


1. Introduction. Recently the N=(1|1) supersymmetric generaliza-
tion of the Darboux transformation was proposed, and an infinite class of
bosonic solutions of its symmetry equation was constructed in {1]. These
solutions generate bosonic flows of the N=(1|1) supersymmetric Toda lat-
tice hierarchy in the same way as their bosonic counterparts — solutions
of the symmetry equation of the Darboux transformation [2] - produce
the flows of the bosonic Toda lattice hierarchy. However, due to the su-
persymmetry it is obvious that besides bosonic flows the supersymmetric
hierarchy also possesses fermionic ones. A natural question arises about
finding solutions of the symmetry equation which are responsible for the
fermionic flows.

The issue of fermionic flows is also interesting from a slightly different
side. It is a well-known fact by now that particular reductions of the tau
function of the bosonic Toda lattice hierarchy reproduce partition func-
tions of some matrix models (for review, see e.g. [3, 4, 5] and references
therein). It is reasonable to suspect that the tau function of the N=(1|1)
supersymmetric Toda lattice hierarchy may also be relevant in this respect.
In view of the longstanding yet unsolved problem of constructing superma-
trix models which differ non-trivially from bosonic ones, the knowledge of
the super tau function might be an important advance. In order to derive
the complete tau function it is clearly necessary to know both bosonic and
fermionic flows, leading us again to the topic of fermionic flows.

The present paper addresses both above-stated problems. In section
2 we construct an infinite class of fermionic flows of the N=(1|1) super-
symmetric Toda lattice hierarchy and derive their algebraic structure. In
section 3 we present the general solution of its reduction — the N=(1/1)
semi-infinite Toda lattice hierarchy —, and derive a superdeterminant rep-
resentation for its tau function. We also analyze the tau function of the
semi-infinite N=(1]1) Toda chain hierarchy and discuss its bosonic limit.

2. Fermionic flows of the N=(1|1) Toda lattice hierarchy. In this
section we construct an infinite class of fermionic flows of the N=(1|1) su-
perconformal Toda lattice hierarchy and produce their algebraic structure.

Our starting point is the N=(1|1) supersymmetric generalization of the
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Darboux transformation [1], -

u = = ., b= v(D_D+1nv—uv) ; (1)
v .
where u = u;(z*,0%;27,0- ) and v = vJ(zf,9+;zf,9_) are bosonic
N=(1]1) superﬁelds deﬁned on the lattice, 7 € Z, and Dy are the N=1
supersymmetric fermionic covarlant derlyatlves
| D, = 9 0= — 9
£ = gt o z
{Dy,D-} =0 . . (2)

To simplify our formulae, we use the following convenient notation:

)
H-M

I R
=a—;,’;ai7

— «~k : = k—
U = uJ+1 u = Uj+k > . U = Uj-1 . U. = Ujk (3)

—_ H

Equations (1) are invariant under global U(1) 1) transformations which rotate
the superfields u and v in opposite directions. The composite superfield .

b=uv . (4).
of length dimension Lo . ‘
b] = -1 (5)
satisfies the N=(1|1) superconformal Toda lattice equation
D.D,lnb=1b5-b . - (6)
For this reason, the hierarchy of equations invariant under’the Da.rbqux
transformation (1) we call the N=(1[1) superconformal Toda lattice hier-
archy. ' ‘
One of the poss1b1e ways of constructing invariant. equations is to solve
a corresponding symmetry equation (6]. In the case under consideration it
reads '
1 ' v 1
—
U=-=V , V=-V+o(DDy(-V)=U—-uV) , (7)
v? v v
where V and U are bosonic functionals of the superfields v and u. Any
particular solution V;, U, generates an evolution system of equations with
a bosonic evolution time %, '
;i—v = V(u,v) , —u = Up(y,v) . (8)

By construction!, this is invariant with respect to the diécrete transfor-
mation (1) and, therefore, belongs to the hierarchy as defined above. In
other words, different solutions of the evolution system (8) (which, actu-

ally, are given by pairs of superfields {‘Ek, ‘ﬂk} with different values for k)
are related by the discrete Darboux transformation (1). Altogether, in-
variant evolution systems form a differential hierarchy, i.e. a hierarchy of
equations involving only superfields at a single lattice point?. In contrast,
the discrete lattice shift (the Darboux transformation), when added to the -
differential hierarchy, generates the discrete N=(1|1) superconformal Toda
lattice hierarchy. Thus, the discrete hierarchy appears as a collection of an
infinite number of isomorphic differential hierarchies [7].

