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1 Introduction 

Owing to high momentum transfers Lj. > 1 GeV /c in backward elastic scattering of 
protons from deuteron, 3 He and 4 He nuclei at initial proton kinetic energies about 
of 1 GeV, the experimental data on these processes contai~ in principle an information 
on the structure of the lightest nuclei at short NN-distances in the region of nucleon 
overlap, T'NN ~ 1/ Lj. :S: 0.5fm. However theoretical analysis performed most carefully 
in the simplest case of the backward elastic pd scattering [l] - [6], has not yet given 
quantitative results on the deuteron structure at short relative distances between the 
neutron and the proton, in particularly, on relativistic [6] and N N*- components [5] of 
the deuteron wave function. It seems likely that this fact is connected to the extremely 
small binding energy of the deuteron. As a result the high momentum component of the 
deuteron wave function is not rich enough to dominate in the amplitude of the process 
pd -+ dp. On the contrary, mechanisms resulting in excitation of nucleons inside the 
deuteron due to interaction with an incident beam give a significant contribution to the 
cross section of the pd -+ dp process [l ]-[ 4]. The 3 He nucleus as a more compressed 
system differs essentially from the deuteron and consequently one can obtain interesting 
results from investigation of the p 3 He -+ 3 Hep process. 

The cross section of backward elastic p 3 He-scattering at the kinetic energy of 
incident proton Tp > 1 GeV displays three re~arkable peculiarities [7, SJ. (i) In the 
Born approximation only one mechanism of the process p3 He --> 3 Hep dominates, 
it is the so-called sequential transfer (ST) of the noninteracting np-pair (Fig.l). The 
contribution from the mechanisms of nonsequential transfer (NST), interacting np-pair 
transfer (IPT) and deuteron exchange is negligible. In Refs. (9] -[11] the heavy particle 
stripping ( et id. two-nucleon transfer) was also investigated and found to be important 
at back angles for Tp :S: 0.6 GeV. However the phenomenological 3 He wave functions 
restricted to the two-body configuration, which does not permit ST-mechanism were 
used in that analysis. The other group of papers [12, 13] based on the microscopic 
optical potential constructed using antisymmetrized pN-amplitudes gives a qualitative 
explanation of a rise of the cross section at backward angles at energies Tp :S: 0.6 GeV 
without taking into account the heavy particle stripping mechanism. An application 
of that method at higher energies 1~ > lGeV is very complicated due to lack of the 
experimental information about the elastic formfactor of 3 He in the relevant region 
of the Lj. variable. (ii) The channel v = 1 (in the notation of Ref.[14]) of the Faddeev 
component rp23 ( q23 , p1 ) of the 3 He wave function plays the most important role in 
the np-pair transfer mechanism. This channel corresponds to the orbital momentum 
L = 0, spin S = 0, isotopic spin T = 1 of two nucleons with numbers 2 and 3 and the 
orbital momentum l = 0 of the nucleon spectator denoted by the number 1. If this 
channel is excluded from the full wave function IJi = rp23 + rp31 + rp12

, the cross section 
falls by several orders of magnitude. (iii) Rescatterings in the initial and final states 
decrease the cross section at 0c.m. = 180° considerably in comparison with the Born 
approximation and make it agree satisfactorily with the available experimental data 
[15] for Tp > 0.9 GeV. 

Owing to this evident connection between the structure of 3 He nucleus and the 
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Figure 1: The np-pair transfer mechanisms of the backward elastic p 3 He-scattering 
denoted as O + (123) -> 1 + (023): a - sequential transfer (ST), b - nonsequential 
transfer (NST), c - interacting pair transfer (IPT). 
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Figure 2: The triangular diagram of one-pion exchange (OPE) with the subprocess 
pd-> 3 H e1r 0 for backward°elastic p 3 He scattering. 
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dominating mechanism one can hope to obtain an information about high momentum 
components of the 3 He wave function from the cross section of the p3 He -> 3 Hep 
process. However, in Refs. [7, 8] it was mentioned that the D-components of 3 He 
wave function are of surprisingly minor importance in the process under discussion at 
Tp > 1 GeV. Moreover, relativistic effects estimated in Ref. [8] at Tp ~ 1 GeV by 
means of substituting the relativistic arguments into the 3 He wave function instead 
of the nonrelativistic ones give rather small contribution to the cross section. For this 
reason, in Refs. [7, 8] it was concluded that t~e sensitivity of the p 3 He -> 3 Hep cross 
section to the high momentum components of the 3 He wave function is rather weak 
in spite of high momenta transferred at Tp > 1 GeV. Moreover, as was found in [15], 
the role of the triangular diagram of one-pion exchange (OPE) with the subprocess 
pd -> 3 H e1r 0 related to the ~ - and double ~-excitation is in qualitative agreement 
with the absolute value of the experimental cross section at Tp > 0.5 GeV. 

In the present work it is shown that the absolute value of the p 3 He -> 3 Hep cross 
section at 0c.m. = 180° and Tp > 1 GeV is determined mainly by the high momentum 
component of the Faddeev S-wa,ve function of 3 He, <p23

( q23, Pi), associated with the 
relative momentum q23 . On the other hand, rather low values of the "spectator" 
momentum p1 are involved in the amplitude of this process. The cross section is 
calculated also in framework of the OPE mechanism. The relative contribution of the 
OPE mechanism to the cross section is found to be small in comparison with the np­
pair transfer mechanism. We show that this result is directly connected to the high 
momentum component presented in the 3 He wave function. It is shown also that due 
to rescatterings in the initial and final states the cross section calculated with the OPE 
mechanism is an order of magnitude lower in comparison with the experimental data. 

The paper is organized in the following way. Some elements of the formalism for the 
np-pair transfer mechanism and the OPE amplitude are presented in the next section. 
The formulas for the 3 He charge formfactor are also derived there for the channel v = I 
of the three-body wave function of 3 He and for the d + p configuration. Numerical 
results and discussions are given in the section 3. The detail formulas for the np­
transfer mechanism in the S-wave approximation are presented in the Appendix with 
the analytical gaussian parametrization of the wave function and the corresponding 
numerical parameters are given there. 

2 Formalism 

2.1 np-pair transfer mechanism 

The total formalism for the np-pair transfer mechanism of the backward elastic p 3 He­
scattering was developed in detail in Refs. [7, 8]. We use here this formalism in the 
particular case of the S-wave component of the 3 He wave function. 

