


L INTRODUCTION

According to the proved singularity theorems [1] the space-time singularities are the most
generic features of Einstein’s equations. On the other hand, the nature of the space-time
singularity is model - dependent, and still no definite answer about its most generic type exists.

It is believed that the mixmaster type singularity [2], which is space-like, local and oscillatory
can pretend to be a generic one in the general cases of a gravitational collapse and in spatially
homogeneous cosmological models [3). The numerical works (see [4] and ref’s therein) support
this statement for some spatially inhomogeneous cosmological models too.

However, the recent studies { [5-7]) of an internal structure of spherically symmetric non-
Abelian SU(2) Einstein-Yang-Mills black holes exhibit a new rather unexpected type of the
corresponding singularity, which is space-like, infinitely oscillating but not of the mixmaster
type. This behavior of the metric is caused by the nonlinear nature of a source {Yang-Mills)
field in strong-field region near the black hole singularity. Thus, the generic singularity inside
non-Abelian EYM black holes can be a possible alternative to the mixmaster one if a nonlinear
self-interacting matter field is included. »

The black hole solutions in the Einstein-Yang-Mills (EYM) model are very interesting objects
for several reasons {8). They violate the naive no-hair conjecture and exhibit a discrete structure
for an external solutions which come from the corresponding singular boundary-valued problem,
imposed in a region between the event horizon and the spatial infinity. Being considered
dynamically, regular Bartnik-McKinnon solitons [9] {limited cases of EYM black holes in a
limit of a shrinking event horizon) are found to be unstable both linearly [10} and nonlinearly
[11]. The corresponding non-Abelian EYM black hole solutions in an ezternal region are
also unstable under small linear perturbations, and there exist strong evidences that they
are unstable nonlinearly [12]. ,

The goal of the present work is to study the evolution of small but nonlinear perturbations,
arising and propagating in the internal region of non-Abelian EYM black holes towards the
singularity. We solve the full system of self-consistent EYM evolution equations using some
kind of an adaptive mesh refinement method for numerical simulations.

The dynamics of small perturbations in black hole interior regions were investigated first for
the Reissner-Nordstrém black holes {13] - [14]. The qualitative predictions of an unbounded
growth of perturbations near the Cauchy horizon were confirmed later in a rigorous self-
consistent analytica] approach by W. Israel and E. Poisson [15].

Our investigations shows that small perturbations which evolve inside non-Abelian EYM
black holes of the generic type do not grow unboundedly and it allows us to put forward the
conjecture, that unlike to EYM black hole solutions in an external (weak field) region, the
corresponding generic (oscillating) internal solutions are stable, while an exceptional S-type
internal solutions transform to a generic one under the influence of nonlinear perturbations.

Thus, the generic {oscillating) type of the space-time can be a final stage of a spherically
symmetric collapse of the Yang-Mills field in an internal region of an acquired EYM black hole.

Recently Choptuik, Chmaj and Bizod [16] have studied the collapse of the self-gravitating
YM field (see also {17]). They have investigated the external area of the collapsing matter up
to the horizon formation. To penetrate under horizon it is necessary to use some kind of null
coordinates [18] in order to give a final answer on the question about the nature of the resulting
space-time singularity.

In Section II we write down the full system of EYM equations and discuss imposed initial
conditions and background configurations; in Section III we briefly describe our numerical
algorithm; in Section IV we discuss the evolution of perturbations inside generic (oscillating)
EYM black hole interiors, and in Section V - inside S-type interiors; Section V1 contains the
conclusions.

{1 THE MODEL AND FIELD EQUATIONS
ansatz for the Yang-Mills connection

We use a spherically symmetric purely magnetic SU(2)
- (1)

A= [f(t,r) — 1|(T4d0 — Tosin0d¢),

where Ty and Tp are sphel.'ical projections of the SU (2) generators. The general ansatz for the

i i function, originated
spherically symmetric SU(2) YM field admits also the second independent function, orig

from the Ay component of connection. However, we omit it here since non-Abelian SU(2) EYM

i ist wi f Aq [19].
: hole solutions do not exist with nonzeyo.va.lue of ) ]
b‘fi‘ck‘;e ?oixidimensional spherically symmetric metric tensor also admits two independent

functions. Therefore we can choose the following paramgtrization of the interval:
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ds = Tdt - -&dr, r2d0? — r®sin® 0d¢

Both metric functions A and o as well as the YM function f depend on r and ¢ variables.

