) describes
the vertex NNz where one nucleon is an off-mass shell, but the other one and the pion
are on-niass shell particles [13]. The vertex T',(d) can be related to the deuteron wave
function (DW.F) with the help of the following equation [21.22]:

¥, =

n -
nz_:ﬁ = 1) + wa(f) :?:4‘ (»’:!(f)”lu + v’«t(t)#;) 2 mm : (13)
The formfactors ;(t) are related to two large comnpouents of the DWF u and w (corre-
sponding to the 3S; and 3D, states) and to small components v and ¢, (corresponding
to the *P; and Py states) as in [17].

Let us discuss now the problem connected with the form of the 7 VN vertex T'y. In
the gencral case, it can be expanded over four covariant quantities if all particles are
an off-mass shell {23]:

pr+m pi—m Dr+mpi—m
3 +

+ F Fy ) (14)

m m m m

F,.- = ’)’5(F1 + Fz

liere p;, py arc the four-momenta of initial and final nucleons, {F;(t; p2, pﬁ)};‘:l are some
functions depending on the relativistic ivariant transfer # = (p; — py)? and their masses
pf'f or the so-called pion forinfactors. In our case, one nucleon (py = n) is the off-mass
shell only, and therefore we have two terms in eq.(14) instead of four because the third
and the fourth ones are vanishing, taking into account the Dirac equation for a free
fermion. Then, eq.(14) can be written in the form:

) =AW (1= N (g (15)

n+m

Py = (F() + Fa(®)

Note, according to the so-called equivalence theorem [24] the sunt of all Born graphs
for elementary processes, for example the pion photoproduction on a nucleon and
the other onecs, is invariant under chiral transformation. This means that starting
with the Lagrangian appropriate to the pseudoscalar (PV) coupling, ouc ends up in
the Lagrangian appropriate to the pscudoscalar (PS) coupling by performing a chiral
transformation. This equivalence theorem is related to the processes for clementary
particles. But in our case, for the reaction NN — dx there is a bound state, a
deuteron, and therefore reducing tliis process to the one where only elementary particles
participate, we will have the diagrams of a higher order over the eoupling constant
than the Born graph. So, the equivalence theorem cannot be applied to our considered
processes. Therefore, the vertex I'; in our case can be written in the form of cq.(15)
which is actually a linear combination of pscudoscalar and pseudovector coupling with
thie so-called mixing parameter A.

For the on-mass shell neutron (n? = m?2) and the virtual pion, we have I'; = 7.
Finally, using equations (3), (13) and (15) (n = p’ +p), one can find the following forms
of the invariant amplitudes {X;}5_,



—m2

X =g {FRp—2(F+ F) 993} om ;

- t — m?
ngg m[Fl(fpl‘*'(ﬂz)‘{F2(972+973"974)—2F1<‘04} 2m? ] ';

' ) : . . . L t_'m2 R
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—m?
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m : . .

Note, the amplitudes {X} 1 satlsfy the followmg equatlons X=X 42X =0; X =
A -

The dNN vertex has been studied by Buck and:Gross [17] within -the frame-
work of the Gross equation of nucleon-nucleon scattering. They used 4 one bo-
son exchange (OBE) model with 7, p,w and ¢ exchange. In their study, they sug-
gest that the formfactors F7S and FPV have the same t - dependence, in particular
FPS(t) = FPY(t) = hn(t), and consider A = 0.0;0.2;0.4;0.6;0.8 and 1.0. In each case,
the parameters of the OBE model were adjusted to reproduce the static properties of
the.deuteron. They found that the total probability of the small components of the
DWEF: Ponaii = J3° p*dp[v?(p) +v2(p)], increases monotonically with growing A from
approximately 0.03% for A = 0 to approximately 1.5% for A =1.