In the Born approximation the amplitude of transfer of two nucleons with numbers 
2 and 3 in the process O + {123}-> 1 + {023} (et id. p 3 He-> 3 Hep) can be written 
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as [7, 8] 
Ts .=.6(271" r:3 j d3q23L~~(qz3, p1)x~(l ){ 0t (O; 23)<pT1 (2; 31 )+ 

. . 'P'.t (3;02),,p;1(z.;31)+ ;·r (2; 30),p;1(2; 31)}xp(O), (1) 

where <pii(k; ij) = tpii( q;i', Pk)is the Faddeev component of the wave function of the 
bound state { ij k };xi,(xp•) is the spin - isotopic spin wave function of the incident 
(final} ptoton; L~3 = c:+·q~3/mp +3pU4mp, mp is'the proton mas~, Eis the 3 He 
b'inding energy. Tlie•subscripts 'i and fin Eq.(··1) refer to the initial and final nucleus 
resp~ctively': The terms 'P}3+ ,pf1, <p~2+ <p[1, ,p}6+ 'PT1 correspond· to the IPT, ST and NST 
mechanisms respectively. '. In the explicit form the ST mechanism has the following 
structure. ·of the arguments of the Wave functions 

. oz'l-. 3L • 02+ (. . , 1 . 3 . . 1 
. 'PJ 'Pi = ~f q?2 = -

2
q23 - 4 Qo, p3 =. q23 - 2 Qo) 

· r 3 · · · 1 
X 'PT1

(q31 = -2q23 + 4Q1, P2 = -:q23 - 2Q1), . (2) 

where Q 0 ( Q1) is the mome~tum of incide~t (final) proton in the c:m.~ of the final 
(initial) 3 He nucleu~: A~ was noted in [8], at the scatte~ing angle 0c:m. = 180° two of 
fo~r momenta in Eq.(2) c_an si'multaneously become equal to zero at integration over 
q 23 . On _the contrary, in the corresponding formulas for the IPT and NST mech~nisms 
only one argument can ·be equal to zero while the other three have large values ~ 
IQ1I = !Qol (see Appendix).' This makes the ST term dominate in Eq.(1). Indeed, 
the ST mechanism takes place only if the channels \vith the isotopic spin T = 1 of the 
pair of nucleons {ij} are included ii;_to the component 'Pii(ij; k) either in the initial or 
final state. It is the direct consequence of the fact that the ST diagram in Fig.1, a 

either starts with or ends in the pp-interaction. The 3 He wave function from Ref. [14] 
contains only one such channel (v = 1), namely, with the 1 S0 state of the NN~pair. In 
the S-wave approx.imation for the 3 He wave function the cross section decreases by 5-6 
orders of magnitude for Tp > 1 GeV if the channel v = 1 is excluded.[16]. The channels 
with v cJ 1 corresponding to the isotopic spin T = 0 of the NN-pair (in particularly, 
the D-components) can enter the ST-amplitude only in combination with the channel 
v = l. For this reason the role of those channels is not so significant. 

Since the coqtribution of the interacti·ng pair transfer mechanism is insignificant [8] 
we will discuss here only the amplitude of noniteracting pair transfer (NPT) which is 
the sum of ST and NST amplitudes, IPT=ST+NST. On the basis of the formalism 
[8] the spin structure of the NPT amplitude in the S-wave approximation for the 3 He 
wave fon~tion can be written in the following form 

rtm'um(NPT) = -6(2ir)-3 L J d3q23L2J(q23,P1) 
v,v1=1,2 

,,._ ( I) ["' ( ) <1'm' um ( ) b"'m' <7m] X "'v' qo2,P3 "'v q12,P3 U5,5 - <I>v q31,P2 S'S , (3) 
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where S(S') = 0 for v(v') = 1 and S(S') = 1 for v(v') = 2; a(a') and m(m') are the 
spin z-projections of the initial (final) proton and the 3 He nucleus, respectively; 

u'm'um (Ju'm'um Ju'm'um) (A 4 
a5,5 = s•so + s•s1 T'oATo + • T'1ATI), 

bu'm'um (Ju'm'um + Ju'm'um) (A A A A ) S'S = S'SO S'S! T'O TO - T'I TI , (4) 

here 

f u'm' um ( <' '°' ~ 1 \ f ')(-,; 1 '\ 1 
5,55 = 2o + 1)3 L..,(~ M 9a 9m !:JM 

9
a 9m )A5,5A

55
, 

M - - - -
(5) 

As•s = '°' (-1)1 (21· + l)W(~~~~- S1.)W(~~~~- S11·), 
L.. 2222' 2222' 1=0,1 

(6) 

AT'T is defined similarly to As•s. The Jacobi relative momenta can be written as 

1 3 
qo2 = -

2
.q23 -

4
Qo, 

1 3 
q31 = -2q23 + 4Q1, 

1 3 
q12 = -2q23 - 4Q1, 

I 1 
P3 = q23 -

2
Qo, 

1 
P2 = -q23 - -Qi, 

2 
1 

p3 = q23 - 2Q1. (7) 

In the nonrelativistic case the momenta Q1 and Q0 are expressed by the momenta of 
the observed particles as 

1 ' Qi= :3Ph - P, 
1 / 

Qo = :3Ph - P, (8) 

where Ph(P~) is the momentum of the initial (final) 3 He nucleus and p(p') is the 
momentum of the initial (final) proton in the p + 3 He c.m.s. 

Performing summation over the channels 11, v' = I. 2 one obtains 

r;/m'um(N PT)= -6(2ir)-3{M08,,m,8,,,m + ~(L\~a\~m') 

x (L\~a'\~m)M1}, 
2 2 

1 ( 11 11) 3 22 1 ( 12 12) 1 ( 21 21) Mo = 24 5133 - 4132 + s133 + 8 l33 - 2132 + 8 133 - 2132 , 

M -
1 

(5111 4111) 1122 1 (112 •J/12) 1 (121 ?/21) 1 - 8 33 + 32 + 8 33 - 8 33 + - 32 - 8 33 + - 32 , 

li;/ = l(~i)k;(jl)I = (4:)2 1lv•nv J d3
q23L(q23,p1)<l>v,(9oi,Pk)<l>,,(q11,Pi). 
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The integral /3~v corresponds to the NST-mechanism whereas /3~v describes the ST 
mechanism. The amplitude TB in Eq. (I) ·is reliite·d to the irivariant ampli"tude A by 
the following formula . . 

AB = 4mpmhTB, ( 13) 

the connection of this amplitude with the cross section is given in the next section by 
Eq.( 19). The total wave function of the 3 He nucleus IV.= ,p12 + ~23 + ,p31 in Eq. ( 1) 
is normalized as 

J 2 J3qd3p 
_ IIV(q,pJI (2irJ6 = ~- ( 14) 

... 