. Let us denote
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_ After that the f\yxbll set of EYM equatibns looks a.‘srfolvlows:
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Note, that equation (2.3) corresponds to the &t component of Einstein equations Gt = T},
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tion (2.9) is the requirement of ¢ to be smooth:zg 3 = pior
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hole and the dynamics in the black hole inte‘r'\or region is described by the ev

along r, together with constraints at e.:ach shce‘r = const. d
Now (2.3), (2.4) and (2.7) are evolution equations, (2.82 z;lnh(l
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2.9) are wave equations, whereas
d automatically.  Indeed, after




Following the same lines, if we denote the relevant combination in (2.5) as

N . ¢ D?
. A y=D+ 21:0 d:, ,
r
then it can be easily shown that
: ’
o T
7 =

So, if ¥ = 0 at the initial surface r = const then 4 ‘will be zero during the evolution albng r
As a result, there are no dynamical constraints in our EYM systéfn in the black hole ihterim:
region; both constraints are kept during the evolution automatically and the system is effectively
described by the equations (2.3), (2.4), (2.7), (2.8) and (2.9). V '
Hox.'vever, to realize the numerical algorithm, a little different representation of unknown
functions turns out to be more effective. It is convenient to introduce an auxiliary field

x=Ac/r : - (2.10)

as a dynamical variable instead of A. Unlike A, the field x does not exhibit oscillations for

backgroux}d generic solutions in the interior regions of EYM black holes; in terms of x the local
speed of light (the slope of the characteristics) is equal to X,

The'n, approaching the black hole singularity at r — 0, it is more suitable to use an inverse
coordinate R = 1/r for the numerical integration.

Nc?w the resulting set of unknown functions, used for numerical study of our PDE system
consists of

X=00R, o, ¢=xRf, N=f

(here and below 7 = g ), and the full system of equati btained fr
(29) iy e the i) quations obtained from (2.3), (2.4), (2.8),
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Apart from F.hese equations we also use the constraints

r} = f, . ' (2.16)

g X Il¢ . .

syt (2.17)

in order 1o set the initial data and to keep. the control of the accuracy.
We set the coupling constant & = 1 hereafter without loss of generality,
After the completion of numerical calculations we display the results again in terms of metric

function A.(r, t) to get more insights on their physical meaning and to compare them with the
corresponding background configurations.

A. Background configurations

We study the evolution of perturbations, propagating on a homogeneous (¢ -independent)
background. configurations whicl, corgespond o ihe interiors of spherically ‘symmetric EYM

black holes. These coin_[iéura&iqnéz are Llie solutions of the system
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obtained from (2.8), (2.3) and (2.4), neglecting the ¢ -’depen,dence.in the donain r < r,. The
initial conditions are imposed in.the small vicinity of the surface r = ry which is implied to be
the position of a simple (not.double) event Lorizon. As it was shown recently [5-7], the generic
solution of the system (2.18), corresponding to the.interior of a static spherically symmetric
EYM black hole, has no Cauchy. horizons,  and the metric exhibits an infinitely oscillating
behavior (but not of the mixmaster type) with an amplitude, unboundedly growing towards
the space-like singularity. ] ) ) ) .

The oscillating structure of the metric for the generic solution originates from the features
of the corresponding 2-dimensional autonomous dynamical system. This system eflectively
describes generic solutions in the regime when some irrelevant terns in (2.18) (1 is negligible
in comparison to (f2 — 1)2/r? and the YM function f is set equal to constant, f = const, while
d,J # 0 remains dynamical ) are neglected near r — 0 [5]. In the interior of the EYM black
hole the metric passes through an infinite series of “almost Cauchy horizons” in the maxima of
oscillations which alternate by subsequent huge falls of the metric function A in the minima;
the frequency of oscillations of the metric exponentially grows as the singularity is approached.
The approximate recurrence formulas, obtained in [6] allow one to describe the behavior of the
EYM system in such a “strong oscillation” regime with an accuracy improving towards the
singularity.

