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This report is based on the works fulfilled together 
with Professor I M.I.Podgoretsky ·., [1,2]. 

1. INTRODUCTION. 
NONFACTORIZABLE TWO-PARTICLE STATES 

Spin correlations in two-particle quantu111 systems, which will be discussed, 
are related to the important class of interference correlations that arise when t)le 
two-particle wave function. is not reduced to the simple product of· one-particle 
wave functions. It can be represented only as a sum of products of one-particle 
wave functions.· Thus, we will consider nonfactorizable two-particle states. which 
are the coherent·'superpositions of pairs of one-particle states: 

I <l>)(l,Z) = L L cik I i)(l) I ki2>, 
i k 

where cik are constants, L L I c) 2 = I. · 
k 

(1) 

If a two-particle system itself is a part of a more complicated system, which 
is described by the two-particle density matrix, the nonfactorizability means that 
this density matrix is not reduced to the direct product of one-particle density 
matrices, it can be represented only as a sum of such products: 

p(l,Z) = L L bik pp>® pf>, <2) 

i k 

where the symbol ® denotes the direct product of matrices, L L bik = 1. 
i k 

Generally, correlations at the registration of nonfactorizable two-particle 
states by one-particle detectors should be considered as the manifestation of the 
quantum mechanical effect predicted, at first, by Einstein, Podolsky, and Rosen 
[3]. The essence of this effect is as follows. If the two-particle state is not factori­
zable, the character of measurements performed for the first particle determines 
the readings of the detector that analyzes the state of the second particle, although 
both the particles may prove to be at a large distance after their creation. In this 
case the amplitude of the registration of a two~particle state (1) by two one-



:L 

particle detectors, selecting the states I L)(l) and I M}<2>, is a result of the inter-
ference of pairs of one-particle states: · 

AIM= L L cik (LI zi1
> (MI ki2>. (3) 

i k 
With this, due to the correlations, the selection of different states I L)(l) and 

I M}(l) only f~r the first parti~le. leads to the different states of the second particle: 

lo/)f> = L L cik (Lli) lkf>, 
i k 

lo/)i> = L L cik (Mli) lk)<2>. (4) 
i k 

. Let us note that the states I o/)f> and I o/)i> can be the eigenfunctions of 

noncommuting operators. As a result, in the presence of the correlations the one­
particle state is not pure, and it should be described by the density matrix but not 
by the wave function. We deal with the «management» by the state of one of two 
particles without the direct force action on it. A.Einstein considered this situation 
as a paradox testifying to the incompleteness of the quantum-mechanical descrip­
tion [3]. Now it is clear that here we have the correlation effect connected with 
coherent properties of quantum-mechanical superpositions. The properties of 

K°K 0-pairs provide an impressive example: the registration of one of two neutral 
kaons at its decay or its interaction determines the internal state of the second 
kaon [4-7]. The polarization correlations, which are discussed in this report, are 
from the same group of phenomena. It should be emphasized that precisely in 
these cases the so-called Bell inequalities are violated. These inequalities were 
derived at the probability level without taking into account the coherent properties 
of the quantum-mechanical superpositions [8-10]. 

2. TWO-PARTICLE DENSITY MATRIX 
AND SPIN CORRELA TIO NS 

For two spin-1/2 particles, the spin density m<:1trix with the sum of diagonal 
elements («trace») 

tr(l,2) p~l,2) = l (5) 

· has the following general structure [2]: 

1/\ /\ /\ /\ /\ 
p(l,2) = 4 [/ (l) ® / (2) + (a(l)p l) ® / (2) + / (1) ® (8,(2)p 2) + 

3 3 

+ L L Tik &?> ® &f>1. . (6) 
i=l k=l 

2 

H /\/ . h . . /\ { /\ /\ /\ } . th P 1· ere ts t e two-row umt matnx, a= al' cr2, cr3 1s e au 1 vector opera-

tor, P
1 

= (8,(1)) and P
2 

= (8-<2>) ~e the p~larization vectors, Tik =(&~I)® &i2)) is 

the correlation tensor. The corresponding one-particle matrices contain the polari­
zation vectors only: 

A(l) 1 /\ /\ 
p = 2 (/ + aP l ), 

1 /\ /\ 
/\(2) __ (/ + aP

2
). p -2 

In the absence of correlations the factorization takes place: 

T = p p p/\(1,2) = p/\(1) ,o,. p/\(2) 
ik li2k' ,o,. 