2.2 Spin-spin correlation parameter 

The spin-spin correlation parameter If is calculated here as an additional test of the 
up-transfer mechanism of the process p 3 iJ e -+ 3 Hep with polarized beam and target. 
This parameter is defined as 

~ _ du(ii) - du(i l) 
~ ~ du(H) +du(i l)' 

(15) 

where du(H)/d!1 and du(i l)/d!1 are the cross sections for parallel and antiparallel 
spins of colliding particle~, respectively. From Eq. (9) follows that the sum of ST 
and NST amplitudes in the S-wave approximation is not zero only for m' + u' = 
m + u. Consequently from 16 ·amplitudes given by Eq.(3) the nonvanishing ones are 
the following 

. 1 
T - y++++ - y---- - M + M 1= - - 0 3 I, 

T2 = y+-+- = y-+-+ = ~M1, 
3 

· T3 = y-++- ~ y+--+ = Mo·- !M1. 
3 

From Eqs. (15) and (16) one finds 

~ = IT1l2 - IT21 2 - IT31 2 = 2 Re(M1 M;) - ½IM11 2 

IT11 2 + IT2l2 + IT31 2 3 IMol 2 + ½1Mil2 

2.3 The OPE mechanism 

(16) 

(17) 

An obvious modification of the formalism of the triangular OPE diagram from Ref. 
[4] is used here for the OPE amplitude. According to common rules of the diagram 
technique the amplitude corresponding to the triangular diagram in Fig. 2 takes the 
following form · 

A"'m'o-m( h h) = J J3pddTd "Am' ( d 3H 0) 
OPE p -+ p (2ir)4 , L..J .,-,\d. p -+ eir 

Adcrp 

x G~•"•( 3 He-+d+p)<ir0 pJp'> 
(k2 - µ2 + ic)(2mpTp - p~ + ic)(2mdTd - p~ + il)' 

(18) 
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where p; is the momentum, T; is the kinetic energy and m; is the mass of the i-th 
intermediate particle (proton or deuteron); k and µ are. the 4-momentum and mass of 
the virtual ir- meson, respectively. In Eq.(18) the summation refers to the spin states 
of the intermediate deuteron (.\d) and proton (uv)- The inva~iant amplitude A of the_ 
process ab-+ cd in Eq. (18) is related to the corresponding differential cross section in 
the c.m.s. by the following formula 

du = _l_ qcd IAl2 , 

d!1 64ir2 
Sab qab 

(19) 

where Sab is the square of the invariant mass of the system a + b, q;;_ is· the relative 
momentum in the system i + j. The amplitude of the virtual decay 3 He -+ d + p has 
the form 

2q2 
G~"•( 3 He-+ d + p) = .fs£4mpyrni;,(c~ + 3 m~ )v,~•"•(Q); (20) 

here mh is the mass of the 3 He nucleus, s;d '.::::'. 1.5 is the spectroscopic factor of 3 He 
in the channel d + p (20]; ef,;,•"•(Q). =< 3 H eJd, p > is the overlap integral between the 
3 He wave function IV m and the production of the wave functions of deuteron ef,,x• and 
proton cp.,.,. This wave function is normalized by the following condition 

1 
2Jh + l L . J lv,~•"•(Q)l2 d

3

Q -
m, Ad,o-p , (2ir )3 - 1. 

The Fourier-transformation of this function is given by 

v,~•"•(Q) = j exp(-iQr)v,~•"•(r)d3r, 

where the wave function in the coordinate space has the following form 

v,~•"•(r) =< <p.,., ef,,x.(p)JIVm(P, r) >= 

L (LM S Msl~m)(l.\d~uvlSMs) UL(r) YLM(i-); 
L,M,S,Ms 

. (21) 

(22) 

(23) 

here S = 3/2 for L = 2 and S = 1/2 for L = 0. The spherical functions YLM and 
Clebsh-Gordan coefficients are used in Eq.(23) in the standard notations. The S- and 
fl-components of the wave function UL(r) in Eq. (23) were obtained in Ref.[21] by 
numerical solution of the Faddeev equations with the NN-interaction in the form of 
Reid soft core (RSC). The results [21] are used here with the following normalization 
condition 

{

0 

[U5(r) + UJ(r)] r2dr = l. (24) 

Actually the three-body calculations for the normalization integral (24) give the value 
0.43 [22]. Consequently the contribution of the OPE diagram in Fig. 2 is overestimated 
by the condition given in Eq.(24). However there are no experimental data at present 
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about the differential cross section of the reaction pd* -+ 3 H e1r0
, where d* is the singlet 

deuteron .. Under assumption that the cross sections of the reactions pd -+ 3 H e1r0 

and pd* -+ 3 He1r0 are equal to each other, the normalization condition in Eq. {24) 
effectively takes into account the contribution of the p + d* configuration with pn-pair 
in the singlet state. 

The vertex function 1r N N has the following form [23] , 

< 1r0 plp' >= 2m/"NN ,p;,(uQ)<pu.F1rNN(k2), 
µ . . 

here 'Pup and 'Pu' are the Pauli spinors for nucleons, frrNN = l; 

Q= Ep + mp PP' -
Ep, + mp 

EP, + mpp 
p, 

Ep+mp 

Ep, (Ep,) is the total energy of the proton p(p'); 

A2 _ µ2 
F1rNN(k2) ':" A; - k2" 

,r 

(25) 

(26) 

(27) 

For the cutoff parameter A~ in the monopole 7r N N formfactor defined by Eq.(27) the 
value A" = 0.65 GeV /c is used here [24, 23]. 

As is shown numerically in the next section, the contribution of the D-component to 
the OPE cross section is negligible. In the S-wave approximation for the 3 He -+ d + p 
channel the cross section of the p3 He -+3 Hep process ~an be expressed through the 
cross section of the reaction pd -+ 3 H e1r 0 in the following way 

where 

dCT 1 1 IAu'm' um I -
-dn = 54 2 - OPE -

~ tc.m. 7r Sph 

_ mpmh Ep, + mp (!1rNN)
2 

sh p2 (k2)Spd qpd dCT ( d 3H 0) 
- --- --- d NN ---- P _, e1r 

271" E;, µ P " Sph q,rh dnc.m. . 

x Ji11:Fo(p) + W10 (p,8)J
2

, (28) 

.Ji(p) = fo'x, U1(r )j1(pr) rdr, 

W1L((p,8) = fo 00 

j1(pr)UL(r)(i8 + l)exp(-i8r)dr . 

( 
1 1 ) ~ 2m 11: = 2m -E-- + -E IPp•I, P = -EPP'• 

p' + m p' p' 

~ 2 )2mp /? = p2 + (2mTp, + µ - 2t:hmp -E, 
p' 

k2 _ µ2 = Ep, (i52 _ 82) ; 
2mP 
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(29) 

{30) 

(31) 

{32) 

m Eqs.(28-32) Ep' = ,/m~ + p;, is the total energy, PP' i; the momentum and Tp, is 
the kinetic energy of the secondary proton· in the laboratory system. 

Rescatterings in the initial and final states for the OPE mechanism are taken into 
acrnunt here in the line of work· [8] on the basis of Glauber-Sitenko theory, According 
to Ref. [8], the amplitude A1?' for the exchange mechanism with rescatterings in 
the p 3 He -+ 3 Hep process can be related to corresponding amplitude in the Born 
approximation AB by the following expression 

Ad1\st = AB(P~,p';ph,P) + _4i f d2q Fph(q)AB(P~,p';ph + q,p-, q) 1rp . . . 

