


1 Introduction

Nuclear reactions with high momentum transfer at relativistic energies present great
source of information for studying the properties of quark and gluon interactions in the
nuclear matter environment. The development of universal approach to the description
of the processes is important for detail understanding of the influence of nuclei on the
physical phenomena underlying secondary particle production. Numerous experimental
data on relativistic nuclear interactions show that the general tendencies are manifested
mostly in the high energy and high transverse momentum g¢,-regions. They reflect
specific characteristics of the elementary constituent interactions. This is especially
actual with connection of the commissions of the large accelerators of hadrons and
nuclei such as Relativistic Heavy Ion Collider (RHIC) at Brookhaven or Large Hadron
Collider (LHC) at CERN [1, 2, 3]. The main physical goal of the investigations on
these machines is to search for quark-gluon plasma (QGP), the hot and superdense
phase of the nuclear matter [4]-{12].

At present there is no single clearly established signature of the QGP. Therefore,
search for new regularities which are sensitive to the nature of phase transition from
hadron to quark-gluon degrees of freedom are of special interest. Up to date, the
investigations of properties of high energy nuclear interactions have revealed widely
known scaling laws. Some of the most popular and famous are the Feynman scaling
[13] for inclusive particle production, y-scaling observed in deep inelastic scattering
on nuclei [14], limiting fragmentation found for nuclei fragmentation [15}, n, scaling
(16, 17], scaling in cumulative particle production {18, 19, 20], KNO scaling [21] and
others. However, detailed experimental study has shown certain violations of these. It
can be connected with the dynamics concerning the transition from the perturbative
QCD quarks and gluons to the observed hadrons.

The inclusive cross section for particle production is considered as possible exper-
imental observable for studying of unusual properties of nuclear matter at extreme
conditions. In limited regions of transverse momenta (g, < 2 GeV/c) the particle spec-

tra are often presented as a function of the transverse mass, my = /g3 +m?* This
is motivated by the experimental fact that the cross section for the production of a
particle is described by the exponential in m, rather than g, [16, 17]. Furthermore,
the shapes of the spectra are similar for different types of particles, when plotted
against m,. Explanations for the 'm)-scaling’ usually assume some form of thermal
equilibrium relating the inverse slope parameter to a temperature [22]. A thermal or
Boltzmann model predicts that the number of particles per unit phase space is given
by @N/dg* ~ exp(—E/T). The T is a temperature of source and the £ is center-of-
mass energy associated with phase volume d¢®. Expressed in terms of the multiplicity,
rapidity and the transverse mass one finds m7'd*N/dm dy ~ m ezp(—my/Ts(y)),
where Tg(y) is whe rapidity dependent Boltzmann temperature. It has been sug-
gested by Hagedorn to present experimental data in terms of invariant cross section
(27m)~'d?s/dm, dy and compare them with the thermal prediction by fitting the
exact expression in soft g; region. Numerous experimental results on particle spectra
measured in pp, pA, and AA collisions at BNL, CERN, and Fermilab {23, 24, 25| in
wide energy and transverse momentum range show that the shapes of the distributions
are not simple exponential in any representation. The deviations from pure exponential
in 7n.-representation are discussed in Refs. (26, 27, 28]. The slope constants that are

used to characterize the spectra depend on particle type, rapidity, centrality and the
energy of the collisions. o B ‘

The common feature of the particle production at, high energy. /s and high trans- -
verse mowentum (g, > 1 GeV/c) indicate the local character of hadron interactions. It
leads to the conclusion about dimensionless of the constituents taking part in the in-
teractions. The fact that the’ interaction is local founds its natural manifestation in -the
scale-invariance of the hadron interactions’ cross sections. ‘The-invariance is ‘an' expres-
sion of self-similarity principle [18, 29]. This principle - reflects -the -dropping of certain
dimensional quantities or parameters out of the physical picture of the processes.
 In the paper we exploit the concept based on'the self-similarity of the elementary
interactions complemented by .considerations about fractal . structure of the colliding:
objects. The ideas are implemented into the construction .of new scaling, the. z-
scaling, for the description of inclusive particle production. in pA - interactions at high

" energies. The scaling was applied for the analysis of pp and. Pp collisions in the’

energy range /5 > 23 GeV in Ref. . [30]. The scaling function H (z) is expressed via
the invariant inclusive cross section Ed%c/dg® and the multiplicity density of charged
particles dN/dn = p(s) produced at the pseudorapidity. 7 = 0. 1t was found that the
H(z) is independent-of colliding energy- /s and angle § of the inclusive particle. In the
case of hadron production the’scaling function H(z) is interpreted. as the probability
to form hadronms with a formation length z =~ The universality of H(z) means that
the hadronization mechanism is of universal nature.” We-suggest that the ‘difference
between the ‘H(z) for pp and/or Ha(z) for pA collisions on one'side and the Hya(2)
for AA’interactions on the other side can’ give definite evidence ‘about the character of
nuclear matter influence. on- the process of particle production. We' propose that the
dependence of H, a4(z) on z_for hadronic and QGP phases of nuclear matter can be
quantitatively distinguished. : : . : SERTEI