(7) 

(8) 

Let two analyzers select the states of the first and the second particles with 

the polarization vectors ~(I) and ~<2>. Then the detection probability depends 
linearly on polarization parameters of the two-particle system as well as on the 
final polarization parameters.fixed by detectors, and it can be obtained by the 

replacement of the II1atrices .&~l) and &i2> in the expression (6) with the spin 

projections ~~I) anct~i2>, respectively. As a result 

w = ¼ [ / + Plt;<O + P21;(2) +,t· .t r,. si> !fl l (9) 

Let only the polarization vector ~(I) of the first particle be measured. Then, 
due to the correlations, the spin state of the second particle, produced together 
with the first one, is described by the normalized density matrix 

s (2) =½(I + i;<I)pl)-1 [ (I + i;<01'i) / + crP2 +,ti .t r,. q1i &, ] · (10) 

In this case the polarization vector of the second particle has the components 
3 
~ y(l) 

p2k+ ~ Tik ~i 

~ (2) = i = l (11) 
k · 1 + r(l) p 

~ l 

In the case of independent particles, when the factorization takes place, the 
detection of spin state of the first particle does not influence the polarization of 

the second particle: ~ (I) = P 2. 

The situation is of interest when both the polarization vectors P 1 and P 2 equal 

zero, i.e., one-particle states are unpolarized. Then spin effects are completely 
determined by the correlation tensor Tik' and in accordance with Eq.(11) · 
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3 
r (2) ~ 'X' T -r< I) 
'=>k , - £.., ik ':if . 

i = I ,. . 

(1:2_~ 

. ~' . 

If the one-particle states are unpolarized and the spin correlations are absent, 

then ~ <2> = 0 at any selection of the vector e;< 1>. 

3. THE SECONDARY SCATTERING 
AS THE ANALYZER OF THE SPIN POLARIZATION 

It is known that the scattering of a particle with spin I /2 on. a spin less or 
unpolarized target selects the states with the spin projections along the normal to 
the scattering plane. 

Let the events of_secondary scattering of two created particles with momen_ta 
p1 and p2 through the angles 01 and 02 play the role of spin analyzers. Then the 

final polarization vectors in Eq.(9) appear as the analyzing powers: 

r(I) _ (2) _ 
..., - a 1(p1, 01) n, l; - az<p2, 02) m. (13) 

Here n and m are the unit vectors along the normals to the scattering planes, 
a 1 and a 2 are the left-right azimuthal asymmetry factors, which equal zero at zero 

scattering angles. According to the Wolfenstein theorem [11,12], _the analyzing 
power coincides with the polarization vector that arises as a result of scattering of 
the unpolarized particle on the same target. Taking into account Eq.(9), the proba­
bility of the simultaneous detection of two particles, produced in the same colli­
sion, after their scattering events is proportional to the quantity 

W(n, m) = 1 + a 1(pl' 01) (P 1n) + az<p2, 0
2
) (P

2
m) + 

3 3 

+ a1(Pp 81) az<p2, 82) L L ~k mi mk · 

i = I k = I 
(14) 

The formula (14) describes the correlation of the scattering planes. 
Let two unpolarized particles be produced in the same nuclear collision, and 

subsequently one of them is scattered on a spinless or unpolarized target. Then the 
spin correlation results in the polarization of the other (unscattered) particle 
created together with the scattered one in the same collision event: 

3 
-(2) - ~ 
t;k - a1CP1, 81) £.., Tik n; · 0 5) 

k= I 

This phenomenon makes it possible, in principle, to prepare particle beams 
with regulated spin polarization without acting directly on the particles to be 
polarized. 
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4. POLARIZATION CORRELATIONS 
IN THE SINGLET AND TRIPLET STATES 

I ,,:.-· ' 

.: _ a)_ i;~~ internal state of!h~ sys.t~1!1 ?f t)".'O ~p}n-1 / 2 . p~rt!cle_s, »'.Ltp. t,otal spin 
S = O; or the singlet state, is the typical example· of nonfactorizable two-particle 
states. It is described by the spin·wave function ;.,. ' 

l'P>s- =),cl+ 112>0 > I- 112><
2
>- I- 1/2>0 > I+ 112><

2
>). 