However, for a lypical generic EYM internal black hiole solution the “strong oscillation” regime
described above does not start just in a vicinity of the event horizon. Depending on the initial
conditions on the event horizon, before the first huge fall of the “strong oscillation” ] regime
begins al some r = 145, the solution is determined by the complete system (2.18) with all terms
relevant in the significant domain ro,c. < r < 4. In this domain the metric function A, being
negatively defined, also can admit a few oscillations with a small amplitude (in comparison to
“strong oscillations”); we call this regime as a “weak oscillation” regime. :

In the present paper we consider the evolution of perturbations starting from an internal
vicinity of the event horizon and then propagating through tlie “weak oscillation” region and
the first huge fall of the metric function A in the “strong oscillation” regime up to the next
“almost Cauchy horizon”. : : : : :

As it was also shown in [5,7], for some discrete values of initial parameters, EYM spherically
symmelric black holes also admit the standard Schwarzschild (S) and Reissner-Nordstrom (RN)
interiors (third, so called IMI internal solution is not asymptotically flat and we do not consider
it here); however such interiors are rather exceptional cases and they forin only a subset of a zero
measure in the space of all EYM internal black hole solutions. The evolution of perturbations
inside S -type EYM black holes is investigated as well and the results will be discussed below.
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‘B. Initial conditions

- *The Cauchy problem for the system of equations (2.11)-(2.15) can be sel as follows: we set
f. ¢, x at some space-like surface r = const and define IT and ¢ from (2.16), (2.17). Once
being set, the constraints (2.16) and (2.17) will be satisfied during the evolulion along r due
to the equations (2.11) - (2.15). The latter can be solved usmg a standard finite - difference
technique.

Note, that we suggest the initial space-like hypersurface r = const < r, situated with
the necessity under the external event horizon. Therefore the perturbations given at this
hypersurface have a status of fluctuations, acquiring in an internal region of a black hole and
they are not connected anyhow with those, propagating inward from an external region through
an event horizon.

The initial values of f and ¢ can be set independently. Straumann and Zhou {11} considered
two types of initial perturbations for the case of Bartnik-McKinnon regular solitons and the
external region of EYM black holes. They called the perturbations class I if only the YM
function f is initially perturbed, while the time derivative of the perturbation equals to zero
d¢ = 0; it means that the initial kinetic energy of the YM field vanishes. In class 11 perturbations
the function f remains unperturbed, but é¢ and thus the kinetic energy does not vanish initially.

We used both these classes of initial perturbations for our problem in the internal region of
EYM black holes. The considered initial data come from the asympthotics near external event
horizon. Since the horizon is not a regular point, we cannot set all Cauchy data independently.
The data must satisfy the series expansions originated from the Einstein-Yang-Mills equations.

The first order of asympthotics for background ¢ -independent EYM equations gives A =
di(r—rh), o=00+0(r—mr), f = fo+ Hi(r —ry), where r is the radius of the event
horizon and fa, gq are free parameters Other parameters are expressed in terms of these free
parameters as follows:

& =1 = (G =1, S = fofd - 1V)/dr, o1 =200f}/rn. . (219)

Thus, in order to define the background solition, we should set the values ry,, fo, 0p; the
coefficients d;;  f; and o, are determined from (2.19). :
We choose an initial surface at the distance h (one r - step) under the horizon. The equilibrium
(background) values of f and x at this surface are f = fo — fih, x = —dyach/rs.
Class I perturbations. In the case when small, for example, Gauss - like perturbation

K=t (2.20)

Jis added to the equilibriuhl YM function f, then the field II is determinéd by the equation
(2.16), i.e.,

H(t)l":rp.-"h = ~—21\’s(t — to)e"“(‘-to)’.

For initial x we use the equilibrium value and initial ¢ is also set to be unperturbed. Thus,
class [ initial perturbations are delined as follows:

f(t)|r=r}.—h = fo— fih + [' ~s{t~ ’0)’ )
x(t)|r=r,.—h = —(lla'oh/rh, ‘ (2'21)
¢(t)lr=r,.-h = —dlaoflh/i‘: .

together w1th () |r=rp-n determmed above.

Class Il perturbations. In this case the YM function f remains lmtlally unperturbed together
with the corresponding function II, while the function ¢ gets independent devnatlon from the
background:

fiogons = 8™

t r=rp—h T [ .

X(t)lrzrh—h = —dlaoh/r,,, . | (222)
¢(t)|r=rh-h = —dlaoflh/rh + ]\’e"(“'n)2 .

Both classes of initial perturbations give rise to two scattering waves. One of them propagates
with time r in a positive spatial ¢ -direction (“ingoing” wave) and another one propagates
in the negative t -direction (“outgoing” wave). After some interference in a region around
{ = ty they move independently from each other in opposite spatial directions. We investigated
the evolution of class I and class II initial perturbations on various EYM black hole interior
backgrounds ‘and found their behavior to be the same after the “ingoing” and “outgoing”
waves are completely divided in the space. Moreover, if we set the initial perturbation with a
symmetry with respect to the center of perturbation fo, this symmetry is conserved during the
evolution.

