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I. INTRODUCTION 

According to the proved singularity theorems [l] the space-time singularities are the most 
generic features of Einstein's equations. On the other hand, the nature of the space-time 
singularity is model - dependent, and still no definite answer about its most generic type exists. 

It is believed that the mixmaster type sil).gularity [2), which is space-like, local and oscillatory 
can pretend to be a generic one in the general cases of a gravitational collapse and in spatially 
homogeneous cosmological models [3]. The numerical works (see [4] and ref's therein) support 
this statement for some spatially inhomogeneous cosmological models too. 

However, the recent studies ( [5-7]) of an internal structure of spherically symmetric none 
Abelian SU(2) Einstein-Yang-Mills black holes exhibit a new rather unexpected type of the 
corresponding singularity, which is space-like, infinitely oscillating but not of the mixmaster 
type. This behavior of the metric is caused by the nonlinear nature of a source (Yang-Mills) 
field in strong-field region near the black hole singularity. Thus, the generic singularity inside 
non-Abelian EYM black holes can be a possible alternative to the mixmaster one if a nonlinear 
self-interacting matter field is included. 

The black hole solutions in the Einstein-Yang-Mills (EYM) model are very interesting objects 
for several reasons [8]. They violate the naive no-hair conjecture and exhibit a discrete structure 
for an external solutions which come from the corresponding singular boundary-valued problem, 
imposed in a region between the event horizon and the spatial infinity. Being considered 
dynamically, regular Bartnik-McKinnon solitons [9] (limited cases of EYM black holes in a 
lim_it of a shrinking event horizon) are found to be unstable both linearly [10] and nonlinearly 
[11]. The corresponding non-Abelian EYM black hole solutions in an external region are 
also unstable under small linear perturbations, and there exist strong evidences that they 
are unstable nonlinearly [12]. 

The goal of the present work is to study the evolution of small but nonlinear perturbations, 
arising and propagating in the internal region of non-Abelian EYM black holes towards the 
singularity. We solve the full system of self-consistent EYM evolution equations using some 
kind of an adaptive mesh refinement method for numerical simulations. 

The dynamics of small perturbations in black hole interior regions were investigated first for 
the Reissner-Nordstriim black holes [13] - [14]. The qualitative predictions of an unbounded 
growth of perturbations near the Cauchy horizon were confirmed later in a rigorous self­
consistent analytical approach by W. Israel and E. Poisson [15]. 

Our investigations shows that small perturbations which evolve inside non-Abelian EYM 
black holes of the generic type do not grow unboundedly and it allows us to put forward the 
conjecture, that unlike to EYM black hole solutions in an external (weak field) region, the 
corresponding generic (oscillating) internal solutions are stable, while an exceptional S-type 
internal solutions transform to a generic one under the influence of nonlinear perturbations.· 
Thus, the generic (oscillating) type of the space-time can be a final stage of a spherically 
symmetric collapse of the Yang-Mills field in an internal region of an acquired EYM black hole. 

Recently Choptuik, Chmaj and Bizori [16] have studied the collapse of the self-gravitating 
YM field (see also [17]). They have investigated the external area of the collapsing matter up 
to the horizon formation. To penetrate under horizon it is necessary to use some kind of null 
coordinates [18) in order to give a final answer on the question about the nature of the resulting 
space-time singularity. 

In Section II we write down the full system of EYM equations and discuss imposed initial 
conditions and background configurations; in Section III we briefly describe our numerical 
algorithm; in Section IV we discuss the evolution of perturbations inside generic ( oscillating) 
EYM black hole interiors, and in Section V - inside S-type interiors; Section VI contains the 
conclusions. 
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II. THE MODEL AND FJELD EQUATIONS 

We use a spherically symmetric purely magnetic SU(2) ansatz for the Yang-Mills connection 

A= (f(t,1·) - l)(T4>d0 -T9sin0d</>), (2.1) 

where T4> and T9 are spherical projections of the SU(2) generators. The general ansatz for the 
spherically symmetric SU(2) YM field admits ~!so the second independent function, originated 
from the Ao component of connection. However, we omit it here since non-Abelian SU(2) EYM 
black hole solutions do not exist with nonzero value of Ao (19). 

The four-dimensional spherically symmetric metric tensor also admits two independent 
functions. Therefore we can choose the following parametrization of the interval: 

D..u2 r2 . 
ds 2 = --dt2 - -dr2 - r 2d02 

- r2 sin
2 

0dA.
2

• r2 D.. . 'I' 

(2.2) 

Both metric functions D.. and u as well as the YM function / depend on r and t variables. 

Let us denote 

D,. 
D=-, 

r 

rj 
II= Du' 

<p = f', . (I= 8r, . = 81). 