The function hy(t) is the nucleon formfactor caused by the virtual nucleon and can
be taken by the Breit-Wigner-type form suggested by {25] and.[13].. :

m -~ Er o . oy )
hy(t) = VY r(t) = QQQ(\/E m u)exp{ y g— u} (17)
at @ =0.26 GeV ; =040 GeV; Ep=1.42 GeV. :

Let us analyse the contributions of functions ¢, p3 determining the form of DWF
to the invariant amplitudes A;. It is interesting to consider the case when the off-mass
shellness of the nucleon is small, e.g. @3 = ¢y = 0 and A = 1.’ In this case, we have 5
relativistic mvarlant amplitudes {X }o., instead of 6.

e Second-order graphs

Let us consider now the second order graph corresponding to the rescattering of
the virtual #-meson by the initial nucleon. This mechanism of the NN — wd process
has been analysed by many authors, see, for example, [12,13]. Our procedure of the
construction of the helicity amplitudes corresponding to the triangle graph is different
from the ones published by (12, 13] and so we present the proof of the forms of these
amplitudes briefly.

(18)

: /hw(qu“(ﬁ’"": VTH ) dn

q* —p? 21
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where h,(q?) is the pion formfactor corresponding to the off-mass shell 7-meson in .
the intermediate state; its form has been cliosen in the monopoly one h,(g%) = (A% —
1)/ (A% — ¢%) as like as in [12,26]; here A is the corresponding cut-off parameter. The
general form of F, can be written as follows:

Fu = TaSe (TS (k) iy ‘ (19)

where f£h, is the amplitude of 7V elastic scattering; it can be presented as expansion
over two off shell invariant amplitudes f¢4, = (4+B#) which depend on four momenta.
We compute A and B from the on-shell 7V partial wave amplitudes 7;5*(s;n) under
the assumption

7;:{:(sz» t1rN7 u‘er) ~ 727{:" (S,rN) ’ (20)

where 7,9"(s,n) are taken from the Karlsruhe-Helsinki phase shift analysis [27]. How-
ever, in the partial wave decomposition of the invariant functions, full off-shell angular
momentum projectors are used for the lowest waves in the manner discussed for the
NN — NN7 reaction in Ref. [28].

Using the covariant form of the deuteron wave function ¥, (13), the matrix F, (19)
can be decomposed into a suitable set of invariant functions :

L =m ZI Ya; ; (21)

the matrices f,‘(z) and functions a; are presented in Appendix IIL
We are faced with a three dimensional integro - operator over the loop momentum.

+

g 9 /’"m /1 h,(g?)dCost, /
T @en2d 2\/7]7+m7 g — 0

The square of energy s;x, the momentum transfer u,y and the square of v1rtual pion
mass ¢* do not depend on azimuth ¢,:

dpy (22)

szn = (1 +9)? =3“‘2\/§770+m2>;
Ury = (p1 = Q)2 = _
q =2 (m —€n — P773) . ' (23)

Note, at T, = 0.578 GeV we have:

_ 2 02 :
=" (m;fg) T =R —mi 0366 GeV . (24)




In this kinematic region, the square of the p10n four-vector ¢? is space-like and the pion
is moderately far from its mass shell [0 > ¢ > —0.3 GeV?] whereas an active nucleon
is close to its mass shell [0.83 > k2 > 0.63 GeV?).

Triple integral (22) over azimuth ¢, polar angle 9, and the magnitude of three-
momentum 7 must be done numerically for which we used a Gauss method. There are
6 triple integrals over a complicated complex integrand for each scattering angle.

IV. OBSERVABLES

Using the helicity amplitudes discussed in section 2, one can calculate all the ob-
servables: differential cross section, asymmetry, deuteron tensor polarization and so
on.