That is why one can consider without loss of generality the third class of initial perturbations
in-addition to the described above ones; the initial perturbations of this class determine only one
initial wave, propagating, say, in a positive ¢ -direction. This class occurs to be a combination
of class I and class II and is defined by the following way.

One-wave class of initial perturbations. Perturbations of this class are the same as in class |
for the functions f and II. In addition, the perturbation of ¢ is chosen not independently, but
in such a way, that the initial “outgoing” wave is canceled:

f@lr=rn-n = fo— ik + l\’e"(“‘o)’,
N()lrarpn = —2Ks(t — to)e=*t-t),
X(Ole=rios = ~iooh/n, 2)

$(O)lemrp-n = —dioofihfr} — 2K s(l — to)e*t=to)*,

We will use this class of initial perturbations for the illustration of their nonlinear evolution in
subsequent Sections.

Now the initial value for the field o for all considered classes of perturbations can be
determined by the numerical integration of the equation (2.17). We integrated it from the
left to the right, since the unperturbed functions are situated at the left side at ¢t << .

III. NUMERICAL METHOD

The specific feature of the strong - field dynamics requires a numerical code which must be
able to resolve a solution on extremely small scales. Usually some kind of an adaptive mesh
refinement algorithm {20} is implemented for these problems.

We controlled the resetting of grids “manually”. The accuracy was determined by means of
calculation of the constraint (2.17). When the absolute value of this constraint at least at one
point became large than 1075 the program saved its state and stopped. Then we investigated
output data visually, determined the “bad” region and set new grid steps. Starting again, the
program picked out necessary region and recalculated the data according to new grid steps. In
order to set IT and o according to new data, the constraints (2.16), (2.17) were also recalculated.

A. Algorithm

The system of equations (2.11) - (2.15) was solved by means of MacCormac predictor -
corrector scheme (see, for example, [11]). We tested many modifications of this scheme and
convinced ourselves that in this case various finite differences used for forward/backward
difference lead approximately to the same accuracy. - The results canvary from one domain



to another, but not very strongly. The most unijversal approach appears to be the conventional
MacCormac forward/backward diflerence, so we used. it for our calculations.

The constraint (2.16) does not contain derivatives of unknown function, so we integrated it
using a snmple mldponnt formula

:‘Hi fl+l fl-— -

t,+| - t,._

For integration of the constraint (2:17) we ‘tried to use sevexal ‘methods, such as ‘various
Runge-Kutta schemes, predxctor corrector methods, etc. The best result was obtamed by the,

simplest midpoint fmmula

: o (Xie — Xiea . T -
Gip1 = oi_; + (tig1 — t.‘—l)— (‘&——x——l + 4“.‘4"‘) , (3'1)
‘ Xi \ linn ~ L . i )

This result-is obvious because we used centered differencing for monltormg of the constrannt
(2.17)..

We calculated the maximal slope of the characterlstlcs x}'l3 on eachslice R = 1/r = const and
then chose hp (“time” R - step) according to.the Courant criterion, hp = h,Cf2. We denote
the “spatial” current integration step by h; and the maximum of the slope of characteristics on
a current slice as C = max(y R?).

The value of C tends to co as r — 0 (or R — oo) In order to prevent a destxuctlon of the

numerical algorithm, we bounded it by some value Cp,;. Surely, the Courant criterion was
satisfied with guarantee for all Cpqer < C. The final expression for hp looks as follows:

. Eh,  if C<Cmas
BZ Gagele,  if € 2 Crnes

The value of Cyy0; was set “by hand” and varied from 10 to 10* in different regions.

B. Realization remarks

The algorithm was realized as ANSI C program. For real numbers the type double was used.

The initial “spatial” (t) step was set equal to 1073, the relevant initial interval was —30.0 <
t < 30.0. So, the number of one slice points we started with was about 6000. During the
calculation; this number may increase up to.10%. In output the program saved only the part
of the points. and the distribution function of the saved-points was defined according to the
estimation of an error, produced by the usage of the coarse grid.

The initial data were calculated in the coordinate r and then converted into the coordinate

R.