After that the full set of EYM equations looks as follows: 

. .. D D (12 1)2 
1-D'=11:-II2 +11:-<f>2+i;. - , 

r r 2r2 

~ = '3..(,i,2 + II2), 
u r 
. uII</>D2

-
D = -211:---

j = Du II, 
r 

I'=</>, 

r2 ' 

(
Du <t>)' - fl= uf(/2-1)' 
r r 2 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
( ~u II)' - ¢ = 0. 

Note, that equation (2.3) corresponds to the tt component of Einstein equations Gl = 11:T/, 
equation (2.4) - to the difference of tt and rr components Gl - G~ = 11:(T/-T;), equation (2.5) 
is the rt component G~ = KT[ of the Einstein equations, equation (2.6) is the definition of II, 
equation (2.7) is the definition of</>, equation (2.8) is the Yang-Mills equation of motion, and 
equation (2.9) is the requirement of</> to be smooth:,f.¥i = ft¥,. 

It. is well-known that the Schwarzschildean radial coordinate r becomes the temporal 
coordinate, while t becomes the spatial one in the region under the event horizon of a black 
hole and the dynamics in the black hole interior region is described by the evolution equations 

along r, together with constraints at each slicer= const. 
Now (2.3), (2.4) and (2.7) are evolution equations, (2.8) and (2.9) are wave equations, whereas 

(2.5) and (2.6) occur to be conserved constraints, which hold automatically. Indeed, after 
differentiating of (2.6) with respect to r one has identically 

( 
. Du )' a · (Du )' • · • /--;:-II =a/- -;:-II =</>-</>=0. 

, '},.. ....... __ .,. -.....11 ,., ....... -1 § ¼o;'~{,j.•:i1:Hi"'llu ... u ,,~ ... u::11,. 

n fll·!;J~fofi! :llCC' ,ieiai>;UlSil_ 
f 6~iSJlHOTSHA 
··- ----



Following the same lines, if.we d,,mote the relevant comb_ination in (2.5) as 

then it can be easily shown that 

. all<j,D2 

7 = D + 2t.--.2-• 
r 

-:---- I a' 
7 =-7-. 

(T 

So, if 7 = 0 at the initial surface r = co~st then 7 'will be zero during the evolution along r. 
As a result, there are no dynamical constraints in our EYM system in the black hole interior 
region; both constraints are kept during the evolution automatically and the system is effectively 
described by the equations (2.3), (2.4), (2.7), (2.8) and (2.9). 

However, to realize the numerical algorithm, a little different representation of unknown 
functions turns out to be more effective. It is convenient to introduce an auxiliary field 

X = 6.a/r (2.10) 

as a dynamical variable instead of 6.. Unlike 6., the field x does not exhibit oscillations for 
background generic solutions in the interior regions of EYM black holes; in terms of X the local 
speed of light ( the slope of the characteristics) is equal to ~. 

Then, approaching the black hole singularity at r ➔ 0, it is more suitable to use an inverse 
coordinate R = 1/r for the numerical integration. 

Now the resulting set of unknown functions, used for numerical study of our PDE system 
consists of 

X = 6.aR, a, <f, = xR3f', Il = j 
(here and below / = 8R ), and the full system of equations obtained from (2.3), (2.4), (2.8), 
(2.9) finally has the form: 

I (t,; ( 2 ' 2 1 ) 
X = a 2 / - 1) - R2 ' 

a' K. 2 2 
-=-R32(ef,+Il), 
a X 

<j,' - !!._ (_!!_) = a/(/2 - 1), at R3x -

I {) ( <j, ) 
Il - Dt RJx = O, 

f' = R!x. 

Apart from these equations we also use the constraints 

Il = j, 
a x lief, - = -+2t.-
(T X X 

in order to -set the initial data and to keep the control of the accuracy. 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

We set the coupling constant t. = 1 hereafter without loss of generality. 
After the completion of numerical calculations we display the results again in terms of metric 

function 6.(r, t) to get more insights on their physical meaning and to compare them with the 
corresponding background configurations. 
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A. Backgro~11d con,figu~jltions 

We study the evolution of perturbatjons, propagating on a homogeneous (t -independent) 
backgrou.-1d c01_1figurations wl;ich. coriespond. to ihe i'nteriors or' s1jherically symin'etric EYM 
bla~k holes. These coi1figurations .arc· tlie solutions' of the system· . . . . 
,. - .. _ .... : ' ·. . ", .. ·· ,. ,. .- '' ' 

6.(t/i-)' + (i ~·(J2 7: 1)2) /':: /(/2r- 1) 

(
6.)' . (!').. . . . -; +2.~ -~ ·= 1- (/2,~ 1)2 (2.18) 

•, 2/'2 
(Ina)'= -

r 

obtained from (2.8), (2.3) and (2.4), neglecting the t -depen"dence in the domain r < rh: The 
iuitial conditions are imposed in the small vicinity of the surface r = rh which is implied to be 
the position of a simple (not.double) event horizon. As it was sl;own recently [5-7], the generic 
solution of the system (2.18), corresponding to the. interior of a static spherically sym1netric 
EYM black hole, has no Cauc.hy hori:wns, and the metric exhibits an infinitely oscillating 
behavior (but not of the mixmaster type) with an amplit'ude, unboundedly growing towards 
the space-like singularity. . _ . 