The symmetry equation (7) represents a complicated nonlinear func-
tional equation, and its general solution is not known. For a more complete
understanding of the hierarchy structure and its solutions (tau function) it
seems necessary to know as many solutions of eq. (7) as possible. Ref. (1]
addressed this problem and derived a wide class of bosonic solutions. How-
ever, supersymmetry suggests that eq. (7) possesses fermionic solutions as
well, and that they are responsible for fermionic flows of the hierarchy. It
turns out that such solutions do in fact exist. We shall demonstrate that
the framework developed in (1] contains a hidden possibility for generatmg
fermionic flows.

To explain this observation, we briefly review the approach of ref. [1].

First, the functionals V and U are consistently represented in terms of
a single bosonic functional g,

V = —vag , U=ugy , (9)
in terms of which the symmetry equation (7) becomes
—
D_Dyoq = b(o@m— o) + blxg — @) (10)

where the superfield b is defined by eq. (4) and constrained by eq. (6).

1Tet us recall that eq. (7) is just a result of differentiating eq. (1) with respect to
the evolution time ¢,,.

2In the case of the one- (two-) dimensional bosonic Toda lattice the differential
hierarchy coincides with the Nonlinear Schrédinger (Davey-Stewartson) hierarchy [7, 8,
2).



Second, the following recursive chain of substitutions is introduced:

+ _ A‘—(P+1) - » ‘
ap = £DF'( b o,y + (-1)Pbdy,,), p=0,1,2,.., (11)

w'here aén) (a(i2n +1)) are new bosonic (fermionic) functionals of length
dimensions related as o

1
o] = [a(i())]+P ) [q2p-1)] = [a(i())]-fp—i . (12)

Substituting the functional a(io) in terms of a(il) into eq. (10), the latter
reads

' + + ~1,52 _1,522 -t
Repeating the same procedure applied to the functional a(il), i.e. substi-
tuting ofj, in terms of af;) into eq. (13), the resulting equation for af)
takes the following form: '

+«3 2
+Dsof + o, D7 (b — b+ b —b) =
1,532 — «2 +
DI (b o) = bogy + bofsy ~bag) - (14)

Next, the equation for a(ﬁ) emerges,
4 — 3
F¥Diaf +a5 DI (b — b+ b —b) =
1 —4 = 4 <3 e
D (b ag + bafs) — baj —bag) (15)
and so on.

. We now analyze the solutions of the equations arising in this iterative
process. It turns out that, at any given p, those equations possess very
simple solutions for a?;p) which, however, translate to very non-trivial so-
lutions for the functional a(io) via relations (11). In turn, a(io) yields flows
via egs. (8), (9). '

Let us start from the equations for the bosonic functionals a(*zp). They
admit the solutions [1]

andthe ‘tecursive' procedure may be interripted at every even step-(for

the particular case of p=1 this solution can be seen from eq. (14)). The

corresponding a(io), being expressed in terms of a(ﬂ;,p) (16) via relations (11),

generates the p-th bosonic flow of the hierarchy

a—tp;’) = TVQg > 5—1‘,;,5 = Ul = Lyl = '—[a(o)] =D
(17)

where we have used egs. (8), (9), (12), and (16). Although this a(io) depends

on all superﬁelds\‘?)k—a.nd & with 0 < k < 2p, by using eq. (1) it can be
expressed completely in terms of the superfields » and v ‘without arrows.
In this way the differential hierarchy of bosonic flows (17) is generated (see
the discussion after eq. (8)). For illustration, we present the first two [1]:

é—tITU =v , ﬁu =u , (]_8)
O 4 = 432 -2(Dyv)D"'
gl = +04v ~ 2(D1v)DZ 04 (uv) +
2uD! [6+ (vDyu) + 2uvDZ'0, (uv)] ,
O w= —Fu-2 DZ'a
5{5“ = —0,u~2(D4u)DI'0; (w) +
2uD~' [0, (uDyv) — 2uwDZ'0, (wv)| . (19)