+ 
4
:p' j d2q' fpp(q')AB(P~ - q', p' + q'; Ph, p) 

- (
4

1r;2P'P j jd2
qd2q' Fph(q)fpp(q')AB(Ph - q', p' + q'; Ph+ q, P - q). (33) 

In Eq. (33) the amplitudes fpp and Fph describe the elastic pp- and p 3 He- forward 
scattering, respectively. The iast three ter~s in Eq. (33) take into account rescatterings 
in the intial, final state and simultaneously in the initial and final states, respectively. 
In the spinless approxitnatio~ the amplitude of pN~scattering is parametrized in the 
standard form [25] ' · 

fpN(q) = kpNApN exp (-BpNq2) = kpNCTN (i +ON) exp(-~/1Nq2), (34) 
. 471" 2 

where q is the momentum transferred in pN-scattering, kpN is the wave vector of the 
nucleon in the p + N c. m. s., CTN is the total cross section of the pN-scattering, ON 
and /1N are the phenomenological parameters fitted to the experimenta.l data on pN­
scattering [26]. Using the gaussian form for the 3 He density and Eq. (34) one gets an 
analyt!cal form for the amplitude Fph 

3 

Fph(q) = kph L Afhexp(-Btq2
); 

. k=I . 
(35) 

here kph is the the wave vector of the nucleon in the p + ,3 He c. m., s.; parameters 
Afh, Et are expressed analytically through parameters of pN-scattering amplitude 
(34) and the osciUator radius of the gaussian form for the 3 He nucleus density [27]. 
Three terms in Eq. (35) correspond to single, double and triple scattering of the 
incident proton from nucleons of the 3 He nucleus. Since the OPE amplitude in the 
Born approximation given by Eq.(18) is a smooth function of the kinematic variables 
Ph, P1i, p, p', one can take this amplitude outside of the sign of integrals over d2q and 
d2q' in Eq. (33) 1

. In this approximation the OPE amplitude with rescatterings has 
the following form 

A~;!E = D A'bp~um, (:36) 

1 When calculating the contribution of the rescatterings to the np-transfer amplitude the inte­
grations over d2q and d2q' in Eq.(33) are performed exactly in analytical form. In this case the 
factorization like in Eq. (36) does not occure. 
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where the amplitude A~p~um was defined by Eq.(18) and the distortion factor has the 
form 

.. [ .ph . '1 Aph ] . "A iAk ' I pp k • 
D = 1 + i4_/3pp + L 4Bph - 16/3ppBt , 

. . . PP k k 

· (37) 

· · · ' ph ·ph · · 
p_arameters App,/3.pp, Ak, B.k.}ue defined.in ~qs. (3~,35). 

2.4 The charge formfactor of 3 He 

In the nonrel~ti~istic imfmls~ appi-~ximation the chargk forinfador· of 3 He is defined 
as 

ZFch(L'l) = I1 exp (zA~)iv+(l, 2, 3JPch(x, r,)ll'(l,2,:3)dx II dr,, 
1:=l 

(38) 

where Z =·2 and.the charge dern,ity operaior has.the following form 

Pch(x, r;) = t { ~[1 f T:'(i)]Jih(x - r,)' + ~[1,- T,/i)]JJ.(x - r;) }I (39) 

here T;.is the-Pauli matrix for the z-projection of the nucleon isotopic spin, r, is the 
coordinate of the i-th nucleon, J!f,(y) is the distribution of the nucleon charge density, 
which is related to the charge formfactor of the nucleon in the following way 

Ft,'.(q) = f ekp(iyq)J:(.(y)dy; (40) 

iv(l, 2, 3) = cp23 + <pt 2 + cp3t is the antisymmetrized wave function of 3 He nucleus, 
A = Ph - Ph is the transferred momentum. As· was mentioned above, in the backward 
elastic p 3 He-scattering the main contribution gives the channel 11 = 1 of the Faddeev 
wave function cp23. The following expression can be obtained for the charge form.factor 
of the 3 He nucleus taking into account only one channel 11 = 1 in the 3 He wave 
function 

Fch(L'l) = 3(FP + ir)J23;23(L'l) + (iFP + ir)J23;3t(L'l); 

here the integrals p 3;3t and p 3;23 are defined by the foHowing formulas 

. 1 ff 2 . J 23;23(fl) = (
4

7r)2 dqdp<I>v,(Jql, l,P- 3Al)<I>v(lql, IPJ); 

. 1 ff 2 J 23;~t(L'l) ;= (
4

71")2 , dqdp<I>v,(lql, IP- 3AI) 

1 3 1 
x<I>v(l:-c2q + 4PJ, I - q - 2pl). 

( 41) 

(42) 

In the framework of the d + p-configuration for the 3 He nucleus given by Eqs. (23) and 
(24) we_ obtain the following expression for the 3 He charge formfactor: 

. . · 1 { (2 )" "(2' )}. Fch(L'l) = 2 Fth(L'l) Fooo 3L'l + Fo22 36 + 
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+~[Fih(L'l) + Fc'i.(L'l)]{ S1 GL'l) [Fooo GL'l) + 

(
1 )] 1 (1 ) .[.. (1 ) . 1. "} + Fon 3L'l + ,/8-irst 2L'l . VSFno 3L'l - F222 ( 3L'l)] , (43) 

where 
F,w(L'l) = fo'x, j,(L'lp)UL(p) Uu(p) p2 dp. (44) 

Here S1(L'l), St(L'l) are the scalar and quadrupole formfactors of the deuteron (see, for 
example, Ref. [17)). The parametrization from Ref. [18] is used _here for the nucleon 
formfactor F :/. ( L'l). 

3 Numerical results and discussions 

Numerical calculations for the rip-pair transfer mechanism are performed here using 
the 3 He wave function obtained in Ref.[14] from the solution of Faddeev equations 
in momentum space with the RSC potential. of the NN-interaction in the 1 S0 and 
3 St - 3 D 1-states. The separable analytical parametrization from Ref.[28] is used here for 
the spatial part <I>v of the Faddeev component of the 3 He wave function in Eqs.(3),(12), 
( 42). In the notations of Ref. [28] it has a form 

<I>v(q23,Pt) = nvcp,(q23)xvCPt), (45) 

where n, is the numerical constant [28]. The functions cp(q) and x(p) in Eq.(45) are 
normalized according to the following conditions 

[o cp2(q)q2dq = 1, 1= x2(p)p'dp = 1. (46) 

The square of the functions 'Pv(q),x,(q) and the S-component of the deuteron 
wave function, u(q), for the RSC potential (29] are shown in Fig.3. The results of 
calculation of the differential cross section are shown in Figs.4-9 in comparison with 
the experimental data (15]. . 