The paper is organized as follows. The method of constructing of the scaling func-
tion H4(z) for the p+'A — h+ X process is described in Sec.” II. Some consequences
of the method concerning fractality and scale relativity in particle production are dis-
cussed in the part C. In Sec.. III, we show that the available high energy experimental
data for the pA collisions (A=d, Be, Ti, W) confirm the z-scaling. It is found that
the functions Ha(z) demonstrate energy independence 'and A-universality in the con-
sidered energy region. Thus, besides the pp case, the variable z reflects self-similar
behaviour of particle production in the pA interactions as well. The leading princi-
ple of self-similarity is in agreement with ideas about fractal character of the objects
taking part in the interactions. In Sec. IV, we present physical interpretation of the

scaling function H(z) and the variable z. :
2 General Principles of the 2-Scaling
- We start with the investigation of the inclusive process

M1+M2—+m;+X, (1)

where M, and M are masses of the colliding nuclei (or hadrons) and m, is the mass
of the inclusive particle. In accordance with Stavinsky’s ideas [19] the gross features of
the inclusive particle distributions for the reaction (1) at high energies can be described
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in terms of the corresponding kinematical characteristics of the exclusive subprocess

(l'lMl) + (IzMg) —m; + (lel -+ fL‘zMQ 4+ mg). (2)

The parameter m, is introduced in connection with internal conservation laws (for
isospin, - baryon number, and strangeness). . The z; and z, are the scale-invariant
fractions of the incoming four-momenta P, and P; of the colliding objects. The energy
of the parton subprocess defined as o

5::/2 =y (2, Py + 22 P2)? A (3)

represents the center-of-mass energy of the constituents taking part in the collision. In
accordance with the space-time picture of hadron interactions at the parton level, the
cross section for the production of the inclusive particle is governed by the minimal
energy of colliding partons - ’ ’ :

) dU/dt ~ 1/5,2m~"(1'1,1'2). ) (4)
The corresponding energy 5,‘,{3, is fixed. as minimum of Eq. .(3) which is necessary for
creation of the secondary particle with mass.m, and a four-momentum ¢. In the next,
we present a scheme from which a more general structure of the variables ¢, and
follows.- We would . like to emphasize two main points of this approach. First one is
fractal character of .the parton content of the composite ‘structures involved. Second
one is based on the self-similarity of the mechanism underlying.the particle production
on the level of the elementary constituent interactions.

v

2:1 4 Moinentixm fractions z, and z;

Let us consider the elementary parton-parton collision as a binary subprocess which
is a subject to the condition ’ ) :

(&, Py + 22 Py = Q)% = (&M, + M, + my)?. ‘ (5)
The relationship between z, and z;-can be conveniently written in the form

' T1T2.— T1 A2 —-,1‘2/\1 =X : ‘ (6)
where _ » o
5y = oP2) + Mymy v P9+ Mm; L 05(m3-—mi) ™
(P P) — MiMy’ 2" (PP)-MM;" (PuP2) = MuMy'

Considering ‘the process (2) as a pa.rton—pa.rton collision, we introduce the coefficient
2 which connects kinematical with dynamical characteristics of the interaction. The
coefficient is chosen in the form

Oz, 22) = m(1 — 2,)" (1 — z2), (8)

where m is a,mass constant and &, and §; are factors relating the fractal structure of
the colliding objects. Physical interpretation of the coefficient Q is given in Sec. IV.
We determine the fractions z, and z; in a way to maximize the value of Q(z,,z,),

. dﬂ(.’tl,zg) =v
dI]
sitmultancously fulfilling - the condition (6). This ‘gives

0, : (9)

:L‘1=/\1+le' . .32=’\2+X2’v, - ‘. (10) .
where . )
x1 =yt +wf—w, X2 = \/# +wi +wa (11)

Here we have used the .notation. L . i S P

(1=X) = 1)

12 = (Mg +_{\d)am,f u§ = (Arh2 +/\°)E_(1_—/\_1)’ (1,2)
{(a—1) oy oy (a1
wi =M+ do)ga—yye @ =Mt Do) a3 (13)

The paramcter a = 6,/6, is the ratio of the fractal dimensions 8, , and 61.. I\.dore
detailed description concerning the physical interpretation’ of ‘the coefficients is given
in the part C. In the cornisidered casc of proton-nucleus igtcracti011s, the m;lcleus‘%s
labeled by index 2, the value of o is chosen to be atomic number A. The choice is
justificd by.our analysis of experimental data. The relation reflects essential feature of
the fractal structure of nuclei.in the z-scaling scheme.

The variables x, and ; posses the ‘interesting symmetry propertics. They satisfy the
hypothesis {19]. of minimum  recoil nfass (5)-in the clementary constituent interaction.
Both are equal to.unity along- the phase space limit. - From the conditions x; <1 we
get, the restriction . TR - :

Mt o<l ' : - (14)

This inequality can be rewritten to the threshold condition

. M+ M, +my+mg <54 (15)
and to the condition ! ‘
(M) +M2+‘HLQ)2+E2——7N§ < (\/SA‘— E)2 (16)

The symbol /sa stands for t.hevcenter-of-rhass energy of the pA systemn. The last
incquality bounds kinematically the maximal possible encrgy E of the inclusive particle

" m, in the c.mis. of the reaction (1). From the relation it follows that the variables

#; and my cover the full phase space (0<xy, 12 <1) a.cccss';blc at mxy"'envrgy. The
meaning of the paramcter m; as the “threshold for the production of the inclusive
particle m) emerges here in the natural way. Further propertics of the fractions. .
and. 72 arc described in more detail in the Appendix A.

