


1 Introduction

Owing to high momentum transfers A > 1 GeV/c in backward elastic scattering of
protons from deuteron, *He and #He nuclei at initial proton kinetic energies about
of 1 GeV, the experimental data on these processes contain in principle an information
on the structure of the lightest nuclei at short NN-distances in the region of nucleon
overlap, ryy ~ 1/A < 0.5fm. However theoretical analysis performed most carefully
in the simplest case of the backward elastic pd scattering [1] - [6], has not yet given
quantitative results on the deuteron structure at short relative distances between the
neutron and the proton, in particularly, on relativistic [6] and NN*- components [5] of
the deuteron wave function. It seems likely that this fact is connected to the extremely
small binding energy of the deuteron. As a result the high momentum component of the
deuteron wave function is not rich enough to dominate in the amplitude of the process
pd — dp. On the contrary, mechanisms resulting in excitation of nucleons inside the
deuteron due to interaction with an incident beam give a significant contribution to the
cross section of the pd — dp process [1]-[4]. The *He nucleus as a more compressed
system differs essentially from the deuteron and consequently one can obtain interesting
results from investigation of the p *He — 3Hep process.

The cross section of backward elastic p *He-scattering at the kinetic energy of
incident proton T, > 1 GeV displays three remarkable peculiarities [7, 8). (i) In the
Born approximation only one mechanism of the process p?He — S3Hep dominates,
it is the so-called sequential transfer (ST) of the noninteracting np-pair (Fig.1). The
contribution from the mechanisms of nonsequential transfer (NST), interacting np-pair
transfer (IPT) and deuteron exchange is negligible. In Refs. [9] -[11] the heavy particle
stripping ( et id. two-nucleon transfer) was also investigated and found to be important
at back angles for T, < 0.6 GeV. However the phenomenological 3He wave functions
restricted to the two-body configuration, which does not permit ST-mechanism were
used in that analysis. The other group of papers [12, 13] based on the microscopic
optical potential constructed using antisymmetrized p/V-amplitudes gives a qualitative
explanation of a rise of the cross section at backward angles at energies T, < 0.6 GeV
without taking into account the heavy particle stripping mechanism. An application
of that method at higher energies T, > 1GeV is very complicated due to lack of the
experimental information about the elastic formfactor of 3He in the relevant region
of the A variable. (ii) The channel v = 1 (in the notation of Ref.[14]) of the Faddeev
component (23(qqs, p1) of the 3He wave function plays the most important role in
the np-pair transfer mechanism. This channel corresponds to the orbital momentum
L =0, spin S =0, isotopic spin T = 1 of two nucleons with numbers 2 and 3 and the
orbital momentum [ = 0 of the nucleon spectator denoted by the number 1. If this
channel is excluded from the full wave function U = * 4 ® 4 %, the cross section
falls by several orders of magnitude. (iii) Rescatterings in the initial and final states
decrease the cross section at 8.,, = 180° considerably in comparison with the Born
approximation and make it agree satisfactorily with the available experimental data
[15] for T, > 0.9 GeV. :

Owing to this evident connection between the structure of ®He nucleus and the
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Figure 1: The np-pair transfer mechanisms of the backward elastic p 3He-scattering
denoted as 0 + (123) — 1 + (023): a - sequential transfer (ST), b - nonsequential
transfer (NST), ¢ — interacting pair transfer (IPT).

Figure 2: The tfiangular diagram of one-pion exchange (OPE) with the subprocess
pd — 3Hexn® for backward elastic p 3He scattering.

dominating mechanism one can hope to obtain an information about high momentum
components of the ®He wave function from the cross section of the p*He — 3Hep
process. However, in Refs. [7, 8] it was mentioned that the D-components of *He
wave function are of surprisingly minor importance in the process under discussion at
T, > 1 GeV. Moreover, relativistic effects estimated in Ref. [8] at T, ~ 1 GeV by
means of substituting the relativistic arguments into the °He wave function instead
of the nonrelativistic ones give rather small contribution to the cross section. For this
reason, in Refs. {7, 8] it was concluded that the sensitivity of the p *°He — 3Hep cross
section to the high momentum components of the 3He wave function is rather weak
in spite of high momenta transferred at 7, > 1 GeV. Moreover, as was found in [15],
the role of the triangular diagram of one-pion exchange (OPE) with the subprocess
pd — S3Hen® related to the A - and double A-excitation is in qualitative agreement
with the absolute value of the experimental cross section at T, > 0.5 GeV.

In the present work it is shown that the absolute value of the p *He — 3Hep cross
section at 0, = 180° and T, > 1 GeV is determined mainly by the high momentum
component of the Faddeev S-wave function of ®He, ¢©**(qa3, p1), associated with the
relative momentum ¢s3. On the other hand, rather low values of the ”spectator”
momentum p; are involved in the amplitude of this process. The cross section is
calculated also in framework of the OPE mechanism. The relative contribution of the
OPE mechanism to the cross section is found to be small in comparison with the np-
pair transfer mechanism. We show that this result is directly connected to the high
momentum component presented in the *He wave function. It is shown also that due
to rescatterings in the initial and final states the cross section calculated with the OPE
mechanism is an order of magnitude lower in comparison with the experimental data.

The paper is organized in the following way. Some eleménts of the formalism for the
np-pair transfer mechanism and the OPE amplitude are presented in the next section.
The formulas for the 3He charge formfactor are also derived there for the channel v = 1
of the three-body wave function of *He and for the d + p configuration. Numerical
results and discussions are given in the section 3. The detail formulas for the np-
transfer mechanism in the S-wave approximation are presented in the Appendix with
the analytical gaussian parametrization of the wave function and the corresponding
numerical parameters are given there.

2 Formalism

2.1 np-pair transfer mechanism

The total formalism for the np-pair transfer mechanism of the backward elastic p He-
scattering was developed in detail in Refs. [7, 8]. We use here this formalism in the
particular case of the S-wave component of the 3He wave function.