The numerical results demonstrate the following important fe~tures of the pr~cess 
in question. First, the ST-mechanism involves the high momentum components of the 
S-wave functions cpv(q23). The 3He wave function in the channels 11 = 1 and 11 = 2 is 
probed at high momenta Q23 > 0.6GeV when the cross section is measured at Tp > 1 
GeV. To show it, in Fig.3 ( a) we present the part of the function 'Pv(q23) (11 = 1 and 2), 
denoted as ·'Pv, which coincides with 'Pv(q23) for q23 > 0.6GeV/c and differs considerably 
from it for smaller momenta q23 < 0.5Ge V/ c. In Fig.3 ( b) we also show the parts of 
the functions x,(Pt), denoted as Xv, which are very close to the corresponding total 
functions Xv(P1) at small spectator momenta Pt ~ 0 + O.lGeV /c and are negligible 
for Pt > 0.2GeV /c. The cross sections calculated with these functions fv instead of 
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the full functions .f v (here .f = cp or .f = \') are shown in Fig.4 by curves 2. One can 
see that these curves are very dose to the total result obtained with th<> full functions 
'Pv(q23) and Xv(p1). In contrast, as one can see from Fig.4 (curves 3), th<> cross section 
calculated with the complementary parts <pv-ipv and \v- \vis 5-6 orders of magnitude 
smaller for v = 1 and 4-6 times smaller for the channel 11 = 2. Obviously the channel 
v = l of the 3 He wave function plays the most important rol<> in the p 3 II e --+ 

3 /I cp 
process. 
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Second, the above result demonstrates also that the ST mechanism uses rather low 
"spectator"-momenta p1 ~ 0..,.-0.lGeV/c in the function Xv(p1 ). This feature makes the 
ST mechanism dominate. The qualitative explanation of these results is following. One 
can find from Eq.(2), that for Q1 = -Q0 ( et id. Bc.m. = 180°) the equations q31 = q02 
and p2 = -p3 are satisfied. Consequently, the main contribution into the integral over 
dq23 in Eq. (1) gives the region IP2/ = /p3I ~ 0, in which lq31I = lqo2I ~ Qi- On the 
contrary, the region of lq3i/ = lqo2/ ~ 0 corresponds to /p2/ = IP31 ~ 2Q1 and plays 
insignificant role since for Tp > 1 GeV the momentum Q1 is large, Q1 > 0.6 GeV. This 
question is discussed in detail in the Appendix on the basis of the analytical expression 
for the np-transfer amplitude in the S-wave approximation. 

The contribution of the channel v = 1 of the wave function to the 3 He charge 
formfactor, Fch(li), is shown in Fig. 5 by curve 2. Curve 3 in Fig. 5 shows the 
result for Fc~(li) obtained with the function X1(pi) instead of x1(P1) and with <p1(q23) 
instead of ,p1(q23 ). One can see from this picture that the relative contribution of 
the channel v = 1 is maximal at transferred momenta Li > 1.5 GeV /c, but it is an 
order of magnitude smaller in comparison with the full result shown by curve 1 in 
Fig. ,5. Moreover, the contribution obtained with the functions cp1(q23) and h(P1), 
dominating in the cross section of the backward elastic p 3 He-scattering, is negligible 
at all transferred momenta. Obviously it is connected to the fact that at high values 
Li the charge formfactor Fch(li) involves the high momentum components of the 3He 
wave function associated both with the relative momentum q23 and the momentum p1. 

Third, we have found numerically that the contribution of the OPE mechanism 
without taking into account rescatterings is in agreement with the experimental data 
at Tp = 0.,5 - 1.3 GeV (curve 4 in Fig.6). However, the ST cross section calculated in 
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Figure 5: The charge formfactor of the 3 He nucleus calculated in the impulse approxi­
mation using dufferent assumptions about the 3 He wave function. Curve 1 - from [28] 
with the three-body wave function of the 3 He nucleus; curve 2 - with only one channel 
V = 1; curve 3 - the same as curve 2 but with x1(P1) instead of x1(P1) and 'P1(qw) 
instead of <p1(q23); curve 4 - with the d + p configuration in Eqs.(23), (24). The circles 
(•) are experimental data from [19]. 

the Born approximation is by factor ~ 20 - 30 larger than the OPE contribution at 
Tp > 0.8 GeV (curve 1 in Fig.6). 

The numerical results show that in the interval of initial energies 0.5- 2.5 GeV the 
contribution of the D-wave of the d + p channel of the 3 He wave function to the 
OPE amplitude.is very small in comparison with the S-wave contribution. In fact the 
following numerical relations take place for the formfactors defined by Eq. (29): 

IF2(fi)\ ~ 0.1\Fo(P)\, \W12(p,8)\ ~ o.1JW1o(p,8)\, \W32(fi,8)\ ~ 0.5JW12(p,8)\, 

\F2(P)I ~ JW32(P, 5)\, JFo(p)\ ~ 0.3\Wrn(p,5)\. 

The differential cross section of the process pd -+ 3 H e1r 0 at the 1r-meson scattering 
angle 0c.m. = 180° is taken from the experimental data [30]. The wave functions U0 (r) 
and U2(r) describing the relative motion in the channel 3 He -+ d + p according to Eq. 
(23) are parametrized here in the following form 

5 5 

Uo(r) = ~S;exp(-K;r2), U2(r) = ~D;r2exp(-.X;r2). (47) 
i=l i=l 
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Figure 6: The same as in Fig.4 but curves show the results of cakukalition with OPE 
and np-pair transfer mechanisms: l - Born approximation for the amplitude in Eq. ( 1) 
with the 3 He wave function from [28] , 2 - the same as curve 1 but with the deuteron 
w.f. 11(q23) instead of cp1(q23) and <p2(q23); 3 - the same as curve 1 but with allowance 
for rescatterings in the initial and final states; 4 - OPE in the Born approximation, 5 
- OPE with rescatterings. 

The numerical coefficients S;, 1';, D;, A; are given in Table l. The d + p-configuration 
of the 3 He nucleus described by Eqs. (23, 24) seems reasonable enough for the eval­
uation of the OPE amplitude lwcause this configuration approximates the 3 He chargf' 
formfactor properly in the wide region of transferred momenta ~ = 0 -;- l .5Cc V/, 
(Fig.5). 

Taking into account rescatt(•rings in the initial and final states we find that tlw 
cross section calculated with OPE mechanism decreases by one order of magnit uck• 
and becomes considerably lower than the experimental data (see Fig. 6). The cross 
section of the p 3 He-+ 3 Hep process for Tp < lGe V is likely to be definPd mainly by 
the multistep pH-scattering mechanisms discussed in Refs.[12, 13] including the heayy 
stripping mechanism [9] -[11] also. We stress that the high momentum rnmponents of 
the functions 'Pv in Eq.(45) play the most important role in the competition betwec-n 
the OPE and ST mechanisms. One can see from Fig.3, ( a), that the high momc-n­
tum component of the functions 'Pv(q) is richer in comparison with the deuteron wav<' 
function u(q), especially for q > 0.5 GeV /c. This is a direct. conseqm·ncP of the fact 
that the 3 He nucleus is more compact as compared with the deut.C'ron. To rnmparP 
with the pd-scattering, we performed the calculation of the ST cross section with t.hc­
S-component of the deuteron wave function u( q) in Eq. ( 45) instead of the function 

17 



~ .. 
rn 

,£10.R 
C 

___,, 
( 10 

c::u 

pd-dp 

p'He-'Hep 

180" 

~ 10 

t: ~-~01 
"O 3 \• ,·... ~--•• 

10 : : ••.•. 2 ·--.... _ 
\!. ·-..... ·• ... 