2.2 Scaling variable z and scaling function H(z) '

In accordance with the self-similarity principle we scarch for the solution depending
on a single scaling variable z in the form



) 1 do_
<N>U;,.glda !

to be a scaling function. The quantities refer to the pA interactions.- The Invariant
differential cross section for the production of the inclusive pa.rtxcle m. depends on-
' transverse a.nd longltudma.l momenta qr and gy, respectlvely In terms of

Ay
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a.nd the scaling va.na.ble Z= z(Al,Az), the mva.rna.nt cross sectxon can be expressed as
d*o 1 {10z + 1 82 &a ;
dq3 : 7rsA A 0N TN, % dzdy’

y——ln

The s is square of the center-of-mass energy of the corresponding NN system a.nd the

A is atomic number. We introduce the scaling function' H(z) in the way

1! d’o . (26)

HO) = o) = ST a
. where the factor gis glven by 7 ‘
gz 8z -~z 0z \ k B
(/\1,/\2) = (SA) (:\;6—/\1 +/\_15X;) »(21)

as follows from Egs. (17) and. (19) The relation (20) connects the inclusive differential
cross section and the multiplicity density pa(s,n) = d:< N >:/dn with the scaling
function H (z) As usual, the“combination (18) is approximated with (pseudo)rapidity

n at high energies. The properties of the ¥(z) and H(z) under scale transformations:

of their argument z are given by the relations

z— 7= az, L o (22)
w0~ v =1v(2), ()
H(z) — H'(?) = % H (g) . (24)

Next, we choose z as a physically meaninghﬂ variable which could reflect the seli-

similarity (scale invariance) as a general pattern of the ha.dron production. If we put.

for z an' asymptotic va.lue

g_i/_z _ 2V Ahday/84 Adzy/5a (25)
Q b}

Q
with @ as a scale which in a first approximation does not depend on A, and ), we
get the expression ‘

=g 7!(17‘)-

Hete Gine is the 1nelast1c cross section, < N > is the avera.ge multxphclty a.nd 1/;( ) has -

T (IS)

(19)'

This leads us to-conclude that while the - composition- of . velocities: follows -Einstein-
Lorenz. law, the composition of the corresponding dimensions of scale: follows the mul-
tiplicative’ group law. The correspondence .is a. particular expression of scale:relativity.
Really, the resolution a with' which .measurements have been: performed may be defined
as a relative state of scale of reference system [31]. In the considered: perspective, the
principle of scale relativity states that Einstein-Lorenz .composition law 0f velocmes
applies to .the systems of reference wha.tever their state of scale. : :

{

3 Z-scaling in pA-collisioris L

Before. analyzing the. results on z-scaling in pA systems, we “would like to remind
main features of the scaling: concerning the ‘inclusive: particle production “in mucleon-
nucleon- interactions. In Fig. 1(a) we present the function H(z) for charged' hadrons
produced in“the central region of pp and fp collisions at /s =19 —~ 1800 GeV: The
scaling variable z-and the H(z) were constructed according to the formulae given in
Scc 11 The result: demonstrates the universality of H(z), the independence of scaling
function  on colliding energy +/s in the considered energy region. Note that’ the “data

“at /5 =630 GeV cover the kinematic range of the ‘transverse momenta of secondary

particles upito g = 24 GeV/c.. For:the cotmnparison with the z-presentation, the my-
dependence- of the same data is shown in Fig. -1(b). One ‘can ‘sec' that the invariant
cross ° section- does not indicate any universality as a function of mj wheén plotted
for different’. énergies +/s. . Similar dependence of>H(z) for #~-mesonproduetion at
Vs =53 GeV: and 6 = 2.86° — 90° c.m.s. is shown in Fig. 2(a). Here we have used
the value. of p,(2.86°) = 0.3 for the angle 6 = 2.86° in Eq:(20) which corresponds to
the- data [32] on multiplicity densities in the fragmentation region:  The:dpproximate
angular independence of the. scaling function is in contrast with Fig.- 2(b) where the
samne data are:plotted- as a function of the transverse mass m. . -Distinctive differences
between the fragmentation and the central rcglon represent. various normd.llmrmns (uld
slopes of the spectra. :

We would like to note ‘that the ) -presentation is traditionally uqod to dvs(uh(\ the
particle spectra. in a restricted transverse womentum range (say py < 1 — 2 GeV/e).
Though all curves .have -non-exponential behaviour in - larger transverse momentum re-
gions’ (g up to 10 or more GeV/e), there -always exists  good my-presentation for
limited .- or ¢, intervals. In particular case. of the central region for the collisions
with gy <« /8, the relation between my and z representation. is as. follows

my’ ’ ) ‘

Z 00—, 38
* 0s) : (38)
1 p(s) da ' ' (39)

In this scnse, the z qcahng represeuts a g,enera.hzatlon of the m scaling in the high
criergy region. Let us sfress that the cnergy and the angular universality of the
z-scaling for pp and Pp collisions was achicved with the same value of the fractal
dimension d; ~ 0.8: -We will use, therefore, this number in the aualysis of the 2 scaling
in the cise of the pA systems.” Tt ‘was found also that there is a’ strong sensitivity
of the scaling behaviour on the oner;,y_depcndon(,e of ‘the scale p(s). The relevant

N
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~multiplicity densities-of charged particles pfoduced in the central pseudorapidity region

in pp and Fp collisions are shown in Fig. 3..The values of dN(0)/dn = p(s) resulting
from the requirement of the z scaling are denot,ed by the crosses. The results of Monte
Carlo- simulations of multiplicity density pa(s) of secondanes produced in pA colhsxons
for different nuclei are also shown-in ‘Fig: 3.