The oscillating structure of the metric for the generic solution originates from the features 
of the corresponding 2-dinicnsional autonomous dynamical system. This system effectively 
describes generic solutions in the.regime when some irrelevant terms in (2.18) (1 is negligible 
in comparison to (/2 - I )2 /i- 1 aml the YM function/ is set equal to constant, /,;,; const, while 
D,.f f- 0 remains dynamical ) are neglected near r -t O [5]. In the interior of the EYM black 
hole the metric passes through an infinite series of "almost Cauchy horizons" in the maxima of 
oscillations which alternate by subsequent huge falls of the metric function 6. in the minima; 
the frequency of oscillations of the metric exponentially grows as the singularity is approached. 
The approximate recurrence formulas, obtained in [6] allow one lo describe the behavior of the 
EYM system in such a "strong oscillation" regime with an accuracy improving towards the 
singularity. 

However, for a typical generic EYM internal black hole solution the "strong oscillation" regime 
described above docs not start just in a vicinity of the event horizon. Depending on the initial 
conditions ou the eve11l horizon, before the first huge fall of the "strong oscillation" ] regime 
begins al some,.= rose., the solution is determined by the complete system (2.18) with all terms 
relevant in the siguificant domain i-0 ,c. < r < l"h. In this domain the metric function Li, being 
uegativcly defined, also can admit a few oscillations with a small amplitude (iu comparison to 
"strong oscillations"); we call this regime as a "weak oscillation" regime. 

Ju the present paper we consider the evolution of perturbations starling from an internal 
vicinity of the event horizon and then propagatiug through the "weak oscillation" region and 
the first huge fall of the metric function 6. in the "strong oscillation" regime up lo the next 
"almost Cauchy horizon". 

As it was also shown in [5,7], for some discrete values of initial parameters, EYM spherically 
symmetric Llack holes also admit the standard Schwarzschild (S) and Heissncr-Nordstrom (RN) 
iulcriors (third, so called 111\11 iuternal solution is not asymptotically flat and we do uot consider 
it here); however such interiors are rather exceptional cases and they form only a subset of a zero 
measure in the space of all EYM internal black hole solutions. The evolution of perturbations 
inside S -type EYM black holes is investigated as well and the results will be discussed below. 

6 



nAnitial conditions 

The Cauchy problem for the system of equations (2.11)-(2.15) can be set as follows: we set 
/, </,, x at some space-like surfacer= canst and define n and c, from (2.16), (2.17). Once 
being set, the constraints (2.16) and (2.17) will be satisfied during the evolution along r due 
to the equations (2.11) - (2.15). The latter can be solved using a standard finite - difference 
technique. · 

Note, that we suggest the initial space-like hypersurface r = canst < rh situated with 
the necessity under the external event horizon. Therefore the perturbations given at this 
hypersurface have a status of fluctuations, acquiring iri an internal region of a black hole and 
they are not connected anyhow with those, propagating inward from an external region through 
an event horizon. 

The initial values of/ and <j, can be set independently. Straumann and Zhou (11) considered 
two types of initial perturbations for the case of Bartnik-McKinnon regular solitons and the 
external region of EYM black holes. They called the perturbations class I if only the YM 
function / is initially perturbed·, while the time derivative of the perturbation equals to zero 
{1</> = O; it means that the initial kinetic energy of the YM field vanishes. In class II perturbations 
the function/ remains unperturbed, but o<j, and thus the kinetic energy does not vanish initially. 

We used both these classes of initial perturbations for our problem in the internal region of 
EYM black holes. The considered initial data come from the asympthotics near external event 
horizon. Sin~e the horizon is not a regular point, we cannot set all Cauchy data independently. 
The data must satisfy the series expansions originated from the Einstein-Yang-Mills equations. 

The first order of asympthotics for background t -independent EYM equations gives A = 
d1(r - rh), a = ao + a1(r - rh), J = Jo+ / 1(r - rh), where rh is the radius of the event 
horizon and /o, ao are free parameters. Other parameters are expressed in terms of these free 
parameters as follows: . 

d1 = rh - (/5 - 1)2/rh, /1 = /o(/J- 1)/d., "• = 2ao/Nrh, (2.19) 

Thus, in order to define the background solution, we should set the values rh, / 0 , c,0 ; the 
coefficients di, Ji and aj are determined from (2.19). 