In the Born approximation the amplitude of transfer of two nucleons with numbers
2 and 3 in the process 0 + {123} — 1 + {023} (et id. p3He — 3Hep) can be written
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where ¥ (k; 1) = * (q,J,pk) is the Faddeev’ cornponent ‘of the wave funiction of the
bound state {ij k}; xp(Xp) is the spin — isotopic spm wave fuiiction of thé" incident
(firial)* protony; Ly = ¢+ qzs/mp 4 3p}/4m,, my'is the proton mass, € is the 3He
binding energy. The: subscrxpts 1 and f1n Eq ( 1) refer to the initial and final ‘nucleus
respectively: The'terms’ tpf <p 7 np, 1P <,o1 ¥ correspond to the IPT, ST and NST
thechanisms respectively. * In the explicit-form the ST mechamsm has the followmg
structure.of: the arguments of the wave functrons S
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where Qo (Ql) is the mornenturn of 1n(:1dent (ﬁnal) proton in the c.m.s of the final
(mltlal) 3He nucleus. As’ was noted in [8] at the scatterrng angle 0., = 180° two of

four momenta in Eq. (2) can srmultaneously become equal to zero at 1ntegratron over
a3 On the contrary, in the correspondrng formulas for the IPT and NST mechanisms

only one argument can be’ equal to zero while the other three have large values ~

Q1] = Qo (see Appendrx) This makes the ST term dominate in Eq.(1). Indeed,
the ST mechanism takes place only 1f the channels with the isotopic spin T' = 1 of thek
pair of niucleonis {ij} are included into the component ¢ (ij; k) either in the initial or
final state. It'is the direct consequence of the fact that the ST diagram in Fig.l, a
either starts with or ends in the pp-interaction. The 3He wave function from Ref. [14]
contains only one such channel (v = 1), namely, with the 'S, state of the NN-pair. In

the S-wave approximatien for the He wave function the cross section decreases by 5-6

orders of magnitude for 7, > 1 GeV if the channel v = 1 is excludéd [16]. The channels
with v # 1 corresponding to the isotopic spin T = 0 of the NN-pair (in particularly,
the D-components) can enter the ST-amplitude only in combination with the channel
v = 1. For this reason the role of those channels is not so significant.

Since the contribution of the interacting pair transfer mechanism is insignificant [8]
we will discuss here only the amplitude of noniteracting pair transfer (NPT) which is
the sum of ST and NST amplitudes, IPT=ST+NST. On the basis of the formalism
[8] the spin structure of the NPT amplitude in the S-wave approximation for the 3He
wave fitnction can be written in the following form

Tam TMNPT) = _6(27")_ Z /d 423L23(Q23»P1)

vw'=1,2

X ®,1(goz, Ph) [@u(ga3, P3) 635 ™ — @, (g1, p2) V53 ‘""] : (3)

where S(S5) = 0 for v(v') = 1 and §(5") = 1 for v(v') = 2; a(c’) and m(m’) are the
spin z-projections of the initial (final) proton and the 2He nucleus, respectively;

-

a3 " = (J8% "+ [55 ™) (Arodzo + ArnAry),
b5 ™ = (S35 ™ + S35 ™) (AroAre — ArnAry), (4)

here
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Agr is defined similarly to Agis. The Jacobi relative momenta can be written as

1 3 , 1
Qo2 = =523 ~ —Qo, P3 = 23 — 5 Qo,
1 1
qs1 = —'2‘%3 + Ql, P2 = —qz; — §Q1,
1 1
qi2 = *‘5%3 - ZQI’ P3 = Q3 — ;QL (7)

In the nonrelativistic case the momenta Q; and Qo are expressed by the momenta of
the observed particles as

1 1
Q= §P;. =P Qo= 3Ps— P (8)
where pi(p},) is the momentum of the initial (final) 3He nucleus and p(p’) is the

momentum of the initial (final) proton in the p + 3He c.mus.
Performing summation over the channels v, v’ = 1.2 one obtains

o'm’ om - 1
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A <
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The integral 12” corresponds to the NST-mechanism whereas 1% describes the ST
mechanism. The amplltude TB in’ Eq (l) is related to the 1nvar1ant amplltude A by
the following formula o

AB = 4mpthB, . (13)
the connection of this amplitude with the cross section is given in the next section by
Eq.(19). The total wave function of the 3He micleus ¥-="¢'? + »% + ©* in Eq. (1)

is normalized as Bedp .
/I\I’(, 15 (;‘W =1 (14)

2.2 Spln-spln correlatlon parameter

The spin-spin correlation parameter T.is calculated here as an addltlonal test of the
np-transfer mechanism of the process p 3He — 3Hep w1th polauzed beam and target.
This parameter is defined as

~ do(11) — do(11)
¥ = (1) 1 do(1)” (13)

where do(11)/d and do(7])/df2 are the cross sections for parallel and antiparallel
spins of colliding particles, respectively. From Eq. (9) follows that the sum of ST
and NST amplitudes in the S-wave approximation is not zero only for m’ + o' =
m 4+ o. Consequently from 16 amphtudes glven by Eq.(3) the nonvanishing ones are
the following .. Do

.Tl = T++++ = T____ = M() + %M],
T=TH* =7"++= %Mi, '
. R | .
Ty=T "t = T+f'+ =M, - §Ml N 1))

From Eqgs. (15) and (16) one finds :
[T = T2 = |T5* - 2 Re(My Mg) — 3IMi}®

Y= : = =
[T+ T2 + |12 3 | Mol + My

2.3 The OPE mechanism

An obvious modification of the formalism of the triangular OPE diagram from Ref.
[4] is used here for the OPE amplitudé. According to common rules of the diagram
technique the amplitude correspondmg to the triangular dragram in Flg 2 takes the
following form I 8

ABES™ph — k) = [ SE

GM%»(3He — d+p) < x%lp’ >
k2 — p? 4 i€)(2m, T, — p2 + i€)(2maTy — pi + ie)’

&3 Pdde

Z Aa“(pd——» 3Her®)

Agop

T

where p; is the momentum, T; is the kinetic energy and m; is the mass of the i-th
intermediate particle (proton or deuteron); k and y are.the 4-momentum and mass of
the virtual 7- meson, respectively. In Eq.(18) the summation refers to the spin states
of the intermediate deuteron (A4) and proton (o). The invariant a.mphtude A of the,
process ab — cd in Eq. (18) is related to the corresponding differential cross section in
the c.m.s. by the following formula

do 1 9ed

== = 412
dQ 64725, Gab AP, (19)

where sq4 is the square of the invariant mass of the system a 4 b, ¢;; is:the relative
momentum in the system ¢ + j. The amplitude of the virtual decay *He — d+ p has
the form

2 N2
Gxor(PHe = d-+2) = \Sudmien + T WAO(@s (20

here m,, is the mass of the 3He nucleus, S" ~ 1.5 is the spectroscopic factor of *He
in the channel d+ p [20]; $}4»(Q) = 3He{d p > is the overlap integral between the
3He wave function ¥, and the productlon of the wave functions of deuteron ¥,, and
proton ¢,,. This wave function is normalized by the followmg condltlon

dap 2 dBQ . . . .
2Jh+1 Z ./W)/\ |(27r) | ) ‘ T (21)

m, Aq,0p

The Fourier-transformation of this function is given by

¥i2(Q) = [exp (—iQuyk(r)dr, (22)
where the wave function in tlhe coordinate space has the following form

Di?® (1) =< 9o, P2,(P)|¥m(p,T) >=

= Y (L MSMS%m)(l/\d%U,,!SMs) Ur(r) Ym(F); (23)