. Let us proceed to the study of z-scaling in pA interactions. ‘We ha.ve examined the :

expenmenta.l data on four nuclear targets D, Be, Ti, and'W covering a wide range
of atomic weight. In the considered experiment [33] the measurements were made at a
laboratory angle of 77 mrad, which corresponds to the angles near 90° in_the center-
of-mass system of the corr&spondmg nucleon - nucleon “collisions. First, we cxplmt the

data on the inclusive x*-meson production in the p+d — h+ X ‘process at incoming _ -
momentum p = 400 GeV/c. ‘The data are expressed in terms of the function Ha(z) .

which depends on the scaling variable 2z as. presented :in Fig. 4. The result shows that
the description in terms of z-representation : coincides with good accuracy - with  the
scaling function for proton-proton collisions. We have -checked the sensitivity of such
universal behaviour - with respect to the ratio of fractal dimensions a. The situation is
depicted by two dashed lines in the figure. We can see that, in the case. of deuteron,

the value of @ = 2 is distinguished with .regard. to" the- z ‘scaling universality. The °
obtained results conﬁrm _z-scaling in pd collisions at hlgh energies. The dependence of

the function: Hg.(z). on z for the process p+ Be — n% + X at the incident proton
momenta p = 200, 300, and 400 GeV/c is presented in Fig. 5. Similar behaviour for
heavier nuclei as: titanium (A=48) and tungsten (A=184) are shown. in Figs. 6( (a) ‘and
6(b). The functions:H4(z) for the both nuclei exhibit energy independence in contrast

to the behaviour of Ed’c/dq® as a function of my: As we can see from Fig. 7, the -

energy evolution with respect to the m; variable is manifested especially in the hard
part of the spectrum. Thus, besides the energy independence,  the- A-universality of
the scaling functions is found. The obtained results give us strong argument to use
z-scaling formalism for the analysis.of experimental data on inclusive cross sections in
pA interactions. We would like to remember that the scaling in the proposed form
is valid for pp collisions in the energy range /s > 20 GeV [30]. It is reasonable
to assume that similar restriction exists for proton-nucleus interactions and that full
asymptotic .regime will be achieved for corresponding center-of-mass ‘energies.

In order to comstruct the scaling function: Ha(z) for particle production.-in pA
interactions, it is necessary to know the values of -the average multiplicity density
pa(s,m) of secondaries produced in pA -collisions. The values enter  to the scheme
in Eq. (20). At present there are no experimental data on p4 for pA collisions at
high enough energies (/s > 20 GeV). Therefore, we have used the Monte Carlo code
HIJING. [34, 35] to determine the energy dependence of the multiplicity densities of
charged particles for different nuclei - Al Ti,W, and Au (Figure 3.). The atomic
numbers of the nuclei change from 27 to 197. The results of simulations of pa(s)
obtained in the central region of the corresponding NN interactions are denoted by
points in' Fig.~3." The. densities of charged particles were averaged over the impact
parameters b (0 < b < 10fm). The obta.med values can be parametrized by ‘the formula

pa(s)=0.67-A%B.0105 = 4>0 - (40)

In the case of pp or pp collisions, the fit p(s) = 0.74s°1% used in Refs. {36, 37] is
shown in the same figure. The comparison of the multiplicity densities for pp and pA
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collisions indicates similar energy .dependence for both cases. It can be a consequence
of the Pomeron trajectory with Pomeron intercept A = ap —1 =~ 0.105..

4 Results and discussion

We would' like to present some qualitative picture, the substantial elements of which
are the basic characteristics. of the underlying parton subprocess (2) in terms of the
scaling. proposed. Generally it is based on the scheme suggested in Ref. [30] for pp
or Pp collisions. In the scenario, we focus our study to the regime of local parton
interactions of incident hadrons and nuclei. It manifests itself in the production of
particles with high ¢y at high energies. In this regime the parton distribution functions
of incoming objects are separated and, therefore, the scaling function H(z) reflects the
fragmentation process of produced partons into the observable hadrons.

The cross section.of hadron interactions at the level of single pa.rton-pa.rton scatter-
ing (4) is governed by the minimal energy $ A,l,,/f,, of colliding constituents. Thus, for the
high energy regime of elementdry parton interactions, the expressmn for-the differential
cross section can be wrltten in the form

ELS ~ 57802) - On ) - Cnlam) - D). (a1)
Here Timin and Zomin satisfy the condition $(ZTimin, Tzmin) = Smin(Z1,22). The relation
reflects quantitative measure of the proportlona.hty to the elementary parton cross sec-
tion which is the number of partons expressed by structure functions. It allows to
introduce the concept of parton structure function of nuclei G(z;) [38]. The fragmen-
td,tzxon) of the secondary produced parton is described by the fragmentation function
D"(z,

The approach based on the principles of self-similarity, loca.hty and fra.cta.hty is
different. Fractal character .in the initial state regards the parton composition of
hadrons and nuclei and reveals itself with more resolution at high energies. Leading
by these’ principles, we construct -the variable z according to Eq.- (27). The cross
section can be expressed in therms of z as follows :

dic : :
The' scaling properties of the functlon H (z) and comparison of the Eqs (41) and (42)
give us some ‘arguments to write the relation

H(z) ~ D"(z,). (43)
It reflects universality of ha.dronlzatlon mechamsm with the variable z con51dered as a
hadromzatlon parameter.