We choose an initial surface at the distance h (oner - step) under the horizon. The equilibrium 
(background) values of/ ~nd x at this surface are f = Jo - / 1h, x = -d1aoh/rh. 

Class I perturbations. In the case when small, for example, Gauss - like perturbation 

[( e-•(t~to)2 
(2.20) 

is added to the equilibrium YM function /, then the field n is determined by the equation 
(2.16), i.e., 

n(t)lr=r.-h = -2/(s(t - to)e-•(Ho)'. 

Fcir initial x we use the equilibrium value and initial <j, is also set to be unperturbed. Thus, 
class I initial perturbations are defined as follows: 

f(t)lr=r~-h = /o - fih + [( e-•(Ho)', 

x(t)lr=r.-h = -d1aoh/rh, 

<j,(t)lr=••-h = -d1ao/1h/rl 

together with n(t)lr=••-h determined above. 

(2.21) 

Class II pe1·turbations. In this case the YM function / remains initially unperturbed together 
with the corresponding function n, while the function <f, gets independent deviation from the 
background: 
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f(t)lr=••-h = 
Il(t)lr=r•-h = 
x(t)lr=r.-h 
<f,(t)lr=••-h -

/o-/1h, 
0, 
-d1aoh/rh, · 
-d1aofih/rl + [( e-•(1-to)

2
• 

(2.22) 

Both classes of initial perturbations give rise to two scattering waves. One of them propagates 
with time r in a positive spatial t -direction ("ingoing" wave) and another one propagates 
in the negative t -direction ("outgoing" wave). After some interference in a region around 
t = t0 they move independently from each otheI in opposite spatial directions. We investigated 
the evolution of class I and class II initial perturbations on various EYM black hole interior_ 
backgrounds and found their behavior to be the same after the "ingoing" and "outgoing" 
waves are completely divided in the space. Moreover, if we set the initial perturbation with a 
symmetry with respect to the center of perturbation 10 , this symmetry is conserved during the 
evolution. 

That is why one can consider without loss of generality the third class of initial perturbations 
in addition to the described above ones; the initial perturbations of this class determine only one 
initial wave, propagating, say, in a positive t -direction. This class occurs to be a combination 
of class I and class II and is defined by the following way. 

One-wave class of initial perturbations. Perturbations of this class are the same as in class I 
for the functions / and n. In addition, the perturbation of <f, is chosen not independently, but 
in such a way, that the initial "outgoing" wave is canceled: 

/(t)lr=••-h 
n(t)lr=r.-h 
x(t)lr=r.-h 
q,(t)lr=••-h 

= /o - /1h + K e-•(t-to)', 

= -2K s(t - t0 )e-•<1- 10 )
2

, 

-d1aoh/rh, 
-d1ao/1h/rl - 2[( s(t - t0 )e-•(Ho)

2
. 

(2.23) 

We will use this class of initial perturbations for the illustration of their nonlinear evolution in 
subsequent Sections. 

Now the initial value for the field c, for· all considered classes of perturbations can be 
determined by the numerical integration of the equation (2.17). We integrated it from the 
left to the right, since the unperturbed functions are situated at the left side at t < < t0 • 

III, NUMERICAL METHOD 

The specific feature of the strong - field dynamics requires a numerical code which must be 
able to resolve a solution on extremely small scales. Usually some kind of an adaptive mesh 
refinement algorithm (20) is implemented for these problems. 

We controlled the resetting of grids "manually". The accuracy was determined by means of 
calculation of the constraint (2.17). When the absolute value of this constraint at least at one 
point became large than 10-5 the program saved its state and stopped. Then we investigated 
output data visually, determined the "bad" region and set new grid steps. Starting again, the 
program picked out necessary region and recalculated the data according to new grid steps. In 
order to set n and c, according to new data, the constraints (2.16), (2.17) were also recalculated. 

A. Algorithm 

The system of equations (2.11) - (2.15) was solved by means of MacCormac predictor -
corrector scheme (see, for example, [111). We tested many modifications of this scheme and 
convinced ourselves that in this case various finite differences used for forward/backward 
difference lead approximately to the same accuracy. The results can vary froin one domain 
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to another, but not very strongly. The most universal approac_h appears to be the conventional 
MacCormac forward/backward difference, so we used_ it for our calculations. 

The constraint {2.16) does not contain derivatives of unknown function, so we integrated it 
using a simple midpoint formula: ' 

II . _fi+J - /;-1 ,- . 
t;+1 - l;-1 

For integration of the constraint {2.17) we tried to use _sever~! ·methods, s_uch as ·various 
Runge-Kufta schemes, predictor-corrector methods, etc'. The best result was o_btained by the, 
simplest midpoint formula: · · · 

. ( CT; (Xi+J - Xi-I ) 
CTi+J = CTi-1 + i;+J - /;_i)~ . _ + 41J;«p; 

X, t,+i - '•-I {3,1) 

This result is obvious because we used centered differencing for n;10nitoring of the constraint 
{2.17). 