10•!,-:; • 3 · .. 4 

10 

_, 
10 

l~ 

•." ··-.. 
···-....... . 

10-21, I , I'. I I I, 11 I' i' I, I, •• , :i's I I I 11 • , I 11 I, 11 I, I • I 
012J4"-&,.7AQ11 

Figure 7: The differential cross sections of backward elastic pd- aild p 3 JI e-scattering 
at 0c,m. = 180° versus the kinetic energy of the initial proton Tp. The curves show the 
results of calculations with the relativistic relative momenta in the vertices d --> np and 
3 JI e--> {23} + p: curves 1 and 2 are taken from Ref. [,5] for the pd --> dp process in the 
framework of th~ nucleon exchange mechanism with RSC wave function of deuteron; 
3 and 4 refer to the process p ?.II e --> 3 II ep for np-pair transfer mechanism. Dashed 
lines (1 and 4) are the Born approximation, full line~ (2 and 3) take rescatterings into 
account. The experimental points are taken from [15] (•), [33] (o), [32] (*), [34] (6). 

9'v(q23) for v = 1, 2. As it seen from curve 2 in Fig. 6, in this case the ST cross section 
is by a factor ~40 smaller than with the function 9'v(q23) and close to the OPE cross 
section in the Born approximation: Note in this connection that in the pd --> dp pro­
cess the contribution of the neutron exchange 'mechanism in the Born approximation 
is not dominating [31] for Tp >' lGeV and comparable with the OPE mechanism [4, 5]. 
This is one of reasons for a very nontrivial problem which arises when one attempts to 
extract a definite information about the high momentum components of the deuteron 
wave function from the experimental data on the pd --> dp process. · 

In Fig. 7 the cross sections of the elastic pd- and p 3 II e-scattering are tom pared 
with each other at the angle 0c.m. = 180° as a functions of the initial energy Tp. 
One can see that with increasing initial energy the calculated cross section of the 
p 3 JI e --> 3 JI ep process decreases' more rapidly than the pd --> dp cross section. The 
reason ior this is the difference between the deuteron and 3 JI e masses. Owing to this 
factthe modulus of momentum Q1 = Q0 in Eq. (8) for the np-pair transfer mechanism 
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Figure 8: The same as in Fig.7, but versus the relative momentum in the vertices 
d --> n + p and 3 JI e --> {23} + p. The curves show the results of calculations in the 
Bo~n app.roxmati~n for the neutron exchange in the pd--> dp process ( curve 1), and for 
the up-transfer mechanism of the process p 3 JI e --> 3 JI ep ( curves 2 - 4): 2 - with 'the 
3 JI e wave function from Ref. [28], 3 - with the deuteron wave function u(q) instead of 
9'i(q), 4 - with the deuteron wave function u(q) instead of 9'1(q) and 9'2(q). 

of the p 3 JI e --> 3 JI ep process increases with growing Tp ,essentially. faster ( both 
in the nonrelativistic and relativistic kinematics) than the relative moll)-entum qpn in 
the vertex d --> p + n of the pole diagram of the neutron exchange for the pd --> dp 
process. The results of calculations of these cross sections in the Born approxiination 
are presented in Fig. 8 versus the relative momentum qpn (for the pd--> dp process) 
and the momentum Q1 = Q0 (for the p 3 JI e --> 3 Hep process ). 
· One can see from this figure that, in contrast to the TP-dependence, wit,h increasing 

q the pd --> dp cross section as a function of the internal relative momentum q decreases 
more rapidiy than the p 3 He --> 3 Hep cro,ss section. These cross sections are equal to 
each other at the relative momentum~ 0.6GeV /c, which corresponds to the kinetic 
energy Tp = 2.65GeV in the pd--> dp process and Tp = 0.8GeV in the p 3 He--> 3 Hep 
process. With increasing the momenta up to q ~ lGeV /c the cross section of the 
pd --> dp proc~ss becomes an order of magnitude smaller than the p 3 He --> 3 Hep 
cross section. At this point the kinetic energy of incident proton equals to 9.3 GeV 
in pd- and 2.8 GeV in p 3 He- collision. As it ~een from Fig.8, after substitution of 
the deuteron S-wave functi~n u(q) into Eq.(45) instead of the functions 9'l and 9'2 the 
cross section of the pd--> dp process.decreases still faster than the cross section of the 
p 3 JI e --> 3 Hep proce~s. 
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Figure 9: The same as in Figs.4 - 7, but calculated with t_he relativistic momenta Qo, Qi 
(curves 1 and 3) according to Ref. [8] and nonrelativisic momenta from Eq. (8) (curves 
2 and 4 ): 1,2 - Born approximation; .3,4 - with rescatterings taken into account. 

The above performed comparison shows that an experimental investigation of the 
backward elastic p 3He scattering at energies ofincident protons Tp ~ 2.5GeV can 
give the unique information about the off-energy shell NN-jnteraction which might be 
reached in the pd- collision 01?-lY at more high initial energies ~ 9 · Ge V. 

The role of relativistic effects is estimated here by means of replacement of the non­
relativistic momenta Q't = Q~' defined in Eqs.(8) with the corresponding relativistic 
ones Q~el = Q'r/ (where Qrel < Qnr) defined by Eq .. (79) in Ref.[8]: '.J;'he results of 
calculations are shown in Fig. 9. As it seen from this figure, a such replacement turns 
out to be insignificant up to the initial energy Tp ~ l GeV, in spite of enough l_arge 
magnitude of the nonrelativistic momentum Q0 = Q1 ~ 0.6 GeV /cat this energy for 
the scattering angle 0c.m. = 180°. With increasing the energy above 1 GeV the rela­
tivistic result for the cross section be.comes considerably higher than the nonrelativistic 
one, thus at Tp =· 3 GeV the corresponding difference 

is about an order of magnitude. At this energy the nonrelativistic momentum 
Q1 = Qo takes the value ~1.05 GeV /c. _The relation between the relativistic and 
nonrelativistic result is not changed by the rescatterings. Therefore, in complete future 
analysis of this process one should take into account relativistic effects in a consistent 
way. Note, that in the present work the agreement with experiment is better for the 
nonrelativistic calculations than for the relativistic ones. Perhaps, it is connected _to 
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the fact that the RSC wave function [14] is used here for the 3 HI:' nucleus. The 
RSC potential provides for the wave functions of the lightest nuclei too intensive high 
momentum components in rnmparison with other realistic potentials like the Paris 
potential (see, for example, [35]). 

The numerical results for the parameter~ obtained with allowance for two channels 
v = 1 and v = 2 in the 3 He wave function are presented in Fig. 10 versus the variable 
iu - ttmoxl = 2p2 (1 + cos Oc.m.), where pis the proton momentum in the p + 3 Hf c.m.s. 
and 0c.m. is the scattering angle. One can see from this figure that at Oc.m. = 180" and 
TP ~ 1 - 2.5 GeV the value~ is about~ 0.1 - 0.15 independently of the initial energy. 
Rescatterings in the initial and final states modify the form of angular dependence but 
do not change the energy dependence at Oc.m. = 180". The similar behaviour displays 
the spin averaged cross section [8]. 