L,M,5,Ms
here § = 3/2 for L = 2'and § = 1/2 for L = 0. The spherical functions ¥z and
Clebsh-Gordan coefficients are used in Eq.(23) in the standard notations. The S— and
D—components of the wave function UL(r) in Eq. (23) were obtained in Ref.[21] by
numerical solution of the Faddeev equations with the NN-interaction in the form of
Reid soft core (RSC). The results [21] are used here with the following normalization

condition *reo
/0 [V2(r) + U3()] rdr = 1. (24)

Actually the three-body calculations for the normalization integral (24) give the value
0.43 [22]. Consequently the contribution of the OPE diagram in Fig. 2 is overestimated
by the condition given in Eq.(24). However there are no experimental data at present



about the differential cross section of the reaction pd* — *Her?, where d" is the singlet
deuteron.. Under assumption that the cross sections of the reactions pd — *Her®
and pd* — 3Hen® are equal to each other, the normalization condition in Eq. (24)
effectively takes into account the contribution of the p + d* configuration with pn-pair
in the singlet state. , :

The vertex function # NN has the following form [23]

< 2ol >= 2mpf Nt (0 Qr, Frv(K), (25)

here @,, and ¢, are the Pauli spinors for nucleons, f-nn = 1;

"Ep'*’mp [Ey + my o
= ot — 5 - (26
Q \/Ep,-}-mppp \/Ep—}-mp Py (26)
E,, (Ey)is the total energy of the proton p(p');
AL -
Fenn(E?) = e _ (27)

For the cutoff parameter Aj in the monopole # NN formfactor defined by Eq.(27) the
value A, = 0.65 GeV/c is used here [24, 23].

As is shown numerically in the next section, the contribution of the D-component to
the OPE cross section is negligible. In the S-wave approximation for the 3He — d +p
channel the cross section of the p>He —2 Hep process can be expressed through the
cross section of the reaction pd — *Hen® in the following way

de 1 1
dQm. 6472 Sp,

2
_ mpmy Ey+m, fann Gh 2 52 Spd Gpd. do d 3 en®
- 2w Ez: ( M rd ”NN( )Sph qrh dQc.m. (p _) . )

| amaml

OPE

X ‘Zﬂfo(ﬁ) + Wlo(ﬁv g)lz 9 (28)
where

FitF) = [ Uir) (),

Wi((, ) = /0 F(FF)UL(r)(6 + 1) exp (—ir)dr. (29)
1 1 2m
_ Vol m=y, 30
K= 2m (Ep:+m+Ep!) [Pyl B = Py (30)
T2 ~2 2 2my
& =Pp +(2mTp,+y —QEhmp)E_, (31)
»
E,
2 2 __ _F2
Bt = (-5 (32)

in Eq¢s.(28-32) E, = |/m2 + pZ is the total energy, py is the momentum and T: is
the kinetic energy of the secondary proton in the laboratory system.

Rescatterings in the initial and final states for the OPE mechanism are taken into
account here in the line of work [8] on the ‘basis of Glauber-Sitenko theory. According
to Ref. [8], the amplitude A4 for the exchange mechanism with rescatterings in
the p 3He — 3Hep process can be related to corresponding amplitude in the Born
approximation Ag by the following expression

At = Ap(p},P'; P P +——/dq w(a)As(py. Pips +49,p—q)

+;1-7 ¢’ frplq )4B(ph q’,p’ + 49’ ps, p)

m//dzqfq’ Fon(@) fop(d) AB(pr — q.p + q'spr+d,p—q).  * (33)

In Eq. (33) the amplitudes f,, and Fys describe the elastic pp— and p *He— forward
scattering, respectively. The last three terms in Eq. (33) take into account rescatterings
in the intial, final state and simultaneously in the initial and final states, respectively.
In the spinless approximation thie amphtude of pN-scattering is parametrlzed in the
standard ‘form ["5]

kono kevow
4T

wlere ¢ is the momentum transferred in p/N-scattering, kp,n is the wave vector of the

fon(g) = kv Apn eXP(-—BpNQ?) = i+ ON)eXP(‘"'ﬂNq ) (34)

‘nucléon in the p+ N c. m. s., o is the total cross section of the pN-:scattering, an

and Bn are the phenomenoldgical parameters fitted to the experimental data on pN-

‘scattering [26]. Using the gaussian form for the 3He den51ty and’ Eq (34) one gets an

analytical form for the amphtude Fo

Fon(q) = ki > A exp(~ BY'q*); , T (35)
“k=1 : -

here k,p is the the wave vector of the nucleon in the p+ 2He c. m. s.; parameters
AP* BP* are expressed analytically through parameters of pN-scattering amplitude
(34) and the oscillator radius of the gaussian form for the 3He nucleus density [27].
Three terms in Eq. (35) correspond to single, double ard triple scattering of the
incident proton from nucleons of the 2He nucleus. Since the OPE amplitude in the
Born approximation given by Eq.(18) is a smooth function of the kinematic variables
Pxs Ph, P, P's one can take this amplitude outside of the sign of integrals over d*¢ and
d?q’ in Eq. (33) ! In this approximation the OPE amplitude with rescatterings has
the following form

Ag¥E = D AQRS™, : (36)

"When calculating the contribution of the rescatterings to the np-transfer amplitude the inte-
grations over d’q and d%¢’ in Eq.(33) are performed exactly in analytical form. In this case the
factorization like in Eq. (36) does not occure.



where the amplitude . }’3','3‘;.;”"‘ was defined by Eq.(18) and the distortion factor has. the

form h o N b
AL A '

- D — 1+ PP + PPtk ; . (37)
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parétjmét‘e_:‘rs‘,"App'l ,Z?P,P: AR va‘_:are defined.in qu. (34,35). .

