


( This report is based on the works fulfilled together
" with Professor | M.I Podgoretsky I [1,2].

1. INTRODUCTION.
NONFACTORIZABLE TWO-PARTICLE STATES

. Spin correlations in. two-particle quantum systems, which will be discussed,
are related to the important class of interference correlations that arise when the
two-particle wave function is not reduced to the simple product of one-particle
‘wave functions. It can be represented only as a sum of products of one-particle
wave functions.-Thus, we will consider nonfactorizable two-particle states. which
are the coherent’ superposmons of pairs of one- partlcle states: . :

002-3 5 e 10V, e
. i k

where c;, are constants, 2 2 |ci,;|2 =1."
ik

If a two-particle system itself is a part of a more complicated system, which
is described by the two-particle density. matrix, the nonfactorizability means that
this density matrix is not reduced to the direct product of one-particle density
matrices, it can be represented only as a sum of such products:

6(12) = 2 2 bik 61(1) ® 6(2)’ (2)
ik

where the symbol ® denotes the direct product of matrices, 2 2 bik =1
ik

Generally, correlations at the registration of nonfactorizable two-particle
states by one-particle detectors should be considered as the manifestation of the
quantum mechanical effect predicted, at first, by Einstein, Podolsky, and Rosen
[3]. The essence of this effect is as follows. If the two-particle state is not factori-
zable, the character of measurements performed for the first particle determines
the readings of the detector that analyzes the state of the second particle, although
both the particles may prove to be at a large distance after their creation. In this
case the amplitude of the registration of a two-particle state (1) by two one-
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particle detectors, selecting the states |L)(1) and |M)(2) is a result of the inter-
ference of pairs of one-particle states:

ALM=Z Z ey L1V (1@, €)

With this, due to the correlatlons the’ selection of different states |L)(l) and
IM)(I) only for the first partlcle leads to the dlfferent states of the second partlcle

| ® = 2 2 e L1 1P,
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_Let us note that the states |‘I’)§‘2) and I‘P)ﬁ) can be the eigenfunctions of

noncommuting operators. As a result, in the presence of the correlations the one-
particle state is not pure, and it should be described by the density matrix but not
by the wave function. We deal with the «<management» by the state of one of two
particles without the direct force action on it. ‘A.Einstein considered this situation
as a paradox testifying to the incompleteness of the quantum-mechanical descrip-
tion [3]. Now it is clear that here we have the correlation effect connected with
coherent properties of quantum-mechanical superpositions. The properties of

kx° -pairs provide an impressive example: the registration of one of two neutral
kaons at its decay or its interaction determines the internal state of the second
kaon [4-7]. The polarization correlations, which are discussed in this report, are
from the same group of phenomena. It should be emphasized that precisely in
these cases the so-called Bell inequalities are violated. These inequalities were
derived at the probability level without taking into account the coherent properties
of the quantum-mechanical superpositions [8-10].

2. TWO-PARTICLE DENSITY MATRIX
AND SPIN CORRELATIONS

For two spin-1/2 particles, the spin density matrix with the sum of diagonal
elements («trace»)

ML) 1
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‘has the followmg general structure [2]:
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Here [ is the two-row unit matrix, ¢ = {G|, O, 03} is the Pauli vector opera-

tor, P, = (3'(1)) and P, = (8'(2)) are the pelarization vectors, T, = (3(1) ® 3(2)) is

the correlatron tensor. The correspondmg one- partlcle matrices contam the polarl-
zation vectors only:
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In the absence of correlations the factorization takes place:
T,=P,P,, 6(1,2) = 6(1) ® p(2) 8

Let two analyzers select the states of the first and the second particles with

the polarization vectors C(l) and C(z) Then the detection probability depends
linearly on polarization parameters of the two-particle system as well as on the
final polarlzatlon parameters fixed by detectors, and it can be obtained by the

replacement of the rnatrrces 0(1) and 0(2)‘ in the expressnon 6) w1th the spin

prOJectlons C(l) and C(z) respectlvely As a result

W= [1+P§(1)+P§(2)+2 2 ggl)cf)}.- O

i=1k=1

Let only the uolarization vector Q( ) of the first particle be measured. Then,
due to the correlations, the spin state of the second particle, produced together
with the first one, is descrlbed by the normalized density matrlx