We calculated the maximal slope of the characteristics xR3 on each slice R = 1/r = canst and 
then chose hn ("time" R - step) according to the Courant criterion, hn = h,C /2. We denote 
the "spatial" current integration step by h1 and the maximum of the slope of characteristics on 
a current slice as C = max(xR3). 

The value of C tends to= as r -t O (or R -too). In order to prevent a destruction of the 
numerical algorithm, we bounded it by some value Cmar· Surely, the Courant criterion was 
satisfied with guarantee for all Cmax < C. The final expression for hn looks as follows: 

{ 

Qi;,_ 
2 ' hn = ~ 
2 ' 

if C < Cmar 
if C ~ Cmax 

The value of Cmax was set "by hand" and varied from 10 to 104 in different regions. 

n. Realization remarks 

The algorithm was realized as ANSI Cprogram. For real numbers the type double was used. 
The initial "spatial" (t) step was set equal to 10-3

, the relevant initial interval was -30.0 $ 
$ 30.0. So, the number of one slice points we started with was about 6000. During the 

calculation, this number may increase up to 106• In output the program saved only the part 
of the points: and the distribution function of the saved-points was defined according to the 
estimation of an error, produced by the usage of the coarse grid. 

The initial data were calculated in the coordinate r and then converted into the coordinate 
R. 

The typical time needed for evaluation of one configuration was about 50 hours in Pentium-
166. 

IV. GENERIC SOLUTIONS 

We have tested various background generic internal configurations with values of rh in 
a range from 10-1 up to 105

, corresponding to both asymptotically flat (black hole) and 
not. asymptotically. flat EYM solutions in an external region. Similarly to the background 
configurations, the evolution of perturbations under the event horizon turns out not to be 
sensitive to the background type in the external region (asymptotically flat or not) and looks 
qualitatively the same for Loth considered types. 
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We were aLle to follow the evolution of perturbations of both classes (I and II) with different 
(small enough) initial amplitudes, propagating through the "weak oscillation" region and the 
first huge fall of the function ~ up to a vicinity of the first "almost Cauchy horizon" of 
the "strong oscillation" region. The coinmon result is that during propagation towards the 
singularity the considered perturbations donot.grow up unboundedly and look like a light ripple 
on the background solutions. Therefor<; the"-strong numerical evidence in favor of nonlinear 
stability of generic (oscillation type) internal EYM black hole solutions is obtained. 

To illustrate this statement we have dwse_n an appropriate background configuration. Being 
asymptotically not flat in exterior, it exhibits all important features of EYM black hole interiors 
am! allows one to plot both "weak" and "strong oscillation" regions in the same figure with 
enough resolution. The chosen bac"kground is characterized by the following parameters 

1"h = 2.0. (R = 0.5, - In r = -0.69314718); 
/u = -0.302072; 
CTo = 0.9, 

and the corresponding curve of the metric function ~ is plotted in Fig. I. 

-5. 57a-Ol I ~ 
C' I 
No 

<\., I .... I 

Ci::: 
C ~l bl 

-1.,oa+oo ! :X: 1-
<) 

-o. 688135 -ln(r) 12. 951982 

FIG. 1. Background ~ under the event horizon. One can see two oscillations of the function 
~ in the "weak oscillation" region (second minimum at - In 1· = 3.81671 is non-observable in 
this scale) and the first oscillation in the "strong oscillation" region. Although the first fall of 
~background is not very huge, it is described, however, by the reduced system of equations with 
a good accuracy and therefore corresponds to the "strong oscillation" regime. Thick grey lines 
below mark regious depicted in 3-D plots of o~: a) corresponds to Fig.2, this region is very 
small; L) corresponds to Fig,3; c) corresponds to Fig.4 and d) corresponds to Fig.5. 

For the illustration purposes we have used the one-wave class of initial perturbations. 
According lo Section 11, it is determined by a I -dependent deviation of the YM function 
/ _from its background value which induces the perturbation of II; the perturbation of the 
function 4> is defined to cancel the initial wave, propagating to the negative I -direction. 

We plot below the evolution of pertmbations with initial parameters in (2.23): 

,; = 100.0; lo= -10.0 

for two different amplitudes /{1 = 10-4 and [{2 = 10-3 in (2.20) (we will call them "small" 
and "big" perturbations respectively in the further discussion). These perturbations induce 
deviations of all other functions accordiug to the full set of EYM equations and the resulting 
perturbation looks like a nonlinear wave, propagating in the spatial positive I -direction with 
timer, directed lo r -t 0. 
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FIG. 2. The beginning of the evolution of perturbation of 8tl.2 = tl. 2 - Ll.background· The initial 
perturbation looks like a step. The folds of this step remain to be of a constant height during the 
beginning of evolution, Further the left fold (greater t) will change while the right is constant 
by definition. This figure corresponds to region a) in Fig.l. The arrow points to the direction 
of the evolution. 