Concerning egs. (13) and (15) for the fermionic functionals aﬁ) and afg),
respectively, simple inspection shows that they do not allow for constant
Grassmann-odd solutions. Due to this reason ref. [1] concluded that the
recursive procedure cannot be interrupted at an odd step, in distinction
to the case of the bosonic Toda lattice [2]. As a crucial consequence of
this conclusion there is no place for fermionic flows, at least not in the.
framework of this iteration procedure. '

However, there is a subtle point in this argument, and we are going to
revise the conclusion. The argument overlooks the possibility of solutions
which are superfield-independent lattice functions. Indeed, we find the
following solutions of egs. (10) and (11):

aép—l) = Te , [a(:gp—l)] =0, (20)



where ¢ is a dimensionless fermionic constant and Z is the 51mp1e dimen-
sionless bosonic lattice function - oo :

I=(¢y. . @
- which takes only two values, +1 or —1, and possesses the followmg obvious
properties:
— —

I=1=-I ad I'=1, o (22)

Therefore, as in the bosonie case, the recursive procedure can be inter-
rupted here as well at every odd step. It remains to show how fermionic
flows originate from this background.

- This goal in mind, let us represent the bosomc time derivative entering
eq. (8) in the following form:

0 0
=V = € , (23)
Ot, 09,

defining a fermionic time-derivative z5-. Then, eq. (8) becomes

e———a v = —voi I
1
["9;:] = —[a(%)] =pP-3 A (24)

where a5, should be expressed in terms of a(2p 1y (20) via relations (11),
and egs. (9), (12) and (20) have been exploited to arrive at egs. (24).
The fermionic constant ¢ enters linearly on both sides of egs. (24), hence
the fermionic flows 3%; actually do not depend on e. In this context we
remark that ¢ is an artificial parameter, which need not be introduced at
all. However, without € it is necessary to consider the quantities 2p, V, Up,
a(iz,n) ( a(iz,n +1) ) entering egs. (8), (11) as fermionic (bosonic) ones from the
- beginning. Of course, at the end of the analysis one arrives at the same
result (24).

Using egs. (24), (20) and (11) for the fermionic flows, we elaborate the
first two of them,
0

_ 0 _
I%?v = —D, v+ 2vD~'(uv), 1551?“ = —D,u~—2uD~}(uv), (25)

I_a_v = ‘_D+8+v + 2(6+v) (uv) + . h

619+
Coe “(Dm)DI‘vD{(uv)‘ +uD7! [u6'+v +(Dsv)Dyy),
| ‘133“““ = +D+8+u + 2(8+u)D_. uu) + |

(D+u)D 1D+(uv)+uD [v6+u+(D+u)D+v] (26)

Let us note that the two, dlfferentlal hlerarchles arlsmg for the two dlffer—
ent values of Z (+1 or —1) are actually isomorphic. Indeed, one can easily
see that they are related by the standard automorphism which changes the
sign of all Grassmann numbers. Thus, in distinction to the bosonic Toda
lattice, where the Darboux transformatlon does not change the direction of
evolution times in the differential hierarchy (8), its supersymmetric coun-
terpart (1) reverses the sign of fermionic times in the differential hierarchy.
This supersymmetric peculiarity has no effect on the property that the
supersymmetric discrete hierarchy is a collectlon of isomorphic differential
hierarchies like in the bosonic case®.

The flows === 5 0-

and 3 2 can easily be derived by applymg the invariance
transformatlons -

of the N= (1|1) supersymmetry algebra (2) and egs. (1), (6) and (10) to
the flows ——_F (25)-(26) and —¢ (18)-(19), respectively, but we do not write
them down here

Usmg the explicit expressions for the bosonic and fermionic flows. con-
structed here, one can calculate their algebra

o . 8\ _ ) I R
(e oo} = a0 laop o) =00
a. 8 8, .10 087 _ 18 9
[atk’at]= [E)F’&f]_ [at ’619]2 [Ekf’aﬂ*] =0.(28).

- 3For the one-dimensional bosonic Toda lattice hierarchy the isomorphism which re-
lates the differential hierarchies is trivial because they are identical copies of the single
Nonlinear Schrédinger hierarchy [7].