- 0 -v2 z z z z 
(16) 

In the singlet state the spins are rigidly correlated: the spin projections, equal­
ling + 1 /2 and .:... 1 /2; are opposite for any choice of the quantization axis z, 
while the polarization vector of each of the particles is equal to zero. In this case 
the spin two-particle density matrix has the form, 

1 " " p<s) = 
4 

[/ (I) © / (2) _ &O> © &<2>]. (17) 

This corresponds to the polarization parameters 

pl= p2 = O, Tik = - Oik (18) 

in the general expression (6). 
In accordance with Eqs.(15) and (18), if one of two particles, produced in the 

singlet state, is scattered on a spinless or unpolarized target, and it acquires, as a 
result of scattering, the polarization 

e;<n = a(p, 0) n 

along the normal n to the scattering plane (In I = 1), the second (unscattered) 
particle, created together with the scattered one, acquires the opposite polarization 
depending on the scattering angle: 

e <2> = -t;<I) = - a(p, 0) n, (19) 

where a(p, 0) is the left-right asymmetry factor. 
In accordance with Eq.(14), the distribution over the angle <p between the 

secondary ·scattering planes of two particles, produced in the singlet state, has the 
form [1,2] 

W(n, m) = 1 - a 1(pl' 0 1) Uz(P2, 02) cos <p. (20) 

· b) Now let us consider the triplet states (total spin S = 1), which are polarized 
and aligned along the spin quantization axis I( II I = 1). The states with spin pro­
jections onto the axis I equalling + 1, - 1, and 0, respectively, can be represented 
in the form 
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I'¥) = I+ I /2)(l) I+ I /2)<2> + I I I ' I 'i'>_ 1 = I- l /2)\ 1
> I- I ;2f>, 

1'¥)0 =}i-<I+ I/2)l'> l-1/2)l2>+ l-1/2)~1l I+ 1/2)\2
\ (21) 

We denote the corresponding occupaiicies as W+' W_, and W
0

. The two-par­

ticle spin density matrix is described by the expression 

P/\(1,2) = W pl\ + W pl\ + W pl\ 
++ -- 00' 

(22) 

where W+ + W_ + W0 = I, and 

JA /\ /\ /\ r± = 4 [I 
0 > ® 1 <2> ± c&<1J1) ® 1 <2> ± 1 °> ® c&<2>1) + c&0 >)) ® c&<2>1)1. 

r0 = ¼ [/ 0 > ® '; <2> + &<IJ ® &<2> - 2c&0 >1) ® c&<2>1)1. (23) 

With this, the polarization vectors and the polarization tensor are 

P1 = P2 = (W+ - W_)I, (24) 

T;k = (W+ + w_ - 2w0) 1; lk+ w0o;k. (25) 

If W+ = W_ = W0 = I /3, we have the unpolarized triplet with the density 

matrix 
p<r) = ¾ [/(I) ® / (2) + ½ &O> ® &<2)]. (26) 

In this cai;e 
I 

Tik = 3 Oik. P1 = P2 = 0, (27) 

The following equality is valid: 

l '; (I) ® / (2) = l. p(s) + l p(t) 
4 . 4 4 

(28) 

It shows that in the absence of spin correlations the system of two unpolarized 
particles with spin I /2 is an incoherent mixture of the singlet and triplet states 
with the statistical weights I/ 4 an_d 3 / 4, respectively. 

c) The case of the unpolarized triplet is realized in the peripheric_al breakup 
of an unpolarized deuteron, if the contribution of D-wave is neglected (at low 

· momentum transfer and low excitation energies of the np-system). Due to the spin 

correlation, the events of secondary scattering of protons on the 12C-target lead to 
the preparation of a beam of polarized neutrons produced together with the scat­
tered protons. These neutrons should be polarized along the riormal to th~ scat­
tering plane of protons [1,2]: 
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,-(n) _ ..!_ ,-Jp) = l a (p , 0 ) n, 
., -3., 3 PPP lnl = 1. (29) 

. . . 