To show the relative size aud shape of perturbations one can normalize the corresponding 
functions by their equilibriu,myalues. The value 84~, obtained as 8tl.2 = Ll.2 - Ll.background 

for "big" initial perturbation, is plotted in four figures: Fig.2, Fig.3, Fig.4 and Fig.5. The 
consiµ_ered r ~ regions _are shown in. Fig. l by thick grey lines. The plots illustrate a strongly 
nonlinear- nature of the.evolution: the perturbation of the metric function Ll. changes the relative 
sign and the shape as singularity r -t O is approached. The perturbations of other relevant 
functions behave in a similar way and we do not plot them here. 

t 
FIG. 3. Plot of 8ti.2 in the beginning of the "weak oscillation" region. This figure corresponds 

to b) region in Fig.l. The arrow points to the direction of the evolution. 

10 

, l 
I 

:) 

t 

-2 

I 
FIG. 4. Plot of 8tl.2 in the "weak oscillation" region. This figure corresponds to c) region in 

Fig.l. The arrow points to the direction of the evolution. 

However, the perturbations do not grow unboundedly and therefore they do not destroy the 
background solution. It is convenient to plot the absolute values of the maximal deviation of all 
relevant functions from their backgrounds as perturbations are developed. The corresponding 
plots are represented in Figures 6 - 11 for both "small" (I< = 10-~) and "big" (I< = 10-3 ) 

initial perturbations together with the background functions. 
These plots exhibit most general features of the perturbations, propagating in the different 

considered generic backgrounds: the evolution of "small" and "big" perturbations look very 
similar for all relevant functions, so the difference in initial amplitude does not produce 
differences in shapes and characters of perturbations; the amplitude of perturbations of ti. is 
approximately proportional to the absolute value of Ll. itself (it grows in the "strong oscillation" 
regime following the fall of Ll.background and then decreases as fl.background approaches the 
"almost Cauchy horizon"); perturbations of all other.functions demonstrate bounded nonlinear 
oscillations in the "weak oscillation'' region, then· they become almost constant ones in the 
"strong oscillation" region up to a vicinity of an "almost Cauchy horizon". 

FIG. 5. Plot of 8tl.2 in the "strong oscillation" region. This figure corresponds to d) region in 
Fig.l. The arrow points to the direction of the evolution. 
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FIG. 6. Ci. background (bottom), absolute value of the maximal deviation from the background 
(middle - "small" initial perturbation, top - "big" initial perturbation). 
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FIG. 7. Ci. in the "weak" oscillation region: background (bottom), absolute value of the 
maximal deviation from the background (middle - "small" initial perturbation, top - "big" 
initial perturbation). 
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background (middle - "small" initial perturbation, top - "big" initial perturbation). 

We have followed the evolution of the.perturbations towards the r = 0 singularity up to the 
first "almost Cauchy horizon" in the "strong oscillation" regime. However, there are no physical 
reasons to consider the next huge oscillation of the metric function fi, since in this region the 
magnitude of the Riemannian squared scalar exceeds the Planckian value ( R,.,>.,R'.v>., > 1/ £!1.J 
and the classical description of space-Lime is no longer valid overthere. So, the only problem 
remains to penetrate numerically through the first "almost Cauchy horizon" in the "strong 
oscillation" regime. We are going to consider this problem separately along with RN -type 
using the more precise numerical code. 
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FIG. 11. TT: absolute value of the maximal deviation from the background (bottom - "small" 
iuitial perturbation, top - "big" initial perturbation); the background value of n is zero by 
definition. 

V. SCHWARZSCHILD - TYPE SOLUTIONS 

Schwarzschild and Reissner-Nordstriim types of internal background EYM black hole solutions 
are of exclusively types since they form a set of zero measure in the space of all ·initial data 
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(5), (7). They exist only for some discrete values of (rh·, / 0 ) on a horizon and any internal 
liackground solution of (2.18) with an arbitrary small deviated initial data from these discrete 
values does correspond to a generic (oscillating) type. 