2.4 The charge formfactor of *He

In the nonreléfi"visti’cimfmls“e appi*‘oxima:tion' the 'charg{e formfactor'of 3He is defined
as

ZF(A //eXp (FAR)T(L, 2, 3)en (3, 1) U(1,2:3 dder,, (38)

i=1

where Z =2 and. the charge density operator has the following form

pen(:T) Z{ [ ()50 ) + 5L rz(znf:h'(x—:r{)}; 39)

i=1.

here T, 18 the Pauli. matrlx for the z- pro_|ect10n of the nucleon 1sotoplc spin, r; is the
coordinate of the i-th nucleon, f(y) is the distribution of the nucleon charge density,
which is related to the charge formfactor of the nucleon in the following way

(q) / eXP(zyq)f (y )dy, ‘ | (40)

lII(l 2 3) = <p23 + <p” + @ 1s"the antisymmetrized wave function of -3He nucleus,
A = p}, — ps, is the transferred momentum. As was mentioned above, in the backward
elastic p->He scattering the main contribution gives'the channel v =1 of the Faddeev
wave function ¢?2. The following expression can be obtained for the charge formfactor
of the 3He nucleus taking into account only one channel v = 1 in the 3He wave
function

Fo(A) = 3(FP + §F")J23‘23(A) + (ZF” + §F")J23;3’(A); (a1)

here the integrals JB31 and J?323 are defined by the following formulas

) = o | [ dadputial Ip - A1, al P

C 23 2
TEA) = o [ dadp®ial = 54D
xd.(-1a+pbl-a-zpD. . (42)

In the framework of the d + p-configuration for the ®He nucleus given by Eqgs. (23) and
(24) we obtain the following expression for the 3He charge formfactor:
e

Fa(A) = 5 F2(A) {Fooo}@A) + F"”(:;'.A‘)}i +

10

+%[F:2(A) + F;(A)]{sj (%A) [Fooo (%A) 4
(1) 5 09) [ 1) (B0}

Fipp(A) = /0 AP UL(p) Uni(p) 6 dp. T (44)

Here S4(A), Sé(A) are the scalar and quadrupole formfactors of the deuteron (see, for
example, Ref. [17]). The parametrization from Ref. [18] is used here for the nucleon
formfactor FJ/(A). ' v ;

where

3 Numerical results and discussions

Numerical calculations for the fip-pair transfer mechanism are performed here using
the ®He wave function obtained in Ref.[14] from the solution of Faddeev equations
in momentum space with the RSC potential of the NN-interaction in the 'Sy and
381 —3D;-states. The separable analytical parametrization from Ref.[28] is used here for
the spatial part ®, of the Faddeev component of the 3He wave functlon in Eqs.(3 ) (12),
(4 ) In the notatlons of Ref. {28] 1t has a form ‘

¢u(q23)p1):nv<r°v(q23)Xu(Pl)a R t(45)

where n, is the numerical constant [28]. The functions ¢(g) and x(p) in Eq.(45) are
normalized according to the following conditions

/0 (Q)QdQ—l/ p)pidp =1. . (46)

The square of the functions ¢,(q), x,(¢) and the S-component of the deuteron
wave function, u(q), for the RSC potential [29] are shown in Fig.3. “The results of
calculation of the differential cross section are shown in Figs.4-9 in comparison w1th
the experimental data [15].

The numerical results demonstrate the following important features of the process
in question. First, the ST-mechanism involves the high momentum components of the
S-wave functions ,(g23). The *He wave function in the channels v = 1 and v=2Iis
probed at high momenta qz3 > 0.6GeV when the cross section is measured at T, > 1
GeV. To show it, in Fig.3 (a) we present the part of the function ¢, (qz3) (v = 1 and 2),
denoted as 3, which coincides with ¢, (ge3) for gaz > 0.6GeV/c and differs considerably
from it for smaller momenta ¢23 < 0.5GeV/e. -In Fig.3 (b) we also show the parts of
the functions x,(p:), denoted as ¥,, which are very close to the corresponding total
functions x,(p1) at small spectator momenta p; ~ 0 <+ 0.1GeV/c and are negligible
for p; > 0.2GeV/c. The cross sections calculated with these functions f., instead of

11
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do/d9,.., nb/sr

10
Figure 3: The square of functions ¢,(q), x.(g) from Ref.[28], the S-component of the . co e Tl
deuteron wave function u(q) from Ref. [29] and the functions $,(q) and ¥,(g) defined el i -
in the text. 1~ ¢3(q), 2 ~ ¢3(a), 3 - #}(q), 4 - #3(q), 5 - v*(q); Rt ' " e
F_iguvre 4: The differential cross section of elastic P He sr‘dtﬁering“ at O, = 180° as
a function of the incident proton kinetic energy Tp,. Curves 1-3 show the results of
(b) calculation in the Born approximation for the amplitude in Eq. (1): 1 - with the 3He

wave function from [28], 2 - with f.(p1) instead of f,(p), 3 - with f,,(qza) instead
f(q3); a = for f, = @1, b~ for f, = x1, ¢~ for f, = 3, d = for f, = \a. The
experimental points are taken from Ref.[15]

the full functions f, (here f = ¢ or f = Y) are shown in Iig.4 by curves 2. One can
see that these curves are very close to the total result obtained with the full functions
@.{q23) and x.(p1). In contrast, as one can see from Fig.4 (curves 3), the cross section
calculated with the complementary parts ¢, ~@, and y, — ¥, is 5-6 orders of magnitude

2 smaller for v = 1 and 4-6 times smaller for the channel » = 2. Obviously the channe]
v =1 of the 3He wave function plays-the most important role in the p *He — *Hep
53 process.
[T 3 NN S| R IELJ_LI ol il

4] a.1 0.z a3 0.4 6.5

‘a (c&v/S’
Fig.3, b

The same as in Fig.3,a but 1 - x3(q), 2 - x3(¢), 3 - %3(q), 4 — ¥2(q); the curves 2 and 4 in
the part a are multiplied by factor 1071.
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do/d),., nb/sr

-3 y "«_
q 1 1 1 P L
0 0.5 1 1.5 2 2.5 3
T,, GeV

Fig.4, b

Second, the above result demonstrates also that the ST mechanism uses rather low
"spectator”-momenta p; ~ 0+0.1GeV/c in the function y,(p;). This feature makes the
ST mechanism dominate. The qualitative explanation of these results is following. One
can find from Eq.(2), that for Q; = —Qo (et id. 8., = 180°) the equations qs1 = qo2
and p; = —p3 are satisfied. Consequently, the main contribution into the integral over
dqss in Eq. (1) gives the region |p;| = |ps| ~ 0, in which |q3;| = |qQoz] ~ @1- On the
contrary, the region of |qai1| = |qo2| ~ 0 corresponds to |p2| = |ps| ~ 2Q1 and plays
insignificant role since for T, > 1 GeV the momentum ¢, is large, ¢}; > 0.6 GeV. This
question is discussed in detail in the Appendix on the basis of the analytical expression
for the np-transfer amplitude in the S-wave approximation.

The contribution of the channel » = 1 of the wave function to the 3He charge
formfactor, Fix(A), is shown in Fig. 5 by curve 2. Curve 3 in Fig. 5 shows the
result for F,;(A) obtained with the function ¥;(p1) instead of x;(p;) and with &;(gzs)
instead of v1(¢23). One can see from this picture that the relative contribution of
the channel v = 1 is maximal at transferred momenta A > 1.5 GeV/c, but it is an
order of magnitude smaller in comparison with the full result shown by curve 1 in
Fig. 5. Moreover, the contribution obtained with the functions @1(g2s) and X1(p1),
dominating in the cross section of the backward elastic p *He-scattering, is negligible
at all transferred momenta. Obviously it is connected to the fact that at high values
A the charge formfactor F.;(A) involves the high momentum components of the 3He
wave function associated both with the relative momentum g¢23 and the momentum p;.