3 .
p@=2+gWp )‘1[<1+c“>P>I+oP +2 2 T, 08 } (10)
i=1k=1 ‘

In this case the polarization vector of the second particle has the components
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In the case of independent patticles, when the factorization takes place, the
detection of spin state of the first particle does not influence the polarization of

the second particle: C(l) =P,
The situation is of interest when both the polarization vectors P, and P, equal

zero, 'i.e., one-particle states are unpolarized. Then spin effects are completely
determined by the correlation tensor Tik’ and in accordance with Eq.(11) -
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I{ t?e one-particle states are unpolariied and the spin correlations are ébs;ent
then § @ -0 at any selection of the vector C(])

3. THE SECONDARY SCATTERING
AS THE ANALYZER OF THE SPIN- POLARIZATION

It i§ known that the scattering of aparticle with spin 1/2 on.a spinless or
unpolarized target selects the states with the spin projections along the normal to
the scattering plane. . _ . '

Let the events of secondary scattering of two created particles:with momcn.ta:
P, and p, through the angles 9l and 92 play the role of spin analyzers. Then the

final polarization vectors in Eq.(9) appear as the analyzing powers:
M- 2 ‘ "
=@, 0)n (P =op,6)m (13)

Here n and m are Fhe unit vectors along the normals to the séattering planes,
o, and o, are the left-right azimuthal asymmetry factors, which equal zero at zero

scattering‘ at}gles. According to the Wolfenstein theorem [11,12], the analyzing
power com(.:ldes with the polarization vector that arises as a result of scatterin g of
the unpolarized particle on the same target. Taking into account Eq.(9), the proba-
bility of the simultaneous detection of two particles, produced in the ’s'ame colli-
sion, after their scattering events is proportional to the quantity

Wi, m) =1+ a(p, 6)) (P;n) + (P, 8,) (P,m) +
3 3

040 8) ), 0,) X 3 T, mm,. (14)
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The formula (14) describes the correlation of the scattering planes.

Let two unpolarized particles be produced in the same nuclear collision, and
su!)sequently.one of them is scattered on a spinless or unpolarized target. Then the
spin correlation results in the polarization of the other (unscattered) particle
created together with the scattered one in the same collision event:

. . 3 N B
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& =P, 6) > Tym;- ' as
. k=1 :
This phenomenon makes it possible, in principle, to prepare particle beams

with regulated spin polarization without acting directly on the particles to be
polarized.

‘4. POLARIZATION CORRELATIONS |
 IN THE SINGLET AND TRIPLET STATES
a) The internal state of the system of two spin-1/2 particles with total spin

states. It is described by ‘the spim"wave function -+ -

§'=0; or the singlet state, is the typicai example of nonfactorizable two-particle

|xy>s=0=%(|+‘f/2)§” [-1/2@ - =170 [+ 1/2®). a6

In the singlet state the spins are rigidly correlated: the spin projections, equal-
ling +1/2 and = 1/2; are opposite for any choice of the quantization axis z,
while the polarization vector of each of the particles is equal to zero. In this case
the spin two-particle density matrix has the form: '

A A
pO= 1V 1?9 -5V 67, -

This corresponds to the polarization parameters
P =P,=0, Ty=-8, (18)

in the general expression‘ (6).
In accordance with Egs.(15) and (18), if one of two particles, produced in the
singlet state, is scattered on a spinless or unpolarized target, and it acquires, as a

result of scattering, the polarization

Q(l) =0o(p, O) n

along the normal n to the scattering plane (|n| = 1), the second (unscattered)
particle, created together with the scattered one, acquires the opposite polarization
depending on the scattering angle: ; :
v R )

(@ =-tW=-op,on, - (19)

where o(p, 0) is the left-right asymmetry factor.

In accordance with Eq.(14), the distribution over the angle @ between the
secondary scattering planes of two particles, produced in the singlet state, has the
form [1,2] - : s : - : '

Lo W, m)=1-o/(p,0) a,p, 8, cos .~ (20

" b) Now let us consider the triplet states (total spin S = 1), which are polarized

and aligned along the spin quantization axis 11l = 1). The states with spin pro-

jections onto the axis 1 equalling + 1, — 1, and 0, respectively, can be represented
in the form
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We deriote the correspondmg occupancres as W W, and W, The two-par-
trcle spin densrty matrix is described by the expresslon ' ’

A1L2) _

. p Wp++Wp +W po, » (22)
where W++ W_+ W0 =1, and

A A ; A A y
B, =% HPVer®: (8‘”1) @11V e @+ 6"y e c®n,
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With this, the polarization vectors and the polarization tensor are