0¥""""'.,_ 
I• 
I 

: initial 
1 hypersurface 

I I 'Rj;iiffl:t. : _;;;;;> • 

, • I : I :· 1--... ~" 
a) -20 -IO 0 10 20 b) 

FIG. 12. The wide table-like perturliation imposed at the initial hypersurface came from the 
horizon at t = +oo moves in the negative t -direction (grey region). In the r, t coordinates 
a) the perturbation almost stops its motion in t -direction and only goes with time r to the 
singularity r = 0. It will never cross t = -20 hypersurface, but it crosses an arbitrary section 
t = const > 0 in the past with necessity, as it follows from the conformal diagram, depicted 
in b). The top of the "table",. which corresponds to the cross - section t = 0 can reach the 
~iugularity r = 0 before perturbations from the edges of the initial "table" (curve A) will reach 
1L. . 

It can be expected that small t -dependent perturbations added to the initial data of these 
exceptional interiors will produce the transformation to some generic type during the nonlinear 
evolution towards r ➔ 0. We have investigated the dynamics of perturbations on various 
Schwarzschild - type EYM black hole internal solutions and convinced ourselves that this 
transformation really takes place and therefore S-type interiors are occurred to be unstable. 

Indeed, according to (2.21), (2.22) and (2.23), the perturbations produce deviations from the 
background value of the YM function / in the leading order of series expansions with respect 
to 1· near the event horizon; it is true by definition for class I and one-wave class of initial 
perturbations, while the jnitial perturbations of class II produce similar deviation of the YM 
function f at the next step on r as perturbation starts to evolve. 

Thus, only if waves, produced by the initial perturbation, are suppressed fast enough during 
their evolution with timer directed towards r ➔ 0, there is a chance for the exceptional internal 
solution to conserve its S-type. However, our numerical studies show that perturbations are 
not suppressed during their evolution inward S-type EYM black hole interior and, as a result, 
S-type singularity transforms to the generic oscillating type. 

To illustrate this process it is convenient to investigate S-type interior, perturbed by the 
initial table-like "outgoing" deviation from the background, which produces the corresponding 
wave, propagating with timer from t = +oo to t < 0. Since we integrated the equation (2.17) 
from the left to the right, the region with large enough negative t corresponds to the originally 
unperturbed S-type solution since the perturbation never can reach this region (see Fig.12). 

Investigating the small r -vicinity of the singularity in different spatial t -regions one can 
answer the questions about the type of the resulting solution. 

We chose the shape of the initial perturbations of/ to be a Gauss - like curve, broken at the 
top by large table - like insertion (see Fig.13): 
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FIG. 13. Initial / perturbation for the Schwarzschild - type solution. 

permits one to investigate the cross - sections t = ±20 and t ~ 0. · 

{ 

I( e~•(f-tod', t < io1 

J/(1) = K, . to1::; I :S 102 
I( e~•(t-to,)', I > 102 · 

Values of the parameters ·for the initial data were set equal to: 

rh = 0.613861419, 
Jo = -0.8478649145, 
ao = 0.289427236, 
I( = 0.02, 

101 = -10.0, 
102 = 10.0. 

=-.J 
30 

Such table - like shape 

This internal background S-type configuration corresponds to the asymptotically flat (black 
hole) solution with N = I (nodes of YM function) in the external region. We choose the value 
of <f, in the way that the outgoing wave goes from I = +oo to I < 0: 

{

-d1aof1h/rl + 21( s(I - l01)e~•(Hod', I < 101 
</>(I)= -d1aof1h/rl, 101 .:SI :S 102 

-di aof1h/rl + 21( s( I - lo;)e-•(Ho,)', I > 102 
(5.1) 

This shape of the initial perturbations permits us to investigate three different spatial cross 
- sections I = -20, I·= 0 and I ~ 20 independently, since the perturbations from edges of the 
initial "table" (at I = -10 and I = 10) can not reach these points during the evolution (see 
Fig.12]. 

The solution in the first spatial cross - section corresponds to the background Schwarzschild 
- type solution. Initial perturbations cannot reach this region, and we obtain the typical 
Schwarzschild - like behavior (see Fig.14 a) and b)]: approaching the singularity r = 0, the 
function x goes to the constant (Fig.14 b)]. 

The generic - like x goes to O as r ➔ 0. It is easy to see that the cross - section through 
the top of the "table", at I = 0 demonstrates just this type of the behavior (Fig.14 c)), since 
the considered perturbation are not suppressed during the evolution towards r ➔ 0 and the 
singularity becomes of the generic ( oscillating) type. 
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0.01 0.02 0.0) 0.04 0.05 0 0.00002 0.00006 0.0001 

I•'IG. 14. Various cross - sections of X for the Schwarzschild - type internal solution, The cross 
- section I = -20 (a) corresponds to the non-perturbed background solution: approaching the 
singularity r = 0, the function ,y goes to the constant (b), while for any generic (oscillating) 
internal solution the function x goes to Oas r ➔ 0. The cross - sections I= 0 and i = +20 (c), 
(d) demonstrates that the internal solution becomes the generic one. 