It is convenient to introduce hybrid reaction parameters (HRP) for the reaction
NN — dr as {13,20,29]

(aB | LM)M* = e5(—~1)MT7 |0 405 M”m m(saMy,, |70 (25)
Witl'l €0 =€z = 1; ey =€, =1, 04 and 0g (o, 8 = 0,1,y, z) the Pauli spin operators
for initial nucleons and T} (s4) the spin-one tensor of rank L < 2. The normalization
of the HRP is such that (00 | 00) = 1. All quantities are in the Madison convention.
Then, the differential cross section is related to & as

6
p m “2doc 1do
; % 47rf) dQ " ogdQ’ (26)

where p and k are the momenta of initial proton and final deuteron in the c.m.s. There
are 4 x4 x9 = 144 HRP. However, since parity invariance reduces the number of inde-
pendent amplitudes to six, there are only 36 linearly independent bilinear observables.
They have the following symmetry properties and relations:

@120 is {2 L if mony v s {ont,

Toy is number of oy ;

(@B1LM)y = (~1)"(Be: | LM),_y ;

(@B | LM) = CaCp(—1)"M (0B | L — M),

G=¢=1; (=¢=-1. (27)

Let us present now the expressions for the following observables in the c.m.s. using ®;:

Ay = 4Im(D1®] + D203 + 357, Aoy (8) = Ayo(m — 6),

Azz = —4Re(P1®] + 0203 + 35)7Y,  A,,(0) = Agu(r — 0),

Az = =1+ 4|04 + |D5]? + |06 |2) 2T

Ay = —1+42(|®) + ®3)° + | D4 + B)) 27,

Az = Az 4+ 2(]01 + B3° — |4 + B6|?) DL (28)

The expressions for the deuteron tensor polarization components are the following:

Ty = —V6Im (&} — ©3)®, + (0] — ;) D5 S,

T [1—6(]<I>2l2+|<1>5| IDRIINVE

Ty, = VBRe [(®] — 05)®; + (9} — BF)P5] =

Too = 2V3Re(®; 03 + ©48)S 7 = (1434, — V2T0)/(2V3) . (20)
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V. RESULTS AND DISCUSSIONS

In order to investigate the effect of small components of the DWF, we have calcu-
lated the differential cross section do/dS2. polarization characteristics A, Ay, cte. for
pp — dat as a function of scattering angle at proton kinetic energy T, = 578 el” cor-
respouding to pion kinetic one T, = 1470 eV because at this energy the probability of
A-isobar production by the two - step mechanism is rather sizeable. All the calculated
quautities are in the Madison convention and compared with the experimental data
[14,30] and partial-wave analysis (PW.A) by R. A. Arndt et al. [31] (dotted curve). The
cut-off parameter A and the mixing one A corresponding to the 7 VNV vertex are cliosen
by the best fitting of the experimental cross section do/dS2 data. We have checked that
the polarization curves change very little if we vary the cut-off parameter \.

Note that the contribution of the triangle graph is very large at intermediate initial
kinetic energies and much smaller at lower cuergies. It is caused by a large value of
the cross section of elastic # [V scattering because of a possible creation of the A-isobar
at this energy. One can stress that the application of Locher’s form DWF [15] does
not allow one to reproduce the absolute value of the differential cross section (sce FIG.
1.) over the whole region of scattering angle 9. But using the Gross approach for the
DWUF, one can describe do/dQ at A = 0.6 — 0.8 rather well.

The next interesting result which can be seen from FIG. (2-6) is a large sensitivity
of all the polarization characteristics to the small components of the DWF. The
asymmetry Ay (FIG. 2.) and the vector polarization Ty, (FIG. 3. ) calculated
within the framework of Gross’s approach particularly show this large sensitivity. These
quantities are interference dominated and seusitive to the phases. The results for /Ty,
have a wrong sign with Locher’s forn DWZF [14]. On closer inspection, we observe
that the first term in eq.(29), (®] — ®3)®, is very big due to constructive interference
¢, ~ —&;. It is caused by the NA coufiguration in a relative § wave having pp
spin zero (1D, state). The !D, partial-wave dominates making @, ., large. but the
results are the same contribution to ®7=? and &7=? (with opposite signs caused by
the relevant Wigner d-function siguaturc). Since the contribution of @45 is negligible,
the sign problein for i1, is therefore very sensitive to the ®3 =0 (or 'Sy) partial wave.
As 9Ty, is very nearly proportional to ®,, the phase of ®, determines the sign of iTy,.