The typical time- needed for evaluation of one conﬁguratxon was about 50 hours in Pentium-
166 :

IV. GENERIC SOLUTIONS

We have tested various background generic .internal configurations with values of 4 in
a range from 107! up to 10°, corresponding lo both asymptotically flat (black hole) and
not asymptotically flat EYM solutions in an external region. . Similarly to the background
configurations, the evolution of perturbations under the event liorizon turns out not to be
sensitive to the background Lype in the external region (asymptotically flat or not) and looks
qualitalively the same for Loth considered types. : .

We were able to follow Llie evolution of perturbations of both classes (I and 11) with different
(small enough) initial amplitudes, propagating through the “weak oscillation” region and the
first huge fall of the function A up to a vicinity of the first “almost Cauchy horizon” of
the “strong oscillation” region. The coinmon result is that during propagation towards the
singularily the considered perturbations donot.grow up unboundedly and look like a light ripple
on the background solutions. Therefore thic strong numerical evidence in favor of nonlinear
slabilily of generic (oscillation type) internal EYM black lole solutions is obtained.

To illustrale this statement we hiave chosen an appropriate background configuration. Being
asymptotically not flat in exterior, it exhibits all important features of EYM black hole interiors
and allows one to plot both “weak™ and “strong oscillalion” regions in the same figure with
enough resolution. The chosen bacl\gxound is characterized by the following parameters

=20 (R=05 —Inr=—069314718);
 fo = —0.302072;

oy = 0.9,

and Lhie corresponding curve of thie metric function A is plotted in Fig. 1.
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FIG. 1. Background A under Lhe event Lorizon. One can see Lwo oscillations of the function
A in Lhe “weak oscillation” region (second minimum at ~Inr = 3.81671 is non-observable in
this scal€) and the first oscillation in the “strong oscillation” region. Although the first fall of -
Apackground 15 Not very huge, it is described, however, by the reduced system of equations with
a good accuracy and therefore corresponds to the “strong oscillation” regime. ‘Thick grey lines
below mark regious depicted in 3-D plots of §A: a) corresponds to Fig.2, Lhis region is very
small; b) corresponds to I%ig.3; ¢) corresponds to Fig.4 and d) corresponds to I%ig.5.

For the illustration purposes we have used the one-wave class of initial perlurbations.
According to Section 11, it is determined by a ¢ -dependent deviation of the YM function
f from ils background value which induces the perturbation of 1I; the perturbation of the
function ¢ is defined Lo cancel the initial wave, propagating Lo the negative ¢ -direction.

We plot below the evolution of perturbations with initial parameters in (2.23):

s = 100.0; 1o=—10.0

for two different amplitudes i) = 107% and K3 = 1072 in (2.20) (we will call them “small”
and “big” perturbations respectively in the further discussion). These perturbations induce
deviations of all other funclious according Lo the full set of EYM cquations and the resulting
perturbation looks like a nonlinear ‘wave, propagaling in the spatial positive { -direction with
Lime r, direcled Lo r — 0.
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FIG. 2. The beginning of the evolution of perturbation of 8A; = A; — Apackgrouna. The initial
perturbation looks like a step. The folds of this step remain to be of a constant height during the
beginning of evolution. Further the left fold (greater t) will change while the right is constant
by definition. This figure corresponds to region a) in Fig.1. The arrow points to the direction
of thie evolution.

To show the relative size and shape of perturbations one can normalize the corresponding
functions by their equilibrium values. The value 84,, obtained as 6A; = A — Apackground
for “big” initial perturbation, is plotted in four figures: Fig.2, Fig.3, Fig.4 and Fig.5. The
considered r - regions are shown in.Fig.1 by thick grey lines. - Tle plots illustrate a strongly
uonlinear. nature of the evolution: the perturbation of the metric function A changes the relative
sign and the shape as singularity r-— 0 is approached. The perturbations of other relevant
functions behave in a similar way and we do not plot them here. -
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FIG. 3. Plot of A, in the beginning of the “weak oscillation” region. This figure corresponds
to b) region in Fig.l. The arrow points to the direction of the evolutjon.
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FIG. 4. Plot of 8A; in the “weak oscillation” region. This figure corresponds to c) region in
Iig.1. The arrow points to the direction of the evolution.

However, the perturbations do not grow unboundedly and therefore they do not destroy the
background solution. It is convenient to plot the absolute values of the maximal deviation of all
relevant functions from their backgrounds as perturbations are developed. The corresponding
plots are represented in Figures 6 — 11 for both “small” (K = 10~%) and “big” (K = 1073)
initial perturbations together with the background functions. .