Rea.lly, z can be interpreted in terms of parton-parton collision with the subsequent
formation of a string stretched by the leading quark out of which the inclusive hadron
is formed. The energy of the colliding constituents sl/? is just the emergy of the
string which connects the two objécts in the final state of the subprocess (2). The .
string evolves further and splits into pieces. The resultant number of the string pieces
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is propdrtiona.l to number or density of the final hadrons measured in experimgnt.
As known from various experimental and theoretical studies concerning the multiple
production, the .produced multiplicity is proportional to the excitation of tra:nsye.rse
degrees of freedom. Therefore, the string transverse energy is a measure of multiplicity.
Such ideas allow ‘us to interpret the ratio :

V= B/ (s) . (a9)
as a quantity proportional to the transverse energy of a string piece /Sn, which does
not split already, but during the hadronization converts into the observed hadron. ’I.‘he
process of string splitting is self-similar in the sense that the leading piece of the string
forgets the string history and-its hadronization does not depend on' the number and
behaviour of other pieces. We consider that the factor Q- in' the definition of Z reflects
fractal structure of the colliding -objects and represents degree of ”softness” of- the
initial partons participating the elementary -interaction. - Maximal softness corresponds

to the maximal tension of the generated string what is expressed by the condition 9.

Then we write following relation

F:Q-z. B (45)

So, in the inclusive hadron production, we consider the variable 2 as a quantity
proportional to' the length of the' elementary string, or to the formation length, on
which the inclusive hadron is formed from its QCD ancestor. - .

The complementary interpretation of the physical meaning of the variable z is based
on.ideas concerning fractality in high energy collisions. The fractal objects are usually
characterized by power law dependence of their fractal ‘measures [31]. The fractal
measure, considered in our’ case, is given by all possible configurations of elementary
interactions that lead to the production of the inclusive particle. It has the following
form ’ ’

z1,25) ~ (1 — )M (1 - 25).

The formula expresses the factorization of the fractal measure with respect to the
fractal measures of colliding objects. Both are described by power law dependence
in the space of fractions {z;,z,}. The single measure reflects number of constituent
configurations in the colliding object .taking part in production of the inclusive particle.
The measure is characterized by the fractal dimension . Fractal dimensions can be
different for various colliding objects. Results of our analysis show that the fractal

" dimension of nucleus 8, is related .to the nucleon fractal dimension 6y by the following
simple form ‘ :

Sa=A-by. (46)

The relation reflects the additivity of fractal dimensions. In the framework of the
fractal picture, the number of initial configurations is maximized according to Eq. (8),
and the variable

z=Ef"/ (- p(s))
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can be interpreted as the encrgy of elementary constituent collision per one initial
configuration and per one produced particle. This energy is the energy of elementary
string piece and is proportional to its formation length according to the transformations
(22) - (24). R . '

The outlined ‘picture has restricted range of application in the low, energy region,
where manifestation of the self-similar mechanism of particle ‘prodiiction becomes com-

- plicated. In the experiments with nuclei’ at low energies one has usually deal with

the problem of rescattering mechanism. -The effect can’be, however, neglected at high
energies for high transverse momenta of secondary particles. In this region, we con-
sider unlikely large contribution to the inclusive cross section®due to réscatterings of
particles in the surrounded target. This statement is supported by Figs. 4, 5, and 6.
The A-dependence of experimental ‘data used in our analysis does not violate the gen-
cral features of the z-scaling construction. Moreover, the observed form of the scaling
function H(z) for pp and pA collisions”is practicallythesame. ) ’ .

The sitiation in nucleus-nucleus systems may ‘be different. -The high ¢ enhance-
ment in AA relative'to pA interactions was discussed, ‘in particular, ‘in Ref. [26]. It
corresponds to the larger inyerse slopes of cross section dependerice on a transverse
Inowentuin relative to the proton-nucleus collisions. In the casc of AA:interactions the
excitation of nuclear medium is realized in an’extended volume which- can siguificantly
influence ‘particle- production mechanism. We consider -that the dependence of H aa(2)
on z for hadron and QCD phases can be quantitatively distinguished. Possible viola-
tions of the scaling, especially in the region of high transverse momenta, could be very
interesting. ‘Here one can expect a manifestation of the transition of nuclear matter
to parton phase especially in "‘AA collision. The transition corresponds, to the joining
of partons from different .nucleons of nuclei known as cumulative process [18, 19, 20).
The corresponding regime of particle production is kinematically forbidden in nucleon-
nucleon collisions. The higher stage of cumulation corresponds the larger values of the
variable z and can manifest itself more prominent just in the high momentum tail of
the spectrum. As a result the enhance of the scaling function Hza(z) for the nucleus-

-nucleus interactions in comparison with the scaling found in pp and pA collisions may

be expectad. We suggest, thercfore, that the comparison of the z-scaling for pp and
pA collisions with data on AA iuteractions can give valuable information regarding
exotic physical phenomena such as quark-gluon plasma formation and others.

5 Conclusions

Inclusive particle production in pA collisions at high  energies in terms of the z-
scaling is considered: The scaling function Ha(z) is expressed via the invariant inclu-
sive cross section Ed*o/dg® and is normalized to the multiplicity deusity of particles
produced in pA collisions. The definition of the scaling variable z includes fractal prop-
ertics of the colliding objects. The dynamical ingredient of the scaling relates to the
encrgy dependent scale which is the average multiplicity density of charged particles
produced in the central pseudorapidity region in the corresponding NN interaction.