Here ~(p) is the analyzing power for the proton. 
The angular correlation of the scattering planes for the proton and neutron, 

produced at the peripherical breakup of an unpolarized deuteron, is described by 
the formula , · 

W(n, lit} = 1 + -
3
1 

a {p , 0 ) a (i> , 9 ) (nm), 
ppp'nnn 

(30) 

where a and a are the left-right asymmetry factors for the proton and neutron, p n . 

respectively. It should be noted that the relations (29) and (30) are valid even with 
taking into account the D-wave contribution, if one performs the averaging over 
the directions of the proton and neutron relative momenta in the deuteron rest 
frame [2]. 

d) Another example is given by the correlations between the polarizations of 

the proton and the 3He nucleus from the reaction 

7t+ + 4He ➔ 3He + p. (31) 

It follows from parity conservation that in this reaction the <3He-p)-system is 
produced in the triplet states, independently of the emission angle [13]. If the 
3He.nucleus or the proton is emitted at the zero angle with respect to the reaction 
axis I( III = 1), then the states with spin projections (+ 1) and (- 1) onto this axis 
are forbidden (due to the conservation of the angular momentum and to the fact 

that the 1t-meson and the 3He nucleus are spinless). Thus, the (3He-p)-system is 
created in the triplet state with the zero spin projection onto the vector I. 

In accordance with Eqs.(24) and (25), in this case (W+ = W_ = 0, W
0 
= 1) the 

one-particle polarizations are zero and the correlation tensor has the form 

Tik = Oik - 21; lk. (32) 

In particular, if the proton is scattered on a spinless or unpolarized target (for 

example, on the 12c nucleus) and the corresponding analyzing power is 

~(p) = <l/Pp' 0~ n, 

where n is the unit vector along the normal to the scattering plane, then the 

unscattered nucleus 3He, created together with the unscattered proton, acquires the 
polarization 

~(He-3) = <l/Pp' 9P) (n - 2(In) I). (33) 

Thus, the polarizatio~ vector ~(He-3) is constructed according to the reflection 

law in the plane (n, I); with this, I ~(He-J) I = I ~(p) I . 
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This can serve as a basis for pr~pari~g a beam ~f polari~ed 3He nuclei without 
acting directly on these nuclei." ,. " ,; ' · · 

....... ~ ~ 
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5. SPIN CORRELATIONS OF TWO IDENTICAL NUCLEONS, 
AT SM;\LL RELATIV:E MOMENTA 

The effect of Bose or Fermi statistics l_eads to the ,correJatipn- of spins of 
identical particles at small relativ~ momenta. T~is is obvio_us due to_ the Jact that 
the total spin S of the system of two identical particles_ and' its orbital angular 
momentum L satisfy the well-known equality [14) · 

(- 1l+ L = I. '(34) 

When the momentum difference q approaches zero,.· states with nonzero 
orbital angular momenta disappear, and only the states with L = 0 · and even total 
spin S remain. As a result, two identical particles with spin 1 /2 (in particular, two 
protons or two neutrons) can be produced only in the singlet state, when the 
relative momentum difference tends to zero [1]. 

At nonzero values of 4-momentum difference q the triplet states (S = 1) of 
two protons or two neutrons are generated in nuclear collisions together -with the 
singlet state (S = 0). The analysis shows that in the framework of the· model of 
independent one-particle sources emitting unpolarized particles, which is used 
usually for the description of the momentum-energy correlations of identical par­
ticles with close momenta [15,16,17], the relative occupancies of the singlet and 
unpolarized triplet states are [2] 

W (s) = ¼ (1 + I F(q) 12 + 2Bi
01

(q)), (35) 

w (t) = ¾ (1 - I F(q) 12), (36) 

where I F(q) 12 is the contribution of Fermi-statistics for noninteracting particles, 
Bi

0
/q) is the contribution of the s-wave final state interaction [ 16, 17). Both the 

quantities depend on space-time parameters of the multiple generation region and 
tend to zero at sufficiently large values of relative momentum q; the function 
F(q) is expressed directly through the space-time distribution of 4-coordinates of 
sources [15,17): · 

F(q) = f W(x) eiqx d 4x, F(0) = 1. (37) 

According to Eqs.(17), (26), (35), and (36), the normalized spin density mat­
rix of two proton~ or two neutrons at small relative momenta has the following 
structure: 

p(l,2) = l'ct(l) ® 1<2) - K ~(i) ® ~(2)], 
4 
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where . . I F(q)l 2 + Biniq) 
K= . 2 • 

2 - I F(q) I + Bint(q) 
(38) 

In ·this situation the ~orrel~tion tensor. is . 