Third, we have found numerically that the contribution of the OPE mechanism
without taking into account rescatterings is in agreement with the experimental data
at T, = 0.5 — 1.3 GeV (curve 4 in Fig.6). However, the ST cross section calculated in

14

do /dQ,m, Nb/sr

15



~. 2
’ 3
m“‘F. NS PRI TN BTN PP PRV B lgLLz.zlz? :
025 05 075 1 125 15 L7 . .
¢ NG/ c

Figure 5: The charge formfactor of the 3He nucleus calculated.in the impulse approxi-
mation using dufferent assumptions about the 3He wave functlon..Curve 1 - from {28]
with the three-body wave function of the 3He nucleus; curve 2 - with only one cljannel
v = 1; curve 3 — the same as curve 2 but with 5(41(17.1) iflstead of x1(p1) and 991.((;23)
instead of ¢;(gss); curve 4 — with the d+ p configuration in Egs.(23), (24). The circles
(s ) are experimental data from [19].

the Born approximation is by factor ~ 20 ~ 30 larger than the OPE contribution at
T, > 0.8 GeV (curve 1 in Fig.6). _ N ‘

’ The numerical results show that in the interval of initial energies 0.5- 2.? GeV the
contribution of the D-wave of the d + p channel of the *He wave f.unct1on to the
OPE amplitude is very small in comparison with the S-wave contribution. In fact the
following numerical relations take place for the formfactors defined by Eq. (29):

IF2P)] ~ 01 Fa(B)l, Wial, 8)] ~ 0.1 Wio(5, )], [Waa(B, 8)] ~ 0.5Wha(5,6),

(F2(B) ~ [Waa(B, 8, [Fo(B)| ~ 0.3IWao(B, 8)]-

The differential cross section of the process pd — *Her? at the x-meson -sca.ttermg
angle ... = 180° is taken from the experimental data [30]. The wave funct1_ons Uy(r)
and Us(r) describing the relative motion in the channel 3He — d+ p according to Eq.
(23) are parametrized here in the following form

Up(r) = 25: 5;.- exp (~x; ), Ua(r) = 25: D;r?exp (=X ;r?). (47)

i=1
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Figure 6: The same as in Fig.4 but curves show the results of calculcalition with OPE
and np-pair transfer mechanisms: 1 -~ Born approximation for the amplitude in Eq. (1)
with the ?He wave function from (28] , 2 - the same as curve I but with the deuteron
w.f. w(qqa) instead of o1(q23) and w,(gz3); 3 ~ the same as curve 1 but with allowance
for rescatterings in the initial and final states; 4 - OPE in the Born approximation, 5
— OPE with rescatterings.

The numerical coefficients S;, x;, D;, ); are given in Table 1. The d + p-configuration
of the ®He nuclens described by Egs. (23, 24) seems reasonable enough for the eval-
uation of the OPE amplitude because this configuration approximates the 3He charge
formfactor properly in the wide region of transferred momenta A = 0 = 1.5GeV/c
(Fig.5).

Taking into account rescatterings in the initial and final states we find that the
cross section calculated with OPE mechanism decreases by one order of magnitude
and becomes considerably lower than the experimental data (see Fig. 6). The cross
section of the p *He — 3Hep process for T, < 1GeV is likely to be defined mainly by
the multistep p/N-scattering meclianisms discussed in Refs.[12, 13] including the heavy
stripping mechanism [9] -[11] also. We stress that the Ligh momentum components of
the functions p, in Eq.(45) play the most important role in the competition between
the OPE and ST mechanisms. One can see from Fig.3, (a), that the high momen-
tum component of the functions ¢, (g) is richer in comparison with the deuteron wave
function u(g), especially for ¢ > 0.5 GeV/c. This is a direct consequence of the fact
that the *He nucleus is more compact as compared with the deuteron. To comipare
with the pd-scattering, we performed the calculation of the ST cross section with. the
S-component of the deuteron wave function u{g) in Eq.(45) instead of the function
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Figure 7: The dlfferentlal cross sections of backward elastic pd— and p 2He-scattering
at f,.,.. = 180° versus the kinetic energy of the initial proton T}. The curves show the
results of calculations with the relativistic relative momenta in the vertices'd — np and
3He — {23} + p: curves 1 and 2 are taken from Ref. [5] for the pd — dp process in‘the
framework of the nucleon exchange mechanism with RSC wave function of deuteron;
3 and 4 refer to the process p 3He — 3Hep for np-pair transfer mechanism. Dashed
lines (1 and 4) are the Born approximation, full lines (2 and 3) take rescatterings into
account. The experimental points are taken from [15] (#),.[33] (0), [32] (%), [34] (D).

v, (ge3) for ¥ =1,2. As it seen from curve 2 in Fig. 6, in this case the ST cross section
is by a factor ~40 smaller than with the function ,(g3) and close to the OPE cross
section in the Born approximation. Note in this connéction that in the pd — dp pro-
cess the contribution of the neutron exchange ‘mechanism in the Born approximation
is not dommatmg [31] for T, > 1GeV and comparable with the OPE mechanism [4, 5].
This is one of reasons for a very nontrivial problem which arises when one attempts to
extract a definite information about the high momentum components of the deuteron
wave function from the experimental data on the pd — dp process.

In Fig.7 the cross sections of the elastic pd- and p 3He-scattering are compared
with each other at the angle 8. = 1807 as a ‘functions of the initial energy 7.
Ote can see that with increasing initial energy the calculated cross section of the

p 3He — S3Hep process decreases more rapidly than the pd — dp cross section. The
reason for this is the difference between the deuteron and ‘3 He masses. Owing to this
fact the modulus of momentum @ = Qo in Eq. (8) for the np-pair transfer mechanism

18

do/dQ,. (nb/sr)
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Figure 8: The same as in Fig.7, but versus the relative momentum in the vertices
d — n+pand 3He — {23} + p. The curves show the results of calculations in the
Born approxmatlon for the neutron exchange in the pd — dp process ( curve 1), and for
;he np-transfer mechanism of the process p *°He — 3Hep (curves 2 - 4): 2 - with the

He wave function from Ref. [28], 3 - with the deuteron wave function u(q) instead of
¢1(q), 4 ~ with the deuteron wave function u(q) instead of ¢4 (g) and t,az( )

of the p ®He — *Hep process increases with growing T essentlally faster ( both
in the nonrelativistic and relativistic kinematics) than the relatlve momentum gy, in
the vertex d — p+ n of the pole diagram of the neutron exchange for the pd —p:l dp
process. The results of calculations of these cross sections in the Born approx1mat10n‘
are presented in Fig. 8 versus the relative momentum g, (for the pd — dp process)
and the momentum Q1 = Qq (for the p 3He — -3Hep process ).