This algebra coincides with the one used in [9, 10], where the super Toda
lattice (STL) hierarchy has been expressed as a system of infinitely many
equations for infinitely many superfields. Our formulation involves only
two independent superfields (v and u). From the point of view of the
former approach this corresponds to extracting those STL hierarchy equa-
tions which can be realized in terms of the superfields-v-and u alone after
excluding all other superfields of the STL hierarchy. Keeping in mind this
correspondence it is quite natural to suppose that the algebra (28) is not
only valid for the flows (18), (19), (25)-(27) for which it was in fact calcu-
lated, but for all the other flows as well. If this is the case, egs. (28) may
be realized in the superspace {t{,67;tx,6% }, '

J

a g =
- = o 0:1: . , . 29
sy =~ ar X% aE (29)

which is used in what follows. Here, 8 and 6; are abelian fermionic
evolution times with the dimensions

6] = k- (30)

|

In closing this section we only mention that the flows and their algebras
(2) and (28) admit a consistent reduction to a one-dimensional subspace
by setting

As a result, the N=(1|1) supersymmetric Toda chain hierarchy arises, but
its detailed description is beyond the scope of the present work.

3. The tau function of the semi-infinite N=(1|1) superconformal
Toda lattice.

For the case of the semi-infinite hierarchy, i.e. for the hierarchy inter-
rupted from the left by the boundary condition

U1 = 0 ) (32)

the bosonic and fermionic flows for the remaining boundary superfield v_,
have the extremely simple form*,

0. 1 0
6_19,‘:{’”_1 = —'Diai l’U_l and Ftk:'v—l = 6;’”—1 ’ (33)

and can easily be solved. These equations are consistent with the algebra
(28), and in its realization (29) their general solution is

V-1 = /(Hd/\adﬂa) (P(/\+,/\—,77+“0+,77——0—) x
a=%

exp Y [(z°—na8")ha + Y (t-+7a08)AE] (34)
a=%" k=1

where ¢ is an arbitrary function of bosonic (A+) and fermionic (n+) spectral
parameters with dimensions

Ml = -1, =5 - (39)

Let us construct the general solution for the superfields %’ and %’ at
s > 0. This can be done by expressing them in terms of the boundary
superfield v_; (34) via egs. (1) through an obvious iterative procedure,

AR 1 ey “(D_DyIn

= P -WY), s>-1 .(36)

v
We have explicitly checked for the next few values of s that the resulting
expressions, obtained by iteration of eq. (36), convert to the following nice
form:

T T
Upy = +(—1)"i , Uggtl = +(-—-1)3_i(‘3+_1)_ ,
Tas+1 Tas+1
T9g— T _:
upy = —(=1)'—2L | wgey = —(-1)22 (37)
T2(s-1) Tas

4To derive these equations it is only necessary to take into account the U(1) invari-
ance of the flows (consequently, only linear equations for v_, are admissible at u_; = 0),
the dimensions (17) and (30) of bosonic and fermionic times and the algebra (28).



where the 7, are®’ r A
gdn  OLomD_m

‘ 651.,.7:'53
858’ D1y 80™DyD_1 )

= —U~.1 Tos =:“sdet<

; )
/ 0<k,m<s—1

oo  amD_m )°<fa'<’

6"3’ D+‘TQ 6 6 D+D To 38)

T-1 = 1 s T23+1 ;sdet(
N o 0<km<ss.

The supermatrlces in eqs (38) can be embedded mto a single supermatrix

(D” D 'ro) ' (39)

0<p,g<N

wrth the obvious. correspondence These formulae are plausibly valid for
any value of s.

. Substituting egs. (37).in to egs. (1) one obtains the following equation
for 7,: S

} —1)®
p_D,mr, = ~(22)7 (40)
= Ts+1

Thus, we see that the general solution (37) of all equations belonging to
the semi-infinite- N=(1|1) Toda lattice hierarchy can be expressed in terms
of the single lattice function 7, depending via 79 on all hierarchy times. In
this respect we can tréat 7, as the tau function of the hierarchy. Moreover,
this identification is supported by the fact that the 7, (38) are in agreement
with a more general expression for the tau function of the STL hierarchy
discussed in [9].