The right structure of the observables starts to appear gradually in the theoretical
curves as oue increases the nixing paramecter A in the Buck-Gross model, that is to
say, as one increases the probability of the small components in the DWF. We have
checked that this structure originates indeed from the small components v, and v, in



eq.(13).. If we make v, = v; = 0 in the Buck-Gross model, then all curves become very
similar to Locher’s ones. Similarly, if we vary the 7NN vertex given by eq.(15) by
considering A between 0 and 1 but keep Locher’'s DWF, then the curves change very
little again.

The proton spin correlations A; are presented in FIG.(4-6). Actually, the data
on A,, (FIG. 4.) is the measure of the ®,5¢ magnitudes because the deviation of
A, from —1 is determined by these amplitudes (28). According to the partial-wave
decomposition, ®; and ®¢ are the amplitudes containing only triplet spin states in the
pp channel. One can conclude that the magnitudes of the spin-triplet amplitudes are
somewhat small. As for A4,, (FIG.5.) and A, (FIG. 6.), the terms proportional to
®; + ®; can be neglected because there is a phase relation ®; &~ —®;. Therefore, the
deviation of Ay, and A,; from —1 is determined by ®,s again, whereas ®5 does not
contribute to the numerator of A,,.

One can also see a large sensitivity of the observables A;; to the used form of DWF.
The application of Gross’s approach by the construction of DWF [17] results in the
shapes of these characteristics which are different from the corresponding ones obtained
within the framework of Locher’s approach [16].

Note, the energy dependence of all the observables within the framework of the
suggested approach is the subject of our next investigation.

VI. SUMMARY AND OUTLOOK

A relativistic model for the reaction NN — dr has been discussed in detail using
two forms of the DWF [14] and [17]. One of them [14] was already used in the analysis
of the pp — dr process [13] also taking into account the two-step mechanism with
a virtual pion in the intermediate state. The difference between our approach and
the model considered in [13] is the following. We have analysed the sensitivity of all
the observables to the form of ® NN —current and the choice of the DWUF relativistic
form. First of all, from the results presented in FIG. (1-6), one can see very large
sensitivity of all the observables, especially of the polarization characteristics to the
choice of the DWZF form. The inclusion of the P-wave contribution in the DWF
within the framework of Gross’s approach [17] results in a better description of the
experimental data on the differential cross section and the polarization observables.
The next interesting result is related to the extraction of some new information on the
off-shell effects due to a virtual (off-shell) nucleon. Comparing the observable with the
experimental data (see FIG. (1-6)), one can test the assumption, suggested by [18], of
a possible form of the pion formfactor and conclude that one cannot use the mixing
parameter A =1 as like as in [14]. ' o

One can stress that the one-nucleon exchange and the pion rescattering graphs
have been studied only in this paper in order to investigate very important effects:
off-mass shellness of nucleon and pion, and P—wave contribution to the DWF. The
interactions in the initial NN and final dr states can be in principle contributed to
the total amplitude of the considered reaction. However, it will be as a separate stage
of this study because a more careful inclusion of elastic NN and dr interactions at
intermediate energies is needed. -
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Finally, let us stress that there is in principle an alternative approach to study the
DWF at small distances based on the non - nucleon or quark degree of freedom [32-34].
However, the main goal of our paper is to show the role of the conventional nucleon
degrees of freedom in the deuteron by analyzing the processes of the type NN — dr.
Therefore, we didn’t analyse the application of quark approaches to this reaction.
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VII. APPENDIX I

e Kinematics of NN — dn.
The S-matrix element of the reaction S8, =< d, out|pips, in > is related to the

corresponding M-matrix element by the following equation:

szl.m

7291 (27)2 \fe16226, 264

where 3,0, and o, are the spin indices of deuteron polarization and spin projections
of initial nucleons.
As is well-known, Mandelstam’s variables

s=(m+p)’ s t=d-p) ; u=(d-p), (1)

are related by the condition: s+ ¢ +u = M?+2m? + u? = h.
Let us introduce the following variables:

64 (7T+d—pl —p2) M£1017 (30)

P=pi+p, , Pl=s ;
p=(m—-m)/2, pP=d-m)/2 (32)
Note,
2 2 S PR P 2, 2_t+u
= - =< 5 = - - =< =
p=m-2<0;p 5(M + %) 2505 P04y 5
1 t—u
(®P)=0; @P)=5(M*—u’); (p)=v=-—"—<0. (33)

Let us now introduce two space-time four-vectors orthogonal to P and p :

1 ' v, o
Nu = ——=spzemeo? " P’P" 5 (NP) =0,
1 v o po v (r'P)
L= F=patunr PP = (PL - EZ’#) 7 b
l/2 p’P 2 .
N2=L2={(p'2—ﬁ)———~———-( P2) <0; (LN):O.V (34)

Then, one can get the whole system of orthogonal unit four-vectors {ef‘”)}izo, three of

them are space-like :
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2 Ly D =n,= N C W=, = Pu (35)

6‘(‘ El“:\/—?’ uw =T _N27 i N \/_—pf7

and one of them is time-like:

0 _ fu
They satisfy the following conditions :
guveﬂ(a)eu(ﬁ) = g% ; eu(t’)eu(ﬁ)gap = Guv » (37)

Therefore, any four-vector a, can be expanded over this unit orthogonal system, ie.:
a, = (2e?) ePg,, s a® = (ae)® (38)
For example, we can expand the matrix four-vector x, (1) over these basic vectors:

Xy = Xieff) =xl, +x2nu +xse0 , Xi = 'X“Bg) =7 (ai + biz) ; (39)

VIII. APPENDIX 11

e Pauli’s representation of NN — dr.
In the c.m.s., we can use the next Pauli form of the reaction amplitude

ME,, (t,0) = w,, (%€ P) w,,. (40)
The vector of the reaction is parametrized in the following form:
6
X = in(ﬁQ,ﬁﬁ) 1= x18, + X2 + X3 [T X &)
tixa 6 x 7l + ixs (37) [ x &) + ixo (58) [T X &) (41)

where: é‘,,zﬁ', i=—éy; §=a%=1; z=(ie).
And, finally, we have the following connection with invariant expansion (3):

£
(X — 2%)) ;
k —€
= (-5 (Gu+ )
-M - M
_ P& <E td E(X —2X5)+26d+ Xs) z;
m
€4 pk ek? )
5= (KZ (Xl * ;") - WXG> !

p(ea—M pk ek?
X="y (T (Xl * ;X> " Mm)?
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— E_ (—52_(1’1 — (X — 2X5)).

m \m?
p (ea— M Pk ek?
= X _&r .
= ( M ( 1 ) T At )
ke—m/f¢€
Xe = ————— <—X4 + (X = 2/"5)) . (42)
m m \m

Helicity amplitudes (4) can be related to the corresponding Pauli amplitudes {x;}5_,
(41):

dy = V2(Fx§ — x§ + x3Cos? + x¢) :
Oy = x1Cos? + x5 ;

- 3 a s Si”2ﬂ 2
Py = {(xa Ex3) +2x5 < C"“w% ) } |

P5 = 2x3Sind . (43)

IX. APPENDIX III

In this appendix we give explicit expressions for lelicity amplitudes ({4) for the
rescattering diagram. The evolution of the expression for x# (18) is straightforward.
The spin structure operator F,, (19} here

( i +m) (k +m)
m m

.7-' Z a; Iu (1) = (A + B7) (44)

m?

is a 4 x 4 niatrix in the spinor space and carries the label of deuteron polarization. The
first six of the operators I,,( ) do not depend on the integration variable:

~ P l ]
L) =vsms L@ =% Luf3) =2
> P A e JJC - -
L4 =15 Tu(5) = %A= 5 Tu(6) = 77,7 - (45)
The next three of fﬂ(z) depend only on 7 :
= Ta . 5 0y _ fm, 2 0y q o q
I]l(?) 75_L ) Ip(s) - n’z 3 Iu(g) =75 ("’/l;; - E’Y/z) . (46)

The remaining Z,,(i) are:

T ;\pl T+ f)’l L~
Z,00) = ys 2% ; I,L(ll):vs%; Z,(12) = 127 ;

7 My~ 7 II,A £ My .
L,18) = 9227 5 L,04) =t L(15) = v
7‘
7,(16) = 7 v,ﬁ'ﬂ (47)
13



With little algebra, one finds

ay

a

¢ m2—t 2 _om2
A 2—— B o1+ A4 - 03
( e )@1 + g U CE

a; = —24¢) = a3; ag4 = -QBM = as;
1 2 k2 2
‘16:“14901 - 991+B 33
m?—t 2 _m?
ar = —2A(2¢1 + @2) — A 2902"‘3 (g1 +92) ~ A——F— (w3 + 1) ;
m2 - k2 _
ag = 244((p1 + (,02) + B (,02 + A Vs ;
m?—t 2 2
9= Ap + B o+ A Qm;n @3 ;
aw =24p1 = an ;
1 ([2 k?_ m2
a3 = ;n-A (2001 + 2) — 2By ~ Bﬁsﬁz - BT (203 + @4) ;
a3 =2Bp; = au;
1 k2 —m?
a15 = ——Apy + 2By + B———¢4 ;
m
1 k? —m?
Qg = —EAlpl + BT@;} . (48)

Calculating all the spinor matrix elements, one comes to the following explicit
expressions for the helicity amplitudes of the rescattering diagram (S = Sin9; C =

Cos?) :
=Mf+ = MF_
= p /e 70 pex ke } )
=7 {2 (L o Pex TRE | ©
[ {m (maz+6,ra4 + mam) - 6 7
e € €(m £ inC) £ pnoS
_ (exm) {_a7+@a8+6”a12} _yztim nzz) S
m \m m m

V2
- {% [(e:t’l) + =t 2!\:/%7]20] - TIO;E} ais ] ; (49)
xe=Mi, = ~MO . »
I Fr———)

- % {;I—d (%az +eras + _Tlm_oam) - 26&#%} c

_ (_97‘:1__'7) {%m + @as + 6,,a12} + 2{ P (Zf;‘;c + :;I;) zm;;;S} ag

- {Tloﬂ;z—pkg - E(Th —1n2)5+ﬂ3——£q} {:SC! 130— % a4+ (eo n)“IS}
+ 25 (egnlarg — {inz——266jn;4 S+ % (mS + Tlac)} as ] ; (50)

eex —pkC ke —keC S e
+ {ng—m—f— (771—1772)5+773T} {i%am——— ( ;ln)am}

14

e

- ME_ = _MF,

= f[ \/§< g;:jg;g ) {.(%01 + kae) +2 p k ( 5‘1(122211’;//22> }

_ p(exn) {m :nm2as+ka125}

m m

+2/3™ (COS ﬂ/z)agi"‘;l"z

e P VS
Sin?d/2 a0 o N

+ ﬁ{(m —in2)(,‘—n;;5} {:}:%am% _ (e;ln)als} .

ok JELYCRAE .
2 (ein)awSﬂ: m ( :Fpm ae . - -

Cos®9/2 € [ p [ tx k ) :
+ \/5( smza/z) {m (nsm ?m;) t o (770;{4:7]3; }am] ;
Xs :Mg__ = M?_+ 4 e '

- k k2 " p (e —i
_7 P { % (o - Pac) + 6_a5} s-nlmmoim, -
;o m Mm- m m m _

L
N3Ed m =i p epk
M T T {M (2“9+ ‘“")C" 2M““},

‘_{(771—1772)0 7735}{ Y ld-—kﬁ 14+(

2eeq — M?
+ { mM

Here

1
{exn) = i\/i (mC £ in —n3S); (eon) = TIOM M (7715 +mC).