The obscrved A-dependence of available experimental data for different nuclei (D,
Be, Ti, aud W) does not violate the gencral features of the z-scaling. It was shown
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that the fractal dimensions of nuclei are expressed via the fractal dimension of nucleon
84 = A-8y. Our analysis confirms the energy independence of the scaling functions
Hy(z). Thus, the scaling function H(z) demonstrates main features of the _hadroniza-
tion process in terms of the formation léngth z.

The z-scaling found in pp and pA collisions reflects genera.l properties of the pa.rtlclc

producmon mechamsm such as self-similarity, locality, scale-relativity and fractality and:
can serve as an effective tool in searching for' new physical phenomena in fur,ure

experiments pla.ned at RHIC (BNL) and LHC (CERN)

6 Appendix A

In this Appendix we present some properties of the momentum fractions z, and z,.
The relation between the variables: follows from the minimum recoil mass hypothesis
in the elementary constituent interaction. The second restriction which we lay upon
the variables, is the requirement of maximal tension of the string formed in the
final. state of the binary subprocess (2). String tension coefficient {2 was chosen -in
the form (8) relating fractal properties of colliding objects with the character of the
phenomenological string. Such construction leads to specific structure of the variables
x, and z, according to which :the notation (2) can be rewritten to the symbolic form

(O +32) + O +x2) = (i +de) + (a + x2)- (A1)

The relation should be understand 'in the way that only parts of the interacting partons
underlay the production of the inclusive particle while the other parts are responsible
for the creations of -its recoil. The variables have the following form

‘Il=/\1+X11 IZ=’\2+X21‘ ’ (A2)
with ‘
\ _”,/mi+q§’—l1z A _)\/mi+113+<1z (A3)
1 ——\/E ) 2 \/E ’
and

x1 =Vl +wi—w Xz =\ + Wi +wp. (A4)

" Relations (A3) represent an approximation of Eq. (7). It is reasonable in the consid-
ered kinematical range provided that emission angle of the inclusive particle is not too
small. From Egs. (12) and (13) it follows

Btz = AfAg + Ao, (A5)
G B g (A6)
Wy - /\1'/\2 + /\o’ I -
wy (7))
2 A7
w2 ’ (A7)
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Next, we present the energy decomposition of the elementa.ry parton-parton subprooess
Usmg Eqs. (A4) - (A7), it can be shown that

xaxz = bz =Mz + ,\0 ‘ (A8)
and

T1Z2 = (V Az + Y Adg + ) + (YAxz - \/’ Aexa)> c (A9)

The relation reflects separation of the transverse and longitudinal degrees of freedom.
The corresponding decomposition of the energy takes the following form

S:=82+38+ 28 +8. - (A10)
The first. and the second term are squares of the enéfgy terms given by Eq. (29).

They represent the parts of the transverse energy of the string which correspond to
the inclusive particle and its recoil, respectively. As Eq.  (A10) is quadratic, the third

term, N - .
Sir = (VA0 P+ e )%, (A1)

accounts for correlation between the two parts. Neglecting masses M;z; in the expres«
sion (28), we get the rela.tlon for the total transverse energy .

By= 5%+ 52 ~ (Ada £/ ks + Xo)VEE (A12)
and '
E‘J_~\/q§+m'1’+\/qi+m§+z\os,4~\/qi+m¥+\/ﬁ+m%. : (A13)

The last term in Eq. (A10),

31 = (VA — VA2x1)* (R P), (A14)

is square of the momentum of the elementary string representing its longitudinal mo-
tion. According to this construction we divide the full phase space into two asymmetric
hemispheres corresponding to the proton and nucleus parts, respectively. In such a way
the energy of the elementary parton-parton subprocess can be divided to the energy
released to the transverse direction and the energy flowing longitudinally with respect
to boundary between the two hemispheres. The boundary is given by the equation

%:%. (A15)

For the sake of simplicity, let us consider the case of Ay ~ 0 when illustrating the
relation. Using Eq. (A8) and the definition of x;, we can write Eq. (A15) in the form

A

Az = a—-2\(a—-1)" (A16)
The variables ); can be expressed in terms of the relative momenta Q = ¢/¢maz ,
/\1___Q+Qz’ /\2___Q_Qz7 (A17)
2 2
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which is good approximation for ‘the pa.rtlcles w1th small masses. Substituting the
expressibns into Eq. (Al6), we get '

’ Q—&—Ql (A18)

The v is the velocity of the recoil object and is given by Eq. (35). Since the right
hand side of the last relation is:non-negative, there exist a limiting angle 6{(c) which
is determined by the relation

cosf=v o ‘ ( (A19)

for any given resolution a. The angle defines the cone separating the proton and
the nucleus hemispheres in the region of small relative transverse momenta @,. The
partition in the (Q.1,Qy) plane is depicted” in Fig. 8 for thé values of # = 44. 4° and
# =16.4°. The numbers corregpond to the Jllustratlve examples for « =6 and a = 48,
respectlvely As bulk of the produced particlés at high energies relates to the small
values of Q., the angle given by Eq. (A19) form the boundary between the proton
and nucleus hemispheres for most of the secondaries. When approaching the full phase
space limit, the boundary deviates from the cone and bends towards 90° as shown by
thick lines in Fig. 8. :The-deflection is the effect of finite size-of the phase - space.
The dashed and dashed-dot curves show the hemisphere boundaries for given values of
a. The curve for a = 1 represents proton-proton (or generally equal mass M; = M,)
collisions. In the case of the proton interactions with heavy nucleus, the boundary
tends to the value of A, =1/2 which corresponds the asymptotic value « = co. The
parts of the hemispheres which do not depend on the resolution a are given by the
relations