- Tt is an established fact by now that the tau function of the semi-infinite
bosonic Toda chain hierarchy (restricted by the Virasoro constraints) re-
produces the partition function of the one-matrix model, which defines two-
dimensional minimal conformal matter interacting with two-dimensional
quantum gravity (for review, see e:g. [4, 5] and references therein). In this
~ context we are led to consider the reduction (31) of the tau function (38),
(34), and obtain ‘the tau function of the N=(1[1) supersymmetric Toda
chain hierarchy. The latter may be relevant for attacking the old yet un-
solved problem of constructing non-trivial supersymmetric matrix and/or

5The superdeterminant i»s‘deﬁne'd‘ as  sdet ( g » 11; ) =
det(A — BD~1C)(det D)~1.
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elgenvalue models [11 '12]. ‘The reductlon can be done rather stralghtfor-
wardly, and we present the resu]tmg formu]ae w1thout any comments o

od t( al+17—0 a'+mD,_.T0 0<i,j<s -
Tos = .
vz’ o e ak_tJD_{,To 8"?‘;’":D+D._To )OSk,mSS—l
) . ’—: ; 61+JT0 .. a¢+mD “To Osi;jSa . N
’T2s'+1 »—’ edet( ak+JD+7-0 alc+mD+D To )oglc,mgs L ,,(41‘)_
where » 1 , ' |
ro = = [dXdn, di p(\n,~0,,1.-0_) x
exp [ z— Z N8\ + Z et Y Tal )/\k] (42)
k=1 a=%
It is also instructive to discuss their bosonic limit which looks as -
A 7 [1(A)]
7-23, = A 3 T: 3 = SV 2 . 43
0 0 T ) )

Here, the vertical line means that all fermlonlc quantltles entermg T, are
put equal to zero, :

d 0

) = (550 0) 000 L ;) = ¥ p(1,00) , (49)

and 77 [p())] denotes the tau function of the bosonic semi-infinite Toda
chain hierarchy with a spectral density p(A). The functions 77 can be’
represented in a determinant, eigenvalue mtegral or matrix 1ntegra] form
[4, 3],

TST,[p(/\)J _ det<aI+J /d/\ p()) exp {IL‘/\ + zt’”\"})

w /(o) (1

/dM exp Tr[zM + > teM* +1n p(M)] , (45)
k=1

(Ai=A;j) ) expz,:[:v/\,- + f:tk/\f +1np(/\i)]
i=1 k=1

i>j=1

11



where M is an s X s hermitean matrix. It would be very.interesting to find.

similar representations (if they ex1st) for the supersymmetric tau function
7, (41), but we postpone a discussion of this rather non-trivial problem for
future publications. :

The form of the bosonic limit (43) of the tau function is not unexpected
because the N=(1|1) Toda lattice equation (6) then reduces to the direct
sum of two bosonic Toda lattice equations with opposite signatures of their
kinetic terms. In egs. (43) this property is in fact reflected by the appear-
ance of two Toda tau functions raised to opposite powers. Furthermore,
supersymmetry fixes the relative dimensions of their spectral densities,

PO = [ +1 (46)

as one can see from egs. (44) and (35). If, in addition, we require scaling
invariance (meaning that only dimensionless constants are allowed) the
spectral densities are forced to obey

p2(A) = Ap(A) (47)

modulo an inessential dlmensmnless factor. It i isa rather curlous fact that
the two choices

{ a=1, mW=2 } o { m»=§ P =1 }@s)

yield the partition functions of the one-matrix model (p = 1) and the
one of the generalized Penner model (Inp = £1n ) [13]. In closing we
would like to refer also to recent interesting work [14], where a Berezinian
construction and similar bosonic limits have been derived in the context
of the reduced Manin-Radul N=1 supersymmetric KP hierarchy.

4. Conclusion. In this work we have derived an infinite class of fermionic
flows for the N=(1|1) superconformal Toda lattice hierarchy, which are
given by egs. (24), (20) and (11). Their algebraic structure (28) has been
produced as well. Further, we have constructed the general solution of
the semi-infinite N=(1|1) Toda lattice hierarchy and proposed an explicit
expression (38) for its tau function in a superdeterminant form. Finally
we have obtained the reduced tau function (41) which corresponds to the
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semi-infinite N=(1|1) Toda chain hierarchy. It was seen to have the ap-
propriate bosonic limit and may be releva.nt for discovering non-trivial
supersymmetric matrix models.