These plots exhibit most general features of the perturbations, propagating in the different
considered generic backgrounds: the evolution of “small” and “big” perturbations look very
similar for all relevant functions, so the difference in initial amplitude does not produce
differences in shapes and characters of perturbations; the amplitude of perturbations of A is
approximately proportional to the absolute value of A itself (it grows in the “strong oscillation”
regime following the fall of Apsckgrouns and then decreases as Apgckground approaches the
“alinost Cauchy horizon”); perturbations of all other functions demonstrate bounded nonlinear
oscillations in the “weak oscillation” region, then they become almast constant ones in the
“strong oscillation” region up to a vicinily of an “almost Cauchy horizon”.
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FIG. 5. Plot of §A; in the “strong oscillation” region. This figure corresponds to d) region in
Fig.1. The arrow points to the direction of the evolution.
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(middle - “small” initial perturbation, top — “big” initial perturbation).
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FIG. 7. A in the “weak” oscillation region: background (bottom), absolute value of the
maximal deviation [rom the background (middle - “small” initial perturbation, top - “big”
initial perturbation).

12

3.08e-03
f5al,
5.48a-08
3.268-04
[5a,
5.020-09 i m
9.00e-01 !
R ]
)
.
) ubl
' 3
1
)
1.836-07" '
-0.688135 “In(r) ’ 13.137556
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FIG. 9. f: background (bottom), absolutle value of Lhe maximal deviation from Lhe background
(middle - “small” inilial perturbation, Lop«—‘1n§’uuhalperhubahon)
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FIG. 10. ¢:  background (bottom), absolute value of the maximal deviation from the
background {middle - “smal}” initial perturbation, top - “big” initial perturbation).

We have followed the evolution of the perturbations towards the r = 0 singularity up to the
first “almost Cauchy horizon” in the “strong oscillation” regime. However, there are no physical
reasons to consider the next huge oscillation of the metric function A, since in this region the
magnitude of the Riemannian squared scalar exceeds the Planckian value (R, ¥ > 1/ L)
and the classical description of space-time is no longer valid overthere. So, the only problem
remains to penetrate numerically through the first “almost Cauchy horizon” in the “strong
oscillation” regime. We are going to consider this problem separately along with RN -type
using the more precise numerical code. N

8.826-04
[N
1.21e-05
9.000-05
1ol
1.066-06 )
-0.688135 _ln(n) o 13.137556

FIG. 11. TI: absolute value of the maximal deviation from the background (bottom - “small”
initial perturbation, top — “big” initial perturbation); the background value of II is zero by
definition.

V. SCHWARZSCHILD - TYPE SOLUTIONS

Schwarzschild and Reissner-Nordstrom types of internal background EYM black hole solutions
are of exclusively types since they form a set of zero measure in the space of all initial data
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(5], 7). They exist only for some discrete values of (rs, fo) on a horizon and any internal
background solution of (2.18) with an arbitrary small deviated initial data from these discrete
values does correspond to a generic (oscillating) type.

‘ .
0 ) =20 =101=0 =-10 =20
iy 5
1
' initial _
H hypersurface =T =+
! . -—
:
rh " A o
2) 20 .10 0 10 20 ' b

FIG. 12. The wide table-like perturbation imposed at the initial hypersurface came from the
horizon at { = 400 moves in the negative t -direction (grey region). In the r, ¢t coordinates
a) the perturbation almost stops its motion in ¢ -direction and only goes with time r to the
singularity r = 0. It will never cross ¢ = —~20 hypersurface, but it crosses an arbitrary section
t = const > 0 in the past with necessity, as it follows from the conformal diagram, depicted
in b). The top of the “table”, which corresponds to the cross - section ¢ = 0 can reach the
singularity r = 0 before perturbations from the edges of the initial “table” (curve A) will reach
it

It can be expected that small ¢ -dependent perturbations added to the initial data of these
exceptional interiors will produce the transformation to some generic type during the nonlinear
evolution towards » — 0. We have investigated the dynamics of perturbations on various
Schwarzschild - type EYM black hole internal solutions and convinced ourselves that this
transformation really takes place and therefore S-type interiors are occurred to be unstable.

Indeed, according to (2.21), {2.22) and (2.23), the perturbations produce deviations from the
background value of the YM function f in the leading order of series expansions with respect
to » near the event horizon; it is true by definition for class I and one-wave class of initial
perturbations, while the initial perturbations of class 1I produce similar deviation of the YM
function f at-the next step on r as perturbation starts to evolve.