P, =P,=(W, - W)l 4)

=W, +W_-2W) LL+ WS, . (25)
If W =W_=W,=1/3, we have .the unpo]arized triplet with the density

matrix A A e e
6")=ﬂ1“)®1(2)+§3(”®3‘2)]- - 26)

In this case

. 1
P =P,=0, Tik=§5ik' @n
The following equality is valid: ‘
Ly gt [ Aw, 3 Ao -
= ~ 28
®1 APty 4 P (28)

It shows that in the absence of spin correlatrons the system of two unpolarized
particles with spin 1/2 is an incoherent mixture of the singlet and triplet states
with the statistical weights 1/4.and 3 /4, respectively.

" ¢) The case of the unpolarized triplet is realized in the peripherical breakup
of an unpolarized deuteron, if the contribution of D-wave is neglected (at low
“momentum transfer and low excitation energies of the np-system). Due to the spin
correlation, the events of secondary scattering of protons on the I2c. -target lead to
the preparation of a beam of polarized neutrons produced together with the scat-
tered protons. These neutrons should be polarrzed along the normal to the scat-
tering plane of protons [1,2]:

C‘")-—C“’) a®,0yn Inl=1 (29)

Here C(") is the analyzmg power for the proton

The angular correlation of the scattering planes for the proton and neutron,
produced at the perrpherlcal breakup of an unpolarlzed deuteron, is described by
the formula-: :

Wn, m) =1 + (p ep) o (p 6 ) (nm), (30)

where o, and o are th_e left-right asymmetry factors for the proton and neutron,

respectively. It should be noted that the relatidns (29) and (30) are valid even with
taking into account the D-wave contribution, if one performs the averaging over
the directions of the proton and neutron relative momenta in the deuteron rest
frame [2].

d) Another example is given by the correlations between the polarizations of

the proton and the 3He nucleus from the reaction
k "+ ‘He - He + p. 31

It follows from parity conservation that in this reaction the (3He-p)-system is

- produced in the triplet states, independently of the emission angle [13]. If the

3He nucleus or the proton is emitted at the zero angle with respect to the reaction

~axis I( |l| = 1), then the states with spin projections (+ 1) and (- 1) onto this axis

are forbidden (due to the conservation of the angular momentum and to the fact

that the m-meson and the >He nucleus are spinless). Thus, the (3He-p)-system is
created in the triplet state with the zero spin projection onto the vector 1.
In accordance with Eqs.(24) and (25), in this case (W, =W_=0, W, = 1) the

one-particle polarizations are zero and the correlation tensor has the form

Ty =8y =2 1.

In particular, if the proton is scattered on a spinless or unpolarized target (for

(32)

example, on the 12¢ nucleus) and the corresponding analyzing power is
' ® _
¥ =o(p,0)n,

where n is the unit vector along the normal to the scattering plane, then the
unscattered nucleus 3He, created together with the unscattered proton, acquires the
polarization

g3 = (P, 8,) (n - 2(In) D. : - (33)

Thus, the polarizatlon vector cﬂ{c ¥ is constructed according to the reflection
law in the plane (n, I); with this, IC(He'3)| = |C(p) | .
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This can serve as a basis for prépariné a beam of:bolarized 3He nuclei without

acting directly on these nuclei..~1.i ' =

'S, 'SPIN CORRELATIONS OF TWO IDENTICAL NUCLEONS: .:-
AT SMALL RELATIVE. MOMENTA
The effect of Bose-or Fermi.statistics leads-to the -correlation-of spins of
identical particles at small relative momenta. This is obvious due to, the fact that
the total spin S’ of the system of two identical particles and its orbital angular
momentum L satisfy the well-known equality (141 e
~1Sth=1. (34

When the momentum difference g approaches zero,. states with nonzero
orbital angular momenta disappear, and only the states with L = 0'and even total
_spin S remain. As a result, two identical particles with spin 1/2 (in particular, two
protons or two neutrons) can be produced only in the singlet state, when the
relative momentum difference tends to zero [1]. : B