T.k ;; ~ k~.k .. , ,·· 
I • I (39) 

In correspondence with this, at the se·condary scattering of one of two iden­
tical nucleons with the momentum p 1 _ the -other (unscattered) nucleon with the 

momentum p2, which is produced together with the scattered nucleon in the same 

collision event, acquires the polarization 

_r/2> = - Kcx(pl' 01) n (40) 

along the normal to the scattering plane of the first nucleon (In I = 1). The angu­
lar correlation of the scattering planes of two final identical nucleons has the form 

W(n, m) = 1 - cx1(pl' 0
1
) CXz (p

2
, 0

2
) K cos <p. (41) 

Here cx(p, 0) is the left-right azimuthal asymmetry factor, cos q> = nm. 
It should be emphasized that the correlation of the polarizations of two partic­

les with spin 1/2, conditioned by their identity, is maximal for q ➔ 0 (K = I, the 
singlet state). The s-wave interaction of final nucleons intensifies the relative con­
tribution of the singlet [1,2). In the framework of the model of independent one­
particle sources [15-17) spin correlations vanish at sufficiently large q (K = 0). 

6. VIOLATION OF THE BELL INEQUALITIES 
IN THE CASE OF NONFACTORIZABLE TWO-PARTICLE STATES 

The analysis of the correlations between the scattering planes of two particles 
with spin- 1 ( 2 makes it possible to determine the· quantity 

L L Tik ni mk = ((&<l)n) ® (~(2)m)), (42) 
.i k 

which is the average product of the double spin projections.of the first.and second 
particles onto different axes (m and n are the unit vectors), and to verify, .in this 
way, the Bell inequalities [8,9]. These inequalities were obtained at the probability 
level in the framework of the concept of hidden parameters related to the common 
past of particles, separated from each other in space during . the detection. With 
this, the coherent properties of the quantum-mechanical superpositions of two­
particle states were not taken into consideration. One of these inequalities, as 
applied to particles with spin 1 / 2, has the form [ 10] 
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Q = I <ca0 >n> ® ca<2>m>> + <ca0 >n> ® ca<2>m'>> + 

+ <ca0 >n'> ® ca<2>m>> - <<a.0 >n, ® ca<2>m'>> I s 2. (43) 

where n, m, m' and n' are arbitrary unit vectors. In quantum mechanics this in­
equality may be violated. In particular, that happens in the case of the singlet 
state, if the unit vectors are chosen as follows: 

n = m, n'm = m'n = cos. cp,. n'm' = co~ 2cp. 

In accordance with Eqs.(42) and '(17), in the singlet state 

((aO>n) ® (a<2>m)) = - nm. 

7t 
As a result, we have at O < cp < 2 

Q = I - l_ :-- 2 cos cp + cos 2cp I = 2 + 2 cos cp ( 1 - co~ cp) > 2 

.. 

co~trary to the inequality (43). 
It should be stressed that there exists the difference of principle between the 

singlet state in quantum mechanics and the incoherent mixture of two-particle 
states with opposite projections onto axes, distributed isotropically in space. In the 
last case · ' ' 1 

((a0 >n) ® (a<2>m)) = - - nm, 
3 

and the Bell inequality (43) holds. 

7. SUMMARY 

1. The analysis of spin correlations at the detection of nonfactorizable spin 
states of t~o particles with spin 1 /2 is performed. 

2. S_uch correlations are connected with the general quantum-mechanical 
effect predicted by Einstein, Podolsky, and Rosen. Their study allows one to test 
the basic principles of quantum mechanics (in particular, to establish the violation 
of the classical Bell inequalities). 

3. The correlation of spins leads to the angular correlation of the scattering 
planes for two final particles produced in the same event of collision and sub­
sequently scattered on the spinless or ~npolarized targets. 

4. Due to the spin correlations, the· secondary scattering· of one of two un­
polarized particles results in the polarization of· the other (unscattered) particle 
produced in the same collision event. This effect makes it possible, in principle, 
to prepare particle beams with regulated spin polarization without the direct action 
on the particles to be polarized. ·· · 
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5. It is shown that the spins of the \fe nucleus and the proton in the reaction 

1t+ + 
4
He ➔ 3He +pare strongly co~elated. 

6. The effect of Fermi. s{atjstics leads to the spin correlations of two protons 
or two neutrons created with small relative momenta. These polarization corre­
lations depenq on the· space parameters of.the generation region. 