Thus, only if waves, produced by the initial perturbation, are suppressed fast enough during
their evolution with time r directed towards » — 0, there is a chance for the exceptional internal
solution to conserve its S-type. However, our numerical studies show that perturbations are
not suppressed during their evolution inward S-type EYM black hole interior and, as a result,
S-type singularity transforms to the generic oscillating type. ’

To illustrate this process it is convenient to investigate S-type interior, perturbed by the
initial table-like “outgoing” deviation from the background, which produces the corresponding
wave, propagating with time r from t = +o0 to ¢ < 0. Since we integrated the equation (2.17)
from the left to the right, the region with large enough negative ¢ corresponds to the originally
unperturbed S-type solution since the perturbation never can reach this region {see Fig.12].

Investigating the small r -vicinity of the singularity in different spatial t -regions one can
answer the questions about the type of the resulting solution. ’

We chose the shape of the initial perturbations of f to be a Gauss - like curve, broken at the
top by large table - like insertion [see Fig.13]: .
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FIG. 13. Initial f perturbation for the Schwarzschild - ty(fe solution. _Su}:h table - like shape

permits one to investigate the cross - sections t = £20 and t = 0. -

Ii’e_s(l—t‘“)z,"t < toy .
Sf(t) =4 K, Tt St <o
I{e-‘(t_‘“’)i, t> toz.

Values of the parameters for the initial data were set equal to:

rp = 0.613861419,
fo = —0.8478649145,
g = 0.289427236, -

K = 002,
tOl = - 100,
tn'z = 100.

This internal background S-type configuration corresponds to the asymptotically flat (black
liole) solution with N = 1 (nodes of YM function) in the external region. We choose the value
of ¢ in the way that the outgoing wave goes from { = +oo to t < (:

—dlaof‘h/r,z. + 2[{3(‘ - to‘)e_’(l—‘m)z, t < t(n
$(t) = { —dioofih/r}, o ta St<to (5.1)
—dyoofihfr2 ¥ 2K s(t — tog)e™ ) 1> 1y

This shape of the initial perturbations permits us to investigate three different spatial cross
- sections £ = —20, ¢ = 0 and ¢ = 20 independently, since the perturbations from edges of the
initial “table” {(at't = —10 and t = 10) can not reach these points during the evolution [see
Fig.12). ' ' _ » ‘ )

The solution in the first spatial cross - section corresponds to the background Schwarzschild
- type solution. Initial perturbations cannot reach this region, and we obtain' tlie typical
Scliwarzschild - like behavior {see Fig.14 a) and b)]: approaching the singularity r = 0, the
function x goes to the constant [Fig.14 b)]. o

The generic - like x goes to 0 as r — 0. It is easy to see that the cross - section thro.ugh
the top of the “table”, at t = 0 demonstrates just this type of the behavior [Fig.14 c)], since
the considered perturbation are not suppressed during the evolution towards r — 0 and the
singularity becomes of the generic {oscillating) type.
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FIG. ta. Various cross - sections of y for the Schwarzschild - type internal solution. The cross
- section ¢t = —20 (a) corresponds to the non-perturbed background solution: approaching the
singularity r = 0, the function x goes Lo the constant {b), while for any generic (oscillating)
internal solution the function x goes to 0 as  — 0. The cross - sections £ = 0 aud { = +20 (c),
{d) demonstrates that the internal solution becomes the generic one.

Cousidering a small vicinily of r = 0, one can see thal the resulting solution has already the
genceric type [Fig.14 d)} also in the third spatial cross - section t = +20. The transformation of
S-type to the generic one in Uhis region is caused by the shift of the apparent horizon position.
The pulse of the considered perturbation shifts the ADM mass of the system and the position
of the apparent horizon 1y — 7y, + &7y, while the relevant value of the YM function on the
apparent horizon fy remains unperturbed. As a result, new initial data (r) + 8y, fo) for the
homogeneous system (2.18) now corresponds to the generic type of the internal solution.