One can see from this figure that, in contrast to the T,-dependence, with increasing
q the pd — dp cross section as a functlon of the lnternal relative momentum ¢ decreases
more rapidly than the p SHe — 3Hep cross section. These cross sections are equal to
each other at the relative momentum ~ 0.6GeV /c, which corresponds to the kinetic
energy T, = 2.65GeV in the pd — dp process and T, = 0.8GeV in the p3He — 3Hep
process. With increasing the momenta up to ¢ ~ 1GeV/c the cross section of the
pd — dp process becomes an order of magnitude smaller than the p *He — 3Hep
cross section. At this pomt the kinetic energy of incident proton equals to 9.3 GeV
in pd— and 2.8 GeV in p 3He— collision. As it seen from Fig.8, after substitution of
the deuteron S-wave functlon u(q) into Eq.(45) instead of the functions.¢, and ¢, the
cross section of the pd.— dp process decreases still faster than the cross section of the

p 3He — 3Hep process.
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Figur;: 9: The same as in Figs.4v— 7, but calculated with the relativistic mofnenta Qo, 1
(curves 1 and 3) according to Ref. [8] and nonrelativisic momenta from Eq. (8) (curves

2 and 4): 1,2 - Born approximation; 3,4 - with rescatterings taken into account.

The above performed comparison shows that an experimental investigation of the
backward elastic p 3He scattering at energies of incident protons T, ~ 2.5GeV can
give the unique information about the off-energy shell NN-interaction which might be
reached in the pd— collision only at more high initial energies ~ 9 GeV.

The role of relativistic effects is estimated here by means of replacement of the non-
relativistic momenta Q77 = Q3" defined in Egs.(8) with the corresponding relativistic
ones @} = Qi (where Q"' < Q™) defined by Eq. (79) in Ref.{8]. The results of
calculations are shown in Fig. 9. As it seen from this figure, a such replacement turns
out to be insignificant up to the initial energy T, ~ 1 GeV, in spite of enough large
magnitude of the nonrelativistic momentum Qo = Q1 ~ 0.6 GeV/c at this energy for
the scattering angle 0., = 180°. With increasing the energy above 1 GeV the rela-
tivistic result for the cross section becomes considerably higher than the nonrelativistic
one, thus at T, = 3 GeV the corresponding difference '

is about an order of magnitude. At this energy the nonrelativistic momentum
Q1 = Qo takes the value ~1.05 GeV/c. The relation between the relativistic and
nonrelativistic result is not changed by the rescatterings. Therefore, in complete future
analysis of this process one should take into account relativistic effects in a consistent
way. Note, that in the present work the agreement with experiment is better for the
nonrelativistic calculations than for the relativistic ones. Perhaps, it is connected to
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Eigure 10: The spin-spin correlation parameter for the process i 2He — 2Hep as.a
fubction of |t — wyn,. ). Full curves show the results of calculations taking‘in‘.t,o account
rescatterings in the initial and final states for different energies of the incident proton
(GeV) shown near the curves; the dashed curve is the Born ap}ﬁ‘o){i)na&ion for 1.5 GeV

the fact that the RSC wave function [14] is used here for the YHe nucléus. The
RSC potential provides for the wave functions of the lightest nuclei too intensive high
imonientum components in comparison with other realistic potentials like the Paris
potential (see, for example, [35]).

The numerical results for the parameter & obtained with allowance for two channels
v=1and v = 2 in the *He wave function are presented in Fig. 10 versus the variable
[t = Unaz] = 2p*(1 + cos O.m.}, where p is the proton momentum in the p+ 3He can.s.
and .. is the scattering angle. One can see from this figure that at 8., = 180" and
Ty ~1-— 25 GeV the value ¥.is about ~ 0.1 — 0.15 independently of t,he.ix.litial energy.
Rescatterings in the initial and final states modify the form of al;gllla.x' dependence but

do [_lOt' change the energy dependence at .., = 180°. The similar behaviour displays
the spin averaged cross section [8].

4 Conclusion

The guestion about a presence of nonnucleon degrecs of freedom in the structure of
the hghtest nuclei at short NN-distances can be reformulated in other words in the
foll'owmg way.” Up to what maximal values of relative momenta between nucleons
inside a nucleus does the latter demonstrate the properties of the system which consists
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of nucleons ‘with frozen internal degrees of freedom interacting by means of realistic
NN-potentials defined from the NN-phase shifts data?

Tabl.1 Coefficients for the expansions in Eq. (47)

In this work the remarkable sensitivity of the cross section of backward elastic p > He- S;, fm~3? ki, fm=2. 1 D;, fm‘-7v/2 A, fmg2 :
scattering to the high momentum components of the 3He wave function in the S-wave
channel is found for energies above 1 GeV. The total dominance of nucleon degrees
of freedom in the 3He nucleus is demonstrated at these kinematical conditions. It is 1.80112E-02  2.15766 E-02 | -1.93862E-03  9.83826 E-02
shown that the backward elastic p 3He-scattering advantageously differs in this respect 2.13255E-01  8.35379 E-02 | -1.58838 E-02 3.18527 E-01
from the backward elastic pd-scattering. Some arguments are given to show that this 9.00237E-02  1.27578 E-01 | -3.11061 E-02 6.43963 E-01
feature of the p3He — ®Hep process is connected with the high momentum component 3.23190E-01  3.26778 E-01 | -3.83184 E-02 1.19183 E400

-2.17017E-01  1.06206 E+00 | -9.57312 E-02 . 4.47721 E+00

of the 3He wave function, which is more intensive in comparison with the deuteron
wave function. Since the mechanism of the np-pair transfer describes the available
experimental data in the interval of incident energies 0.9-1.7 GeV satisfactorily, there
is a reason to measure the cross section at higher energies in order to enlighten the
validity of phenomenological NN-potentials in describing the structure of lightest nuclei