M = AN<x; xe< A . (A20)

MNZ1/2 => N2xs xS ' (A21)
Finally, we will examine the limiting case when the resolution o tends to infinity.
We consider the following situation -
8 -0,  &=6 ' (A22)
First, let us note that for given A, and A; the z; (2;) is increasing (decreasing)
function of o, or equivalently

Bul Ow, . e/ Owy
< .
Mg = =Xy oa’ Hagq = X2 ’ . (A23)

Using Eq. (10) - (13) and performing the limit a — oo, it can be shown that

/\2+/\o

1 — /\l » (A24)

r — 1, Ty — I =

and

Q- m(1-z)°. (A25)

16

With the neglect of masses, £ turns into the Bjorken variable
_/\2+/\o~_ %(Pn—q)’ - Q?
1—/\1 (P]Pz)—(qu) ’2P2Q’

where Q ‘is the transferred momentum between P, -and g. The corresponding expres-
sious for the derivatives of z are given in the Appendix B.

(A26)

7 Appendix B o

The invariant differential cross section’ for the productlon of mcluswe pa.mcle is

normalized as
.

/ E-’i—‘idndqu =0 < N >, ' (B1)
{iq.{

where @i, I8 the inelastic cross section and < N >'is the average multiplicity. The'

inclusive cross section can be-expressed in terms of the variables A; and A, in the way
do 1/ (AP)?— MiM:  d%

A~ 2 [(PiPy) = MM dhdhy

In the region of high energies, the relation can be written in the approximate form

E

(B2)

2

Go __ 1 do , (B3)

dg? wsA dAjd);
where s is square of the center-of-mass encrgy for the corresponding NN collision and
A is the nucleus mass number. We suppose that the inclusive cross scetion is given
by solution (17) as a function of a single variable z = = z(A, A2). In Eq. (18), we have
chosen y as another independent combination of A; and A,. Relation betwcen the y
and the NN center-of-mass (pscudo)rapidity 7 can be written as

y=n- —lnA (B4)
in a high cnergy a.pproxxmatmn Using the varla.bles, we get the nomm.h/drmn

d*o -
“~ - — Yine N 5
s d/\]d/\z /{i v dzdy = o,,,p;/p,‘(n)w( Ydndy = @i < N >, (B5)

where pa(n) =d < N > /dy is the average multlphclty deusity* of” pa.rtu.}eb pmdue(‘d in
pA collisions. The function #(z) is normalized to unity

oo
/ YAz =1 - (B6)
According to the. choice of Eq. (28), we have znim = 0. The ¢ can be expressed in
terms of the inclusive cross section : -

TsA I"Ed—a— .

. , BT
PATinel dq3 ( )

W) = -
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where
By 8z - By Bz
= 0N, DN (B8)

Next, we present the expressions for the partial derivatives of z. As the variable
has the form given by Eqs. (27), (28), (29), and (8), one gets

0z _
(s) g = MaME+ Xa(BR)E
) i)
+ [ 0§‘M2+ 2a§2M2+/\2(P1Pz)] ol |
1\ [ & Ekn Oxz [z Ekn
1+ = - _
+ ( +a,\1) (1_—a,-l M, +0,\1 1=z, M) (B9)
;) -
(s)re = [ME+ (P1P2)1‘ 2
X
+ 8X1 A{2+ 20X2M2 +/\ (PIPZ) "—1/2
X s
. 0X1 JlEL ) 0X2 Jini"'
+ 31\2 (1 it/ 7% Ml + 0/\2 1-~ T2 M2 (Bl())

The derivatives of x; satisfy the relations

0x1 1 1 Ow, . 0X2 o
o, = bate)” ("‘a,\ X155,

The - derivatives of w; are given in terms of /\1- as follows

8_@_1_ _ (a —1)A; _— % o= 1){A1+ Aq)
I\ 2(1 - )’ gy 21—
aA 2(1(1—/\1)2 ’ (798 7 20(1l-A)
For the derivatives of p; it can be written
I _ alda =220z — ) O _ e+ A)(1—A)
0/\1 2[141(1 — /\2) ’ 0/\2 2[141(1 - A2)2 ’
0_“2_ - (A2 +20)(1 = X2) % _ AL=2M A=A (B13)
0/\1 20“2(1 — /\1)2 ’ 0/\2 2(1“2(1 - Al) T

We can neglect mass terms in the central region of collision for high ¢; and write

2V A A2/54 '
= SVAR2vEA Ao ~ 0, Bl4
Q- p(s) o (B14)
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3/\ =(x2 —w2)™! <ll2g/\ +X20/\> (B11)

’

"in the considered energy. region. In this case the derivatives of variable z simplify and

the factor (21) can be written as follows -

4 A+ X;fl Az +Xxz2fe | '
(/\1, /\2) szz( ) [1 + & @ _?l)v‘ +7527 (1 _— ] _ (B15)
where v . o l o
7 fl (2= — d/\lXZ fa= (2 - A1)Xz2 — 1/\2)(1 (B16)

20 +wi)(1=Az)’ 2x2 - wz)(l =Ai)
The formulae for the derivatives "of z can be expressed in a more closed form when
considering the case of the mﬁmte ‘resolution. Usmg Eqgs. (A24) a.nd (A25) we have

JEI"" -
Qp(s)a—/\l = 1 —11\1 ( - Mz) + [Al +/\z Ple)]s 12

A1Az + Xo)

+ [(,\.-1)M2 ( TN M22+/\g(P1P2)] 513, (B17)

Oz 1 (8ENn 2‘ 412

Qp(S)a;— 1= /\J (1 z - Mz) +[A2M +/\ Png)]s )
Cat g enmm|sn (e

1—A\)?
In the approximation of Eq. (B14), the factor g becomes

4 oz ‘
= . B19
s = g5 (1 + =) (19

Acknowledgments

This work has been pa.rtxa.lly supported by the Grant of the Czech Academy of
Sciences No. 1048703.