. k
"I) 5}.—2%(9.07‘7)0'16'5‘

(mZs = Z {ln—im)© = ma5}) + 2500 (m - inz)} ais] -

(51)

(52)

(53)

In the spectator case, the integro-operator takes the form (22). ‘The calculation is

carried out numerically as described In the’text.

15



FIGURES

ST TS o
« & &

do/dQ (ib/sr)
N

0 '00 60 720 780

FIG. 1. Differential cross section do/df) for pp — dn* as a function of scattering angle
in the c.m.s. at T, = 578 MeV when the cut-off parameter A and mixing one X varied
simultaneously both in the deuteron wave function and in the 7NN vertex. The dashed
(A =0.6;A = 1), solid (A = 0.8;A = 0.6) and dot-dashed (A = 1;A = 0.6) lines correspond
to the Gross WFD {17]. The dot-dot-dashed line corresponds to the results with Locher’s
WZFD [16] (A = 1;A = 1). The dots represent the partial-wave analysis by R. A. Arndt et
al. [30]. The data are from [14,15,30]. All spin observables are in the Madison convention.
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0 60 720 780

FIG. 2. Assymetry Ayy. Notation as in FIG. 1.
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I 780

FIG. 3. Vector polarization 77),. Notation as in FIG. 1.

FIG. 4. Spin correlation A;,. Notation as in FIG. 1.
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0 60 720 780

FIG. 5. Spin correlation A,,. Notation as in FIG. 1.

FIG. 6. Spin correlation A;;. Notation as in FIG. 1.
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Hnnapuonos A.10., JIeikacos I'.H. . E2-98-296
PensTuBncTCKUE M NONAPH3ALMOHHDIE ABACHUS
B peakumsax tina NN - d

B paMKax pelATHBHCTCKOrO MOAXOAa NMpOBeleH AETalbHBI aHATH3 NPOLECCOB
tina NN — d . 3a mexaHusM peakuuu Opanach KorepenTHas CymMma guarpamm
OIHOHYKJIOHHOrO o0MeHa M mepepaccesHus. [loka3aHa BbicOKas YyBCTBUTEIBHOCTD
NONAPH3ALUMOHHEIX HAGMIONAEMBIX K BHEMAcCOBHIM adxbeKTaM BHYTpH HeiiTpoHa.
HexoTopele NONApH3aLHOHHBIE XapAKTEPHCTHKH MOIYT aXe H3MEHHTDh 3HaK rocne
yueta atux athpextos. HecnenoBanock Takxe BIHAHHE P-BOMHBI aeiiTpoHa. Pedyns-
Tarel pacyeTa MOMHOro habopa HabMONaEMBIX CPaBHHBAIOTCS C BKCMEPHMEHTaNb-

+
HBLIMK JaHHBIMHK IO peaxkuuu pp > d .

PaGora Buinontera 8 JlaGoparopuu Beicokux anepruit OUSIH.

Tpenpunt O6BeAHHEHHOTO HHCTUTYTA SACPHBIX HccneaoBaHui. ly6ua, 1998

Ilarionov A.Yu., Lykasov G.I. E2-98-296
Relativistic and Polarization Phenomena
in NN — d ©t Processes

A detailed analysis of processes of the type NN — d m is presented taking
into account the exchange graphs of a nucleon and a pion. A large sensitivity
of polarization observables to the off-mass shell effects of nucleons inside
the deuteron is shown. Some of these polarization characteristics can change
the sign by including these effects. The influence of the inclusion of a P-wave
in the deuteron wave function is studied, too. The comparison. of the calculation

results of all the observables with the experimental data on the reaction pp — d n*
is presented.

The investigation has been performed at the Laboratory of High Energies,
JINR.
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