4 Conclusion 

The question about a presence of nonnucleon degrees of fr<.'edom in the structure of 
the lightest. nuclei at short NN-dista.nces can be reformulated in ot.lwr words in the 
following way. Up to what maximal values of relative momenta. between nucleons 
inside a. nucleus does the latter demonstrat<.' the properties of tlw system which consists 
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of nucleons· with frozen internal degrees of freedom interacting by means of realistic 
NN-potentials defined from the NN-phase shifts data? 

In this work the remarkable sensitivity of the cross section of backward elastic p 
3 He­

scattering to the high momentum components of the 3 He wave function in the S-wave 
channel is found for energies above 1 GeV. The total dominance of nucleon degrees 
of freedom in the 3 He nucleus is demonstrated at these kinematical conditions. It is 
shown that the backward elastic p 3 He-scattering advantageously differs in this respect 
from the backward elastic pd-scattering. Some arguments are given to show that this 
feature of the p 3 He -+ 3 Hep process is connected with the high momentum component 
of the 3 He wave function, which is· more intensive in comparison with the deuteron 
wave function. Since the mechanism of th~ np-pair transfer describes the available 
experimental data in the interval of incident energies 0.9-1.7 GeV satisfactorily, there 
is a reason to measure the cross section at higher energies in order to enlighten the 
validity of phenomenological NN-potentials in describing the structure of lightest nuclei 

at high relative momenta of nucleons. 
Acknowledgements. 
I am thankful to Prof. V.I. Komarov for discussions. This work was supported in 

part by the Russian Foundation for Basic Research (grant N° 96-02-17215). 

Appendix 
Here are presented the formulas for the amplitude of the 11p-pair transfer taking into 
account the first two channels v = 1, 2 in the 3 He wave function. The function 
given by Eq.(45) was approximated in [28] by the sum of Yukawa terms. Using the 
parametrization [28] we found the gaussian parametrization for the functions fv(P) = 
{<PAP), Xv(P)}, . 

~(q) = I:G;exp(-a;q2), x(p) = I:F;exp(-,B;p2) 
i j . 

(48) 

with the coefficients given in Table 2. These coefficients were found by means the 
minimization of the difference between the integrals 

J(Q) = J fv(q)fv(q + Q)dq, (49) 

calculated in the interval Q = 0 + 13fm-1 with the functions fv(P) = { <Pv(P), xv(p)} 
from Ref. [28] on the one side and with the gaussian parametrization in Eq. ( 48) on 

the other side. 
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Tab!. I Coefficients for the expansions in Eq. ( 4 7) 

S;, .fm-3/2 ~i, fm.:.2 · \ D;, fm.:. 712 ,\;, fm:...2 

l.80112E-02 2.15766 E-02 -l.93862E-03 9.83826 E-02 
2.13255E-Ol 8.35379 E-02 -1.58838 E-02 3.18527 E-01 
9.00237E-02 1.27578 E-01 -3.11061 E-02 6.43963 E-01 
3.23190E-Ol 3.26778 E~Ol -3.83184 ;E-62 1.19183 E+oo 
-2.17017E-Ol 1.06206 E+OO -9.57312 E-02 . 4.47721 E+oo 

Tabl.2 Coefficients for the expansions in _!:q. ( 48) 

V 'Pv Xv 

3 
G;, Jm, a;1fm2 3 

F;, fm, ,8;, fm2 

2.413615 5.535106 4.20690 7.62335 
-1.299993 E-01 1.060713 E-01 2.59354 2.37678 

1 4.118231 E-02 4.555083 E-03 4.8189 E-01 9.18116 ·E-01 
1.762614 E-00 1.611916 E+oo -2.45993E-02 1.60613 E-01 
7.491376 E-01 5.466668 E-01 5.21600 E-03 1.40849 E-02 
-4.00000 E-02 4.526665 E-03 -5.67292 E-03 1.03918 E-02 
-3.451822 E-02 5.023824 E-02 2.17920 E-03 7:19787 E-03 

-2.54039 6.55162 6.51121 9.38385 
-1.93783 1.74914 2.59354 3.04139 

2 -7.74249 E-01 5.72939 E-01 5.45100 E-01 1.22803 
1.12706 E-01 1.15040 E-01 -2.40357 E-02 1.85314 E-01 

· 3.09857 E-02 5.11790 E-02 1.56646 E-03 1.8424 7 E-02 
-6.4000 E-03 3.94752 E-02 -2.61864 E-03 1.03918 E-02 
1.18765 E-03 6.58383 E-03 2.17920 E-03 9.12018 E-03 

Using.the gaussian parametrization for the functions ~(q) and x(p) we find the 
following expression for the integrals in Eq.(12) 

J(Qi, Qo) = (
4
:)

2 
j d~q(q2 + M 2 )~v{,'q + 8'Qo)~v('Yq + 8Q1) 

. · l ( 7r )3/2 
Xv(aq + bQ1)xv1 (a'q +b'Qo) = (41r)2 _I: G;G;FkF1 D . 

- .. i,3,k,l 
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where 

x { M 2 + n-1 G + B 2 n-1
)} exp [ ~ - C 1, 

C = [a;(b')2 + OjD
2 + f3kb2 + f31(b')2

] Q2, 
fl= a;(,') 2 + arr2 + f3ka2 + f3,(a')2, 

B 2 = (on'/3' + f3,a'b')
2 

Q~ + (anb + /3kab)
2 

QI+ 

+ 2Q1 Qo ( on' /3' + /3,a' b') ( Q nb + f3kab) ' 

(50) 

(51) 

In Eq.(50-51) the summation over the indices i, j, k, l refers to the expansions in 

Eq.(48) for the functions <{Jv', 'Pv, Xv, Xv', respectively. 
From Eq. (7) one finds for the ST mechanism : 

, 1 3 1 3 
1 = -2, b= -4;,= -2,b= 4' 

a'= 1, b' = -~; a= -1,_b = -t (52) 

Therefore, at the scattering angle 0c.m. = 180° ( et id. Qi = -Qo) the expression in 
the exponent for the ST amplitude in Eq.(50) takes the form 

[
B2 - c) = -Q~ { 1 (a;+ aj)(f3k + /3,) } . (53) 
D ST 4(a; + Oj) + (f3k + /31) 

One can find the following three conditions for which the absolute magnitude of 
the value in the right hand side of Eq.(53) has a minimum at Q0 = Qi = canst. 