at high relative momenta of nucleons. v b Xy
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2413615 - ..  5.535106 . . 4.20690 | 7.62335
. -1.299993 E-01 1.06071.3,]3—01 . 2.59354 2.37678
Appendix | | o 1 4118231 E-02 4555083 E-03 4.8189 E01  9.18116 E-01
Here are presented the formulas for the amplitude of the np-pair transfer taking into ,1718?214 ];_::?)0 L611916 E+00. -2.45093E-02  1.60613 E-01
account the first two.channels » = 1,2 in the 3He wave function. The function 400 76E— 1. 5.466668 F-01  5.21600 F-03 1.40849 B-02
given by Eq.(45) was approximated in [28] by the sum of Yukawa terms. Using the -4,00000 E-02 4'5‘26665»]3_03» ;567292 E03 1.03918 E-02
- parametrization [28] we found the gaussian parametrization for the functions f.(p) = : _3'4518_22 E-02 5.023824 E-02 ) 2.17920 E-03 7'19787 E-03
{8.(p) x.(P)}, , , . -2.54039 6.55162 6.51121 9.38385
o(q) = ZG‘ exp(——a,-qz), x(p) = ZFieXp (—ﬂipz) ‘ (48) -1.93783 - 1.74914 2.59354 3.04139
; 7 . . 2 -7.74249°E-01 = 5.72939 E-01 5.45100 E-01  1.22803 -
. e : o : : 1.12706 E-01 1.15040 E-01 -2.40357 E-02 1.85314 'E-
with the coefficients given in Table 2. These coeflicients were found by means the © 3.09857. E-02  -5.11790 E-02 1.56646 E-03 1 8231117 g_g;
minimization of the difference between the integrals - -6.4000 E-03 3.94752 E-02 -2.61864 E-03 1‘03918 E-02
" 6.58383 E-03 9.12018 E-03

, I(Q)-‘——/fu(Q)‘fu(q—i"Q)dq,‘ . (49)

Tabl.2 Coefficients for the expansions in Eq. (48)

© 1.18765 E-03

2.17920 E-03

calculated in the interval Q =0+ 13fm™"! with the functions f,(p) = {6.(p), x.(P)}
from Ref. [28] on the one side and with the gaussian parametrization in Eq. (48) on
the other side.

Using the gaussian parametrization for the functions tp(q) and x(p) we find the
following expression for the integrals in Eq.(12) ,

(@1, Q0) = [z [ €ala” + M)ou(r'a + 8 Qulpn(ra +6Q)

PR , o 1 T N3/2
xo(aq +bQu)x(dla +5Qo) = o 3 GGRER ()
A+ Qe + ) = o 2, GGRA D)
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x {M2+D~1 (g+321)—‘)}e§p [%2—0], (50)

where
C= [ai(ﬁ’)2 + ;8% + Bib® + ﬂ,(b’)Z] Q*
D = ai(v')? + a7* + Bra® + Bila')?,
B? = (/B + Bia'¥) Q3 + (76 + Buab)’ @F +
+2Q Qo (a7 B’ + Bia't') (ajv8 + Brab), (51)
In Eq.(50-51) the summation over the indices i, j, k, | refers to the expansions in

Eq.(48) for the functions @ur, @uy Xvy Xu' respectively.
From Egq. (7) one finds for the ST mechanism :

1 3 1 3
== = —_——y = —= = —
7= 276 417 276 47
el H = Y=l b= 1 (52)
7 _ e 21 - Y 2

Therefore, at the scattering angle 6c.m. = 180° (et id. Qi = —Qo) the expression in
the exponent for the ST amplitude in Eq.(50) takes the form

B ) (et ) (B + B)
'[D CLT'— Q°{%(ae+a,-)+(ﬂk+ﬂz)}' (53)

One can find the following three conditions for which the absolute magnitude of
the value in the right hand side of Eq.(53) has a minimum at Qo = Q1 = const.

A) In the case &; +; < B + fi ~ 1 one finds from Eq.(53) the relation
ar [3—2 - C]s*]‘ ~ (0 + a;)(1 = 1524) « 1. Due to the relation B + fi ~ 1 the

T Q%D 18c+0;
product of pre-exponentials FiF} in Eq.(50) is large -according to Table 2 which gives

the correspondence between §; and Fi. ,
B) Bk + Bt € a; +aj ~ 1. It corresponds to the relation —6170 B -

4(Bx + B1)-

C)Br+h~a+a; <1 In this case one finds —éd [% - C]ST ~ 4B + Bi),
however all pre-exponentials G;, Gj, Fi, Fi in Eq.(50) are small (see Table 2).

Tt is obvious, that only in the case A) the exponent takes the minimal value which
corresponds to the maximal value of the ST amplitude. In this case the first condition
@; + a; < 1 means that the high momentum components of two functions .(q) and
¢, (g) are involved in the ST-amplitude, whereas the second condition B¢ + 8 ~ 1 cor-
responds to soft momenta (p ~ 1/+/Bx, 1/v/B;) in the other two functions x.:(p), Xv(P)
2

~

]ST

2Note that using the harmonic oscillator translationally-invariant shell model wave function for the
3He nucleus [36] one keeps only one gaussian term in Eqs. (48) with the exponents « and 3 related
as = %a. In this case the positive term B?/D in the exponent of Eq.(50), which moderates the
decrease of the amplitude with increasing Qo, vanishes for the ST mechanism ( B*/D = 0). Asa
result, the ST mechanism reduces to the deuteron exchange mechanism.
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Similarly, one can find for the NST mechanism : AR RN IS N
L1 3 lao 3
R SR
M [ 1

d=1 I)':~;j,(z_1,b:—z (54)

NsT Hait o)+ (Bt 8) - - n

LB [lete)Btd) ¢ [Baia; +28:8) ) ©
e e )
Due to an additional terin in the square brackets in.the numerator on the right hand
side_of Eq. (55) the exponent for the NST mechanism is always larger in absolute
value than the éxponent for the ST mechanism. For this reason the contribution of the
NST mechanism to the cross section is considerably smaller in comparison with the ST

niechanism. ‘ i . 5 o Lo
The IPT amplitude is defined by the integral in Eq. (50) under the followiﬁg

conditions. [8] o L N

r_ ' 1 _3
7—1,6—0,7——5,6-——1
‘ @ =0, V=la=-1b= —é? ; : ; (56)
1 [B* - ' a; (B + Sau) +1a? ] '
"_2[_—0] =30+ ; (5 T )+ : (57)
QLD IPT - ,Qi+ga.j.+,5k L -

It is easy to find that the minimum of the right-hand side in Eq.(57) takes place
for 8y < 1, &y € B, «; € P This means that the main contribution to the 1PT
amplitude comes from the high momentum components of three functions . wur and
@, simultaneously.

25



References
[1] V.M. Kolybasov and N.Ya. Smorodinskaya, Yad. Fiz. 17 (1973) 1211.

[2] L.A. Kondratyuk, F.M. LeV and L.V. Shevchenko, Yad. Fiz. 29 (1979) 1081;
Yad. Fiz. 33 (1981) 1208.

[3] A. Boudard and M.Dillig, Phys. Rev. C31 (1985) 302.
[4] A.Nakamura and L.Satta, Nucl.Phys. A445 (1985) 706.
[5] Yu. N. Uzikov, Phys. At. Nucl. 60 (1997) 148.