At nonzero values of 4-momentum difference g the triplet states (S-=1)-of
two protons or two neutrons are generated in nuclear collisions together .with the
singlet state (S = 0). The analysis shows that in the framework of the:model of
independent one-particle sources emitting unpolarized particles, which is used
usually for the description of the momentum-energy correlations of identical par-
ticles with close momenta [15,16,17), the relative occupancies of the singlet and
unpolarized triplet states are [2] a :

w =% (1 + |Fg|? + 28, (a)), 89

P

wO=2a- [Fgld, - (36)

where IF(q)l2 is the contribution of Fermi-statistics for noninteracting particles,
Bim(q) is the contribution of the s-wave final state interaction [16,17]). Both the

quantities depend on space-time parameters of the multiple generation region and
tend to zero at sufficiently large values of relative momentum g; the function
F(q) is expressed directly through the space-time distribution of 4-coordinates of

sources [15,17]: ‘ R
F@) =] W ¥ d%,  FO)=1. 1))

According to Eqs.(17),-(26), (35), and (36), the normalized spin density mat-
rix of two protons or two neutrons at small relative momenta has the following

structure: -

A A ,
A1) - % IO eT®_g&hes?),
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where . |F@|2+ B (@)
2- |Fg)l* +B,_(g) o

In this situation the correlation tensor is . -

Tikb=_-‘-k8ikb'“{k;'f“ oo B JPERs

~ In correspondence with this, at the secondary scattering of one of two iden-
tical nucleons with the momentum P, the other (unscattered) nucleon with the
momentum p,, which is produced together__‘wi‘t‘h the scattered nucleon in the same

collision event, acquires the”polarization
@ . :
.Q =-Ko(p,, 6)) n Co (40)

along the’ nﬁor}m}a] to the scattering plane.df the first nucleon (,nl = 1). The angu-
lar correlation of the scattering planes of two final identical nucleons has the form

Wo,m)=1-0,p.0) & @, 6,) Keosg. @I

Here o(p, 6) is the left-right azimuthal asymmetry factor, cos ¢ = nm.

It should be emphasized that the correlation of the polarizations of two partic-
lc?s with spin 1 /2, conditioned by their identity, is maximal for ¢ — 0 (K = 1, the
51'ngle:t state). The s-wave interaction of final nucleons intensifies the relative con-
trlbl.mon of the singlet [1,2]. In the framework of the model of independént one-
particle sources [15~17] spin correlations vanish at sufficiehtly large q (K = 0). ‘

6. VIOLATION OF THE BELL INEQUALITIES
IN THE . CASE OF NONFACTORIZABLE TWO-PARTICLE STATES

. Thf, analysis of the correlations between the scattering planes of two-particles
with spin.1 / 2 makes it possible to determine the quantity :

Y Xrnm=@Pmed®my - @
Ak

whi?h is the average product of the double spin projections.of the first.and second
particles onto different axes (m and n are the unit vectors), and to verify, .in this
way, the Bell inequalities [8,9]. These inequalities were obtained at the probability
level in the framework of the concept of hidden parameters related to the common
pa'st of particles, separated from each other in space during the detection. With
this, the coherent properties of the quantum-mechanical superpositions of two-
particle states were not taken into consideration. One of these inequalities, as
applied to particles with spin 1/2, has the form [10] ,

9



0 = [{EWn) ® GPm)) + (¢Pn) ® @Pm)) + ;_
+{6Vn) ® (S(Z)m)) — (@M ® Pm] <2, (43)

where n, m, m’ and n” are arbltrary unit vectors. In quantum mechanics this in-
equality may be violated. In particular, that happens in the case of the singlet

state, if the unit vectors are chosen as follows:
-

n=m, n'm=mn=cosQ, n'm’ = cos 2.
In accordance with Egs.(42) and (17), in the smglel state

(®n) ® ¢@m) = n

N
As a result, we have at 0 <@ < 5

0= l- 1 — 2 cos @ + cos 29| =.2. + 2 cos @ (1 —cos (P)‘> 2

contrary to the inequality (43).
It should be stressed that there exists the difference of pr1nc1ple between the

singlet state in quantum mechanics and the incoherent mixture of - two-particle
states with opposite projections onto axes, distributed 1sotrop1cally in Space In the

last case - .
(@) @ EPm) = - -31- nm,

and the Bell inequality (43) holds.

7. SUMMARY.

1. The analysis of spin correlatlons at the detection of nonfactorizable spin
states of two particles with spin 1/2 is performed.

2. Such correlations are. connected with the general quantum-mechanical
effect predicted by Einstein, Podolsky, and Rosen. Their study allows.one to test
the basic principles of quantum mechamcs (in particular, to establ1sh the violation
of the classical Bell inequalities).

3. The correlation of spins leads to the angular correlation of the scattering
planes for two final particles produced in the same event of collision and sub-
sequently scattered on the spinless or unpolarized targets.