19



lof T T T
10 - R
100 T -y, p(B)+p-(ho+h)/24X
L
0 N, near n=0 1
w02 | L
107 \” 4
oot b . % h
S~ -5
T 10 o 1800 GeV . 7
10 L+ 900 Gev A 4
1077} v, 630 Gev V‘;k J
0L '+ 200 Gev J
10 = - 63 GeV o i
1010 * 53 GeVv i
oL ¢ 27cev 1’{ ]
1z s~ 24 CeVY o
:g-u o 19 CeV 3' 1
107" Lot L L
107! 10° z 10

-12

(2nm,)" d"a/dm, dy [mb/Gev’)

T v
10 s, k
W bz, pEp-(btem)/2ex

N
10° F ";i':'\ near n=0 g
10 - . L
107 L o K 4
107 L o 1800 Gev : * e b
0t L <7000 GeV 4 v %, 4
197 L+ 630 GeV T v 4
oo L * 200 Cev . P, i

[ = ' 63Gev e e

W07 o 53 Gev e, '7 ]
10° b o 27 Gev e 1]
62 L « 24 GeV fe .
16710 e - 19 Gev ° % -
107" et 1

10° 10

m, [Gev]

Figure 1. (a) Scaling function H,(z) for the charged hadrons in central region
produced in pp or Pp interactions at /3 = 19 — 1800 GeV. Detection angle 9 is 90°
c.m.s except the data at /5 =63 GeV, where § = 50°% (b) The corresponding inclusive
differential cross sections as functions of the transverse mass my. Experimental data

are taken from Refs. {39, 40, 41, 42, 33}
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36oposckH H. u ap. E2-98-250
Z-CKEeilJIMHT B POTOH-IEPHBIX B3aUMOIECHCTBHAX
MpH BHICOKHX BHEPIHAX

Hcenenyercss HOBBIM Z-CKEHJTMHT B MHKIO3MBHOM POXIOEHHH YacTHL B pA-
B3auMogeicTBHaX. KoHuenuus z-ckeiinunra 6a3npyerca Ha (pyHOaMeHTTbHBIX u-
3UYECKHX MPHHLHMIAX, TAKMX KaK MPUHIMITE NOR0GHS, IOKANTLHOCTH, MacliTabHoi
OTHOCHTEJIBHOCTH M (DPaKTAIbHOCTH, OTpaxaiolnue ofuue 0coOeHHOCTH B3aHMO-
neitcteua yacTun,. Cxeinunrosas ¢hyHKuus H,(z) BrpaxaeTcs Yepes HHBapHaHTHOE

3 3
ceuenne Ed G /dg” v nnotHocTs pacnpenenenus dactiy dN/dn npu 1 = 0, omnpe-
meneHHOH B cucteMe LieHTpa Macc NN. Hccnenyercs 3aBucumocts H,(z) oT cxeid-
JJHHTOBOI MEPEMEHHON 2, SHEPTMH B CHCTEME LIEHTPa MacC V§ M aTOMHOTO HoMepa
aapa A. IlokaszaHo, YTO 3KCHEPUMEHTAIbHBIE JAaHHblE MO CEUCHHSM POXIAEHHS
t . . o
T ~-M€30HOB B pA-B3aHMOIENHCTBHAX MOATBEPXIAOT CKEAIMHIOBEIE CBOHCTBA H 4(2).

MonyyeHHble pe3ynbTaThl MPEICTARTAIOT HHTEpec MUIA OYOYIIHX SKCIEPHMEHTOB,
IlaHHpyeMbIX Ha saepHbiX Kosainepax RHIC (BNL) u LHC (CERN), no noucky
HOBBIX (PM3HYECKHX SBIEHHH B pp-, pA- U AA-B3aUMoAeHCTBHX.
Pa6ora BeinonHena B Jlabopatopuu BeiCOKHX 3Hepruii OUSIH.
Mpenpunt OObeAHHEHHOTO HHCTHTYTA SACPHBIX HCcaeaoBannii. JyOua, 1998

Zborovsky 1. et al. E2-98-250
Z-Scaling in Proton-Nucleus Collisions at High Energies

New scaling, z-scaling, in the inclusive particle production in pA collisions is
studied. The concept of z-scaling is based on the fundamental principles such as
self-similarity, locality, scale relativity and fractality reflecting the general features
of particle interactions. The scaling function H,(z) is expressed via the invariant

cross section Ed%‘/dq3 and the average multiplicity density dN/dn of particles
produced at pseudorapidity 1 =0 in the corresponding nucieon-nucleon interaction.
The dependence of H,(z) on scaling variable z, the center-of-mass energy Vs

and the atomic number A is investigated. It is shown that the available experimental
data on cross section in pA collisions confirm the scaling properties of the function
H,(2). The obtained results can be of interest for future experiments at RHIC (BNL)
and LHC (CERN) in searching for new physical phenomena, in pp, pA, and AA '
collisions. '

The investigation has been performed at the Laboratory of High Energies,
JINR.
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