[6] L.P. Kaptari, B.kampfer, S.M. Dorkin and S.S. Semikh, Phys.Rev. C57 (1998)
1097 . '

[7] A.V. Lado and Yu.N. Uzikov, Phys. Lett. B279(1992) 16.
(8] L.D. Blokhintsev, A.V. Lado and Yu.N. Uzikov, Nucl.Phys. A597 (1996) 487.
(9] S.A. Gurvitz, Phys. Rev. C 22 (1980) 964.

[10] M.A. Zhusupov, Yu.N. Uzikov and G.A. Yuldasheva, Izv. AN KazSSR ser. fiz.-
mat., N6 (1986) 69.

[11] M.S. Abdelmonem and H.S. Sherif, Phys. Rev. C 36 (1987) 1900.

[12] M.1. Paez and R.H. Landau, Phys. Rev. C29 (1984) 2267.

[13] R.H. Landau and M. Sagen, Phys. Rev. C 33 (1986) 447.

[14] R.A. Brandenburg, Y.Kim and A. Tubis, Phys. Rev. C12 (1975) 1368.
[15] P. Berthet et al., Phys. Lett. B106 (1981) 465.

[16] A.V. Lado and Yu.N. Uzikov, Izv.RAN SSR 57 (1993) 122.

[17) V.V.Burov et al., Z.Phys. A306 (1982) 149.

[18] S.I. Bylenkaya, Yu.M. Kazarinov and L.I. Lapidus, JETP 60 (1971) 460.
[19] R.G. Arnold et al., Phys.Rev.Lett. 40 (1978) 1429.

[20] R. Schiavilla, V.R.Pandaripande and R.B. Wiringa, Nucl. Phys. A449 (1986) 219.
{21] F.D.Santos, A.M. Eiro and A. Barosso, Phys.Rev. C19 (1979) 238.

[22] B.F. Gibbson and D.R. Lehman, Phys.Rev. C29 (1984) 1017.

[23] O. Imambekov and Yu. N. Uzikov, Yad. Fiz. 47 (1988) 1089.

[24] A. Matsuyama and T.-S. H. Lee, Phys.Rev. C34 (1986) 1900.

26

[25] A.G. Sitenko. Fiz. Elem. Chast. At. Yadra, 4 (1973) 547.

{26] Particle Data Group Report UCRL 26000 NN.1979.

[27) W.Cziz and L.Lesniak, Phys.Lett. B24 (1967) 227.

[28] Ch. H. Haiduk, A. M.Green and M.E. Sainio, Nucl.Phys. A337 (1980) 13.
[29] G. Alberi, L.P. Rosa and Z.D. Thome, Phys.Rev.Lett. 34 (1975) 503.

(30] P.Berthet et al., Nucl.Phys. A113 (1985) 589.

[31] L.S. Azhgirey et al., Phys.Lett. B391 (1997) 22.

[32] A. Boudard, These, CEA-N-2386. Saclay, (1984).

[33] P.Berthet et al., J.Phys.G: Nucl.Phys. 8 (1982) L111.

{34] L. Dubal et al., Phys. Rev. D9 (1974) 597.

[35] O.Imambekov, Yu.N. Uzikov and L.V. Shevchenko, Z.Phys. A332 (1939) 349.

[36) V.G. Neudatchin and Yu.F. Smirnov. Nuclonnie associacii v legkich vadrach
(Moskwa, Nauka, 1969) p. 410.

Received by Publishing Department
on October 13, 1998.

27




V3ukos 10.H. . E2-98-287
Crpyktypa aapa 3He B ynpyroy p *He-paccestun nasan

Hccenenosano ynpyroe p 3He-pacccmme Ha3aR NMpH KMHETHYECKOH IHEPIUN HAIETAIOLIETO NPOTOHA
T,>1 I'sB B pamKkax Mexanu3MOB 0OMeHa nip-NIapoH 1 TPEYroJILHOH IUarpaMMel OXHOMHOHHOIO obmena
¢ noanpoueccom pd — 3He 7° na ocHOBE MCMONEIOBAHNA PEATHCTHYECKO TPEXTENLHOMH BONHOBOI (PYHK-~
HHH 118 Apa 3He. Tlokasano, 4TO MeXaHM3M nepenay np-napbl fOMHURHPYET, a IKCNEPHMEHTATBLHO
HabmonacMoe CedeHre paccMaTpuBaemoro npouecca npu T, > 1 I'sB onpenensercs, masHeiM oGpasoM,
3aueHuaMH hasneeBCKO KOMMOHEHTHI BONHOBOH (PyHKUMH sapa 3Hc, (p23 (923, 1) npn Sonpurux
OTHOCHTE/IBHBIX MMITY/IbCAX g3 > 0,6 TaB/c NN-naphi B ‘So-cocrommu H MaIbIX HMIYABCAX «CIEKTATO-
pa» py <0,1 IB/c. B pamMkax noMHHHPYIOIIETO MEXAHA3Ma BbIYHCIIEH NapaMeTp CIHH-CIIHHOBOH Koppe-

ASUMM A0S MPOUECCA PACCEesHUA C MOASKPU3OBAHHBIM MYYKOM M MHINEHBIO. YUTeHb nepepaccesHus
B Ha4alnbHOM H KOHE4HOM cocTosHusX. ITposeneHo cpaBHeHKe ¢ npoueccoM pd — dp, KOTOpoe NOKAa3bl-
BAET, YTO JIOMHHUPYIOLIas Poslb MEXAHH3MA NEPEayH np-napbl 06yCI0BIEHA BHCOKOUMIYTIBCHOI KOMIO-

HEHTOH BONMHOBOIT (hyHKLMH Aapa He.

PaGota BunoancHa B JlaGopatopun suepubix npotnem OHAN.

[Mpenpunt O6bEAMHEHHOrO HHCTHTYTA SACPHBIX HCecaeroBanuii. OyGua, 1998

Uzikov Yu.N. E2-98-287
Structure of the *He in Backward Elastic P 3Hc-Scattcring

Backward elastic p 3He-scz\t\ering at incident proton kinetic energies T, >1 GeV is investigated
in the framework of the np-pair transfer mechanism and triangular diagram of one-pion exchange
with a subprocess pd — *He using a realistic three-body wave function of the *He nucteus. It is found

that the np-pair transfer mechanism dominates owing to a rich high momentum component of the 3H€
wave function. We show that the experimental cross section of this process is defined mainly

by the values of the Faddeev component of the *He wave function, (p23 (923, 1), at high relative
momenta g3 > 0.6 GeV/c of the NN-pair in the IS(,-statc: and at low spectator momenta p; < 0.1 GeV/c.

The spin-spin correlation parameter is calculated in the framework of the dominating mechanism
for the case of polarized target and beam. Rescatterings in the initial and final states are taken
into account. Comparison with the pd — dp process s performed.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 1998