A) In the case a;+ Oj « f3k + /31 ~ 1 one finds from Eq.(53) the relation 

-J,
0 

[ ~ - cJsT ~ ( a; + °'i )(1 - ¼ ~~~~;) « 1. Due to the relation f3k + (31 ~ 1 the 
product of pre-exponentials FkF1 in Eq.(50) is large according to Table 2 which gives 

the correspondence between /3; and F;. · 
B) f3k + (31 « a;+ °'i ~ 1. It corresponds to the relation -J, 0 [~ - c]sT ~ 

4(f3k + /31). 
C) f3k + (31 ~a;+ °'i « 1. In this case one finds -J,

0 
[~ - C] 8T ~ 4(/3k + /31), 

however all pre•exponentials G;, Gj, Fk; F, in Eq.(50) are small (see Table 2). 
It is obvious, that only in the case A) the exponent takes the minimal value which 

corresponds to the maximal value of the ST amplitude. In this case the first condition 
a; + °'i « 1 means that the high momentum components of two functions 'Pv' ( q) and 
,.pv(q) are involved in the ST-amplitude, whereas the second condition f3k + /31 ~ 1 cor­
responds to soft momenta (p ~ 1/ v?J,., 1/ --/if,) in the other two functions Xv•(P), Xv(P) 
2 

2 Note that using the harmonic oscillator translationally-invariant shell model wave function for the 
3 He nucleus [36] one keeps only one gaussian term in Eqs. ( 48) with the exponents a and /3 related 
as f3 = ¾a. In this case the positive term B 2 / D in the exponent of Eq.(50), which moderates the 
decrease of the amplitude with increasing Qo, vanishes for the ST mechanism { B

2 
/ D = 0). As a 

result, the ST mechanism reduces to the deuteron exchange mechanism. 
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Similarly, one can find for the ;-.;ST mechanism : , \' 

, 1- ,;3,.·,1--- 3: 
"r = -2. b = -:t1 = -2,b = -4, 

" · · · · ·" · 1 · ' · 1 . 
a'= 1 /,'=--·a = 1 b = ~-. " 2' ' . ·2· 

(54) 

_ _!_[B2 
_ 

1
_ -- ~-{(0;+01)(8k+Pd+[~0:a:j+2/3k,81]}. 

Q
2 D C ~ ' I . ) (;3 :, . (55) 
O NST . :j(o;+oj + k.+[,i) . ' · 

Due to an additional term in the square brackets in the numerator _on the right hand 
side of Eq. ( 55) the exponent for the NST mechanism is always larger in absolute 
value than the exponent for the ST mechanism. For this reason the contribution of the 
NST mechanism to the cross sf'ction is considerably smaller in comparison with the ST 

mechanism. _ , . _ _ . . . _ _ 
The IPT amplitude is defined by the integral in Eq. ( 50) urider the following 

rnnditions [8] 

I I .1 C 3 
-v=l b=0·-v=--o=-

, ' ' I 2' .1 • 
. .. 1 

,t'-0 b'-l·a--1 b---· \.• - , - , - , - 2' (56) 

1 [B2 1 { oi (th+ ?o;) +¼of} · 
- 2 - - C = /11 + I . 

Qo ,D !PT a;+ 40j.+ !-h 
(57) 

It is easy to find that the minimum of the right-hand side in Eq.(57) takes place 
for /11 « l, o; « f3k, Oj « /Jk- This means that the main contribution to the IPT 
amplitude comes from the high momentum components of three functions\.,•, 'i'v' and 
'Pv simultaneously. 
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Y3HKOB IO.H. EZ-98-287 

CTpyKTypa ll/lpa 3He a ynpyrol\l p 3He-paccel!HHH ~aJa/l 

11cCJJe/lOBaHO ynpyroe p 3He-pacceJ111tte HaJa/l nptt KHHeTw1ecKOH :meprntt HaJ1eTa10mero nporntta 
Tp > I faB B paMKax MeXaHH3MOB o6MeHa np-napoi\ H TPC)'l'OJJbHOH )lttarpaMMhl O)lHOnHOHHOro o6MeHa 

C IlO)lnpouecCOM pd--) 3He rc0 Ha OCHOBe HCnOJJh30BaHHJI pea.rittCTH'leCKOH TpeXTeJJbHOH BOJJHOBOH ¢)'HK· 

UHH /lJJll ll/lpa 3He. IloKaJaJIO, '!TO MeXaHH3M nepe)lalJH np-naphl )lOMHl!ttpyeT, a 3KcnepHMellTMbHO 
tta6JJJO/laeMoe cetJeHtte paccMaTptteaeMoro npouecca nptt TP > I faB onpe/leJJlleTCll, rnaaHblM o6pa30M, 

3HatJellHJIMH cj,aMeeBCKOii KOMno11eHThl BOJJHOBOH cj,yttKUHH ll/lpa 3He, cp23 (q23, P1) npll 60JJblllHX 

OTHOCHTeJJbl!hlX IIMnyJJbCax q23 > 0,6 faB/c NN-naphl B I So·COCTOJIHIIII II MaJlblX IIMilYJJbCax «cneKTaTO· 

pa» PI$ 0,1 faB/c. B paMKaX )lOM11H11py10mero MeXaHll3Ma BbllJHCJleH napaMeTp CnHH•CnHHOBOH KOppe­
JlllUHII )lJ]ll npouecca paccel!Hllll C nOJJllp1130BaHHblM n)"IKOM II MHlllellblO. YtJTeHbl nepepaccellHHJI 
B HalJaJlbllOM II KOHe'IHOM COCTOJIHIIJIX. IlpOBe)leHo cpaBHeHHe C npouecCOM pd --) dp, KOTOpoe noKaJbl· 
eaeT, '!TO )lOMIIHHPYJOlllal! pOJJb MexaHll3Ma nepe)la'III np-napbl o6yCJJoBJJeHa BblCOKOHMnyJJbCHOii KOMno­

HeHTOii BOJIHOBOii cj,yttKUIIII ~)lpa 3He. 

Pa6orn BbmOJJHeHa e Jla6oparnp1111 J1/lep11b1x npo6JJeM OH5Uf. 

IlpenpllllT 06'be)lllHeHHOro IIHCTIIT)'Ta ll/lepHblX HCCJle)lOBllilllH. ,Uy6Ha, 1998 

Uzikov Yu.N. EZ-98-287 

Strncture of the 3He in Backward Elastic p 3He-Scattering 

Backward ela~tic p 3He-scattering at incident proton kineti~ energies TP > I Ge V is investigated 

in the framework of the np-pair transfer mechanism and triangular diagram of one-pion exchange 

with a subprocess pd ➔ 3He rc0 using a realistic three-body wave function of the 3He nucleus. It is found 

that the np-pair transfer mechanism dominates owing to a rich high momentum component of the 3He 
wave function. We show that the experimental cross section of this process is defined mainly 

by the values of the Faddeev component of the 3He wave function, cp23 (q23, p 1), at high relative 

momenta q23 > 0.6 GeV/c of the NN-pair in the 1Su-state and at low spectator momenta p 1 $ 0.1 GeV/c. 

The spin-spin correlation parameter is calculated in the framework of the dominating mechanism 
for the ca~e of polarized target and beam. Rescatterings in the initial and final states are taken 
into account. Comparison with the pd ➔ dp process is performed. 

The investigation has been performed at the Laboratory of Nuclear Problems, JINR. 

Preprini of the Joint Institute for Nuclear Research. Dubna, 1998 