4. Due to the spin correlations, the secondary scattering ‘of one of two un-
polarized particles results in the polarization of the other (unscattered) particle
produced in the:same collision event. This effect takes it possible, in pr1nc1ple
to prepare particle beams with regulated spin polarization without the direct actlon
on the particles to be polanzed

10

5. It is shown that the spins of the He nucleus and the proton in the reaction

i+ 4He - 3He + p are strongly correlated.

6. The effect of Fermi statistics’ leads to the spin: correlations of two protons
or two neutrons created wrth small relatlve momenta These polarlzatlon corre-
lations depend on the space parameters of the generation reg1on

I am grateful to R Ledmcky for useful dlSCUSSlOI]S and to V.V. Lyuboshltz for
the valuable assistance in the work. .
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JoGoumu B.JI. E2-98-274
Koppensunu nonspusauuii AByx 4actui co crnuHoM 1 /2
B KOHEYHOM COCTOSIHHH

AHanu3MpyTcs CMHHOBBIE KOPPEMSLUMH NPH PerucTpauly He)aKTOPH3YEMbIX ABYX-
YacTHYHBIX CIIHHOBBIX cocTosHMi. [losBneHHe TakuxX Koppensudii cBi3aHO € OOGIUMM
KBAHTOBO-MeXaHHYecKUM 3hdeKToM, MNpeackazaHHbiM DiiHurtelinoM, [logonbckuM H
PozenoM. Ilpu HanHYHM CMMHOBBIX KOPPENAUHH paccesHHe OAHON U3 OBYX HEMOIsSpU30-
BaHHBIX KOHEUHbIX YacTHL MPHBOAHT K MONAPU3ALMH APYTOil (HepaccesHHOM) YacTHLBL.
D10 menaeT BO3MOXHBIM MPUrOTOBJICHHE NMYYKOB YacTHU € KOHTPOIUPYeMOii CIIHHOBOIA
nonapusauneil 6e3 mpaMoro Bo3meHcTBHS Ha nonspusyeMble YacTuubl. O6Gcyxmaiores
0CcOOEHHOCTH KOppensuHid B CHHIJIETHOM M TPHIUVIETHOM COCTOSIHHSX OBYX YacTHULl CO
cniHoM 1 /2. PaccMOTpeHbl KOPPENAUHH ONSAPH3aLiiil IBYX TOXIECTBEHHBIX HYKIOHOB
(pOTOHOB, HEHTPOHOB) C MAIBLIMH OTHOCHTENBHBIMH HMITY/IbCAaMH H HEHTPOH-ITPOTOHHBIE
CMHHOBBIE KOPPENALHH NMPH pa3Bane AciiTpoHa. [loka3aHo, YTO cMHBI KOHEYHBIX YacTHLL
B peakuuu ' + *He — *He + P CHIIBHO ckoppenHposanbl. HMccnenyores koppensunu
NNOcKOCTeH BTOPHYHOTO paccesHHS ABYX HacTHL co cnuHoM 1/2 Ha GeccnHHOBOMH WIH
HErNoNApH30BAHHOH MHILUEHH.

Pa6oTta BrimonneHa B JTaBopatopuu Beicokux 3Hepruit OMSH.

MMpenpuht OGLEAHHEHHOrO HHCTHTYTA AAEPHBIX HccaenoBaHui. [ybHa, 1998

Lyuboshitz V.L. E2-98-274
Correlations of the Polarizations of Two Particles with Spin 1/2
in the Final State

Spin correlations at the detection of nonfactorizable two-particle spin states are
analyzed. The appearance of such correlations is connected with the general quantum-
mechanical effect predicted by Einstein, Podolsky, and Rosen. In the presence of the
spin correlations the scattering of one of two unpolarized final particles results in the
polarization of the other (unscattered) particle. That makes it possible to prepare particle
beams with controlled spin polarization without the direct action on the particle to be
polarized. Specific features of correlations in singlet and triplet states of two particles
with spin 1/2 are discussed. The correlations of the polarizations of two identical
nucleons (protons, neutrons) with small relative momenta and neutron-proton spin
correlations at the deuteron breakup are considered. It is shown that the spins of the final
particles from the reaction ©* + *He — *He + p are strongly correlated. The correlations
of the secondary scattering planes for two particles with spin 1/2, scattered on spinless
or unpolarized target, are studied.

The investigation has been performed at the Laboratory of High Energies, JINR.
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