Acknowledgments. We would like to thank H. Aratyn, L. Bonora, F.
Delduc, V. Kazakov and A.N. Leznov for their interest in our activity and
for useful discussions. This work was partially supported by the Russian
Foundation for Basic Research, Grant No. 96-02-17634, RFBR-DFG Grant
No. 96-02-00180 and by INTAS grants INTAS-93-127-ext. and INTAS-96-
0538.

References

[1] A.N. Leznov and A.S. Sorin, Two-dimensional superintegrable map-
pings and integrable hierarchies in the (2|2) superspace, Phys. Lett.
B389 (1996) 494, hep-th/9608166;

Integrable mappings and hierarchies in the (2|2) superspace,
Nucl. Phys. (Proc. Suppl.) B56 (1997) 258.

[2] V.B. Derjagin, A.N. Leznov and E.A. Yuzbashyan, Two-dimensional
integrable mappings and ezplicit form of equations of (1+2)-
dimensional hierarchies of integrable systems,

THEP-95-26, MPI 96-39 (1996).

(3] L. Bonora, Two-matriz models, W-algebras and 2D gravity, SISSA-
ISAS-170/94/EP.

(4] A. Morozov, Matriz models as integrable systems, hep-th/9502091.

[5] H. Aratyn, E. Nissimov and S. Pacheva, Constrained KP hierarchies:
additional symmetries, Darbouz-Backlund solutzons and relations to

multi-matriz models,
Int. J. Mod. Phys. A12 (1997) 1265, hep-th/9607234.

[6] A.N. Leznov, The new look on the theory of integrable systems, Phys-
ica D87 (1995) 48;

13



D.B. Fairlie and A.N. Leznov, The integrable mapping as the dis-
crete group of inner symmetry of zntegmble systems, Phys Lett. A199
(1995) 36Q, hep-th/9305050.

(7] L. Bonora and C.S. Xiong, An alternative approach to KP hierarchy
in matriz models, Phys. Lett. B285 (1992) 191, hep-th/9204019;
Matriz models without scaling limit, Int. J. Mod Phys. A8 (1993)
2973, hep-th/9209041. ,

[8] A.N. Leznov, A.B. Shabat and R.IL Yamilov, Canonical transforma-
tions generated by shifts in nonlinear lattices, Phys. Lett. A174 (1993)
. 397.

[9] K. Ikeda, A supersymmetric extension of the Toda lattice hierarchy,
Lett. Math. Phys. 14 (1987) 321.

[10] K. Takasaki, Differential algebras and D-modules in super Toda lattice
hierarchy,
“Lett. Math. Phys. 19 (1990) 229.

(11] L. Alvarez-Gaumé, H. Itoyama, J.L. Mafies and A. Zadra, Superloop
equations and two dimensional supergravity, Int. J. Mod. Phys. A7
(1992) 5337, hep-th/9112018.

[12] J. Plefka, Supersymmetric generalizations of matriz models, PhD the-
sis, hep-th/9601041;
Iterative solution of the supereigenvalue model,
Nucl. Phys. B444 (1995) 333, hep-th/9501120. .

[13] R.C. Penner, J. Diff. Geom. 27 (1988) 35.

[14] H. Aratyn, E. Nissimov and S. Pacheva,
Berezinian construction of super-solitons in supersymmetric con-
strained KP hierarchies, solv-int/9808004;
Supersymmetric KP hierarchy: “ghost” symmetry structure, reduc-
tions and Darbouz-Bdicklund solutions, solv-int/9801021.

Received by Publishing Department
on October 19, 1998.

14
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@DepMHOHHBIE MTOTOKH H Tay-pyHKIHA N = (1[ 1)
cynepKoH(OpMHOH pewieTouHoi Hepapxuu Tonsl

IMoctpoeH GeckoHeYHBIH Klace (hepMHUOHHBIX NOTOKOB w1 N = (1|l) CYTIepKOH-
thopmioi peiieroyHoii nepapxun Tonbi 1 H3ydeHa ux anreOpanueckas CTPyKTypa.
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