VI. CONCLUSIONS

We have investigated the dynamical evolution of small initial perturbations in space-time
regions which correspond to internal part of a spherically symmetric black hole in non-Abelian
purely magnetic SU(2) EYM theory. The oblained results give strong numerical evidence in
favor of nonlinear stability of a generic (oscillating) type of EYM black hole interiors while an
exceptional Schiwarzschild - Lype iuleriors turn out to be unslable and transform to the generic
Lype as perturbations are developed towards a singularity. )

Now one can expect Lthat the generic (oscillating) type of the EYM black hole singularity is
stable as well with respect to the perturbations, penetraling into the internal region from the
exlerior through the evenl horizon. Moreover, the generic interior solution can pretend to be
the final stage of a spherically symmetric collapse of the Yang-Mills field after the event horizon
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is formed. To check this expectations one should use the null coordinates and the more precise
software tools to attack the problem numerically. This work is in progress now.
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Honeu E.E., Tenmiokos M.H., llynas M.M.
DBOMIOUHA l-jenuHcﬁHux BO3MYIIEHHI] BHYTPH YEPHBIX JBIP
B TeopHy Ditnurreiina—SAnra—Mmuuica

E2-98-238

otep iZZﬁCZﬁMi?ﬁszii :HCJICHHOI‘O HCCNIENI0BAHHR IBOMOLIH HETMHEHHBIX BO3MYLeUUit BHYTPH
e CTPH L epHbIX IBlp B TeopHH DiiHwrTeiina—Anra—Muwuica (9AM). Henasuue
D chonaR PoKasaT I (:{‘lHC HOBOTO THIIA MOBEACHAS METPHKH BHYTPH YcpHHIX Jbip DM, Merpuxa
e i Dockotes Tm:u:umnpyef npH NpHONHXEHHH K CHHIYIAPDHOCTH M ARNSETCA MPOCTPaH-
CroenmonoNoD 0,6 a3 MHKCMacTep». C NOMOIWBIO afaNTHBHOTO YHCJICHHOIO aIrOpPHTMA CaMo-
oo o Pa3OM HCC/IE/lOBaMA IBOMIOUHA PAMTHUHLIX THIOB ChepHYECKH CHMMETPHYHBIX

, PACNPOCTPAHAIOMMXCE OT BHYTPeHHE! OKPECTHOCTH BHEIIHETO TOPH3OHTA MO HANIPABIEHHIO
ll;icuﬂrynxpﬂocm. TToyyeHHBIe pe3ynbTaTH JAKOT YHCICHHOE NOXTBEPKACHUE HEMUHEHHOMA cTabHapHOCTH
m;rp;l—::;oall :;;}::)ﬂ(bix:piilgdb%mgro Buna. C 1pyroit CTOpPOHBI, BHYTpeHHUE pecHud DM yepurix
o e pcmem;ﬁ . a;; :;3 a(;gf::y:{c;:c;m JIHIIB MHOXECTBO HyJIEBOH Mephl B NMPOCTPAaHCTBE
ot e, 8 abWIbHBIMH ¥ npeoGpasyroTca B OOLHA BHA NPH BKIIIO-

Pa6ota Buinonsena B JlaGoparopust Teopetnyeckoi ¢u3uxu um. H.H.BoromwoGosa u B Jlabopa-
TOPHH BHICOKHX 3Hepruii OMAH. g

penpnnt OObeAMHEHHROTO HHCTHTYTA AACPHLIX HeclepoBanuil. JyGHa, 1998

Donets E.E., Tentyukov M.N., Tsulaia M.M.
Evolution of Nonlinear Perturbations Inside Einstein—Yang—Mills Black Holes

E2-98-238

Wc. present our rcst{lts on numerucal study of evolution of nonlinear perturbations inside sphericall,
(sjymmetnc black holes in the SU(2) Einstein—Yang—Mills (EYM) thcory. Recent developmem{
ezﬁg?sm:n a nfz\;: tytpclz of the .?lehavior of the metric for EYM black hole interiors; the generic metric

infinitely  osci ating approach to the singularit ich i i
but not (?f the mlxmasFer type. The evolution of various types ofgsphen'):;all;v ?;/‘l:rll]mctlls'ic aemxsr[;:;'ehke
propagating frf)m the internal vicinity of the external horizon towards the singularity isp investi I:tn Sci
in a s.clf-cor.mslstem. way using an adaptive numerical algorithm. The obtained results give sfroz
numerical evidence in fe}vor f’f nonlinear stability of the generic EYM black hole interiors. Alternativel ;
the EYM black hole interiors of S (chwarzchild)-type, which form only a zero measure susz;

in the spac lutions type
e of all internal solution are found to be unstable and transform to the generic as
nstab g
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