I am grateful toR.J-.ed~icky for useful di~cussi~~s a~d to y.V.Lyubosqitz. for 
the vaiuable assistance in the work. • · · 

This work has been perfonned under the support' of Russian Foundation of 
Fundamental Investigations (Grant No.97-02-16699). · · 
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Jlio6ornm.t B.JI. 
Koppemn.um nom1pH3aUHtt .UByx qacTHU co cnHHOM I /2 
B KOHe'IHOM COCTOJIHHH 

E2-98-274 

AHaJIH3HpYfOTCJI CilHHOBble KOppeJJJIUHH nptt perncTpaUHH HecpaKTOpH3yeMhlX .!lBYX­
'laCTH<iHhlX CilHHOBblX COCTOJIHHH. IloJ1BJ1eHHe TaKHX KoppeJJJIUHH CBJl3aHo C 06IUHM 
KBaHTOBO-MeXaHH'leCKHM 3cpcpeKTOM, npe.UCKa3aHHhlM 3ttHWTettHOM, IlO.!lOJlbCKHM H 

P03eHOM. IlpH HaJIH'IHH CilHHOBblX KOppeJJJIUHH pacceJIHHe 0.!lHOH H3 .!lBYX 11enOJ1llpH30-
BaHHblX KOHe'IHblX 'laCTHU npHBO.!lHT K IlOJJllpH3aUHH .!lPYTOH (HepacceJIHHOtt) 'laCTHUbl. 
3TO .uenaeT B03MO)KHblM npttroTOBJJeHHe nyqKOB 'laCTHU C KOHTpOJJHpyeMOH CilHHOBOH 
IlOJJllpH3aUHett 6e3 npllMOro B03.UettCTBHJI Ha IlOJJllpH3yeMhle 'laCTHUhl. O6cy)K.!lalOTCJI 
oco6eHHOCTH KOppeJJJIUHH B CHHrJJeTHOM tt TpHnJJeTHOM COCTOJIHHJIX .!lBYX qaCTHU co 
CilHHOM I /2. PacCMOTpeHhl KOppeJJJIUHH IlOJJllpH3aUHH .!lBYX TO)K.!lecTBeHHblX HYKJJOHOB 
(npoTOHOB, HettTpOHOB) C MaJiblMH OTHOCHTeJJbHblMH HMilYJJbCaMH H 11ettTpOH-npoTOHHhle 
CilHHOBble KOppeJJJIUHH npH pa3BaJie .uettTpona. IlOKa3aHO, 'ITO CilHHbl KOHe'IHblX 'laCTHU 

B peaKUHH 7t+ + 4He ➔ 3He + p CHJlbHO CKOppenttpOBaHhl. 11ccne.uyioTCJI KOppeJJJIUHH 
IlJIOCKOCTett BTOpH'IHOro pacceJIHHJI .!lBYX 'laCTHU co CilHHOM I /2 11a 6eccnHHOBOH HJIH 
11enOJ1llpH30BaHHOH MHllleHH. 

Pa6orn BblilOJIHeHa B Jla6opaTOpHH BblCOKHX 3Heprntt 0115111. 
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Lyuboshitz V.L. 
Correlations of the Polarizations of Two Particles with Spin I /2 
in the Final State 

E2-98-274 

Spin correlations at the detection of nonfactorizable two-particle spin states are 
analyzed. The appearance of such correlations is connected with the general quantum­
mechanical effect predicted by Einstein, Podolsky, and Rosen. In the presence of the 
spin correlations the scattering of one of two unpolarized final particles results in the 
polarization of the other (unscattered) particle. That makes it possible to prepare particle 
beams with controlled spin polarization without the direct action on the particle to be 
polarized. Specific features of correlations in singlet and triplet states of two particles 
with spin I /2 are discl!ssed. The correlations of the polarizations of two identical 
nucleons (protons, neutrons) with small relative momenta and neutron-proton spin 
correlations at the deuteron breakup are considered. It is shown that the spins of the final 

particles from the reaction 7t+ + 4He ➔ 3He +pare strongly correlated. The correlations 
of the secondary scattering planes for two particles with spin I/ 2, scattered on spinless 
or unpolarized target, are studied. 

The investigation has been performed at the Laboratory of High Energies, JINR. 
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