Considering a small vicinity of r = 0, one can see that the resulting solution has already the 
generic type (Fig.14 <l)) also in the third spatial cross - section I = +20. The transformation of 
S-type to the generic one in this region is caused by the shift of the apparent horizon position. 
The pulse of the considered perturbation shifts the ADM mass of the system and the position 
of the apparent horizon 1·1, ➔ l'h + Srh, while the relevant value of the YM functioi1 on the 
apparent horizon / 0 remains unperturbed. As a result, new initial data (rh + S1·h, Jo) for the 
homogeneous system (2.18) now corresponds lo the generic type of the internal solution. 

VI. CONCLUSIONS 

We have investigated the dynamical evolution of small initial perturbations in space-time 
regions which correspond to internal part of a spherically symmetric black hole in non-Abelian 
purely magnetic SU(2) EYM theory. The obtained results give strong numerical evidence in 
favor of nonlinear stability of a generic (oscillating) type of EYM black hole interiors while an 
exceptional Schwarzschild - type interiors turn out to be unstable and transform to the generic 
type as perturbations are developed towards a singularity. 

Now one can expect that the generic (oscillating) type of the EYM black hole singularity is 
stable as well with respect to the perturbations, penetrating into the internal region from the 
exterior through the event horizon. Moreover, the generic interior solution can pretend to be 
the final stage of a spherically symmetric collapse of the Yang-Mills field after the event horizon 

17 



is formed. To check this expectations one should use the null coordinates and the more precise 
sortware tools lo attack the 1froblem numerically. This work is in progi·ess now. 
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,!lotteu E.E., TeHTIOKOB M.H., Uymu1 M.M. 
3BOJJIOUHll HemrneiiH!dX BOJM}'llleHHII BHyrpH 'IepHLIX Jl!,Ip 
B TeopHH 3iiHWTeiiHa-Rma-MWIJlca 

E2-98-238 

IlOJJyqeHLI pe3yJJLTaTLI 'IHCJleHHOfO HCCJie.!IOBaHHJI 3BOJIIOUHH HeJJHHeiiHLIX BOJM}'llleHHii BHyrpH 
ccpeptt'IeCKH CHMMeTPl!'JHl,IX 'IepHLIX /U>IP B TeopHH 3iiHWTeiiHa-RHra-MWIJlca (3RM). He.!laBHHe 
IICCJle.!IOBaHHJI IlOKaJaJJH HaJJH'IHe HOBOfO THna noBe.11eHl!JI MeTpHKH BHyrpll qepHLIX .!ll>IP 3RM. MeTpHKa 
o6wero BIi.iia 6ecKOHe'IHO OCUHJIJJHPYCT npn nptt6JJHlKeHHH K CHHl)'JJllpHOCTH u JIBJJJleTCJI npOCTPaH­
CTBeHHono.1106ttoii, a He THna «MHKCMacrep». C IlOM0111LIO a.11anTHBHOro 'IHCJieHHOfO anropttTMa ca\lo­
COfJJaCOBaHHl,IM o6paJOM IICCJle.!IOBaHa 3BOJIIOI.tlill paJJJH'IHl,JX THDOB ccjleptt'IeCKH CHMMeTPH'IHLIX 
BOJM}'llleHHH, pacnpoCTPaHJIIOIUHXCJI OT BHyrpeHHeii OKpeCTHOCTH BHewHero ropH30HTa no HanpaBJJeHHIO 
K CHHl)'JIJIPHOCTH. IlonyqeHHLle peJyJJLTaThl .!lalOT 'IHCJJeHHOe IlO.!ITBePlKJleHHe HeJJHHeHHOii CTa6HJJLHOCTH 
BHyrpeHHOCTH 'IepHLIX .!ll>IP 3RM o6mero Bil.Ila. C .11pyroii CTOpOHLI, BHyrpeHHHe peweHHJI 3RM qepHLIX 
.!ll>IP THna llIBapu111HJJLJ1a, KOTOpLie o6paJyroT Beem JIHW!, MHOJKeCTBO HyJJeBoii Mep1,1 B npoCTpaHCTBe 
Bcex BHyrpeHHIIX peweHHii, OKaJLIBalOTCJI HeCTa6HJJLHLIMH tt npeo6pa3YfOTCJI B o6IUHii BIi.ii npH BKJJIO-
'IeHHH BOJM}'llleHIIH. 

Pa6oTa BLIIlOJJHeHa e Jla6oparopHH TeopeTH'JeCKOii cjJHJHKH HM. H.H.EorOJJro6oea II B Jla6opa­
TOpllll BLICOKHX 3Heprnii OH51H. 

IlpenpHHT O6Le.1111HeHHOro HHCTHTyTa JI.!lepHLIX HCCJle.!IOBaHHH. ,!ly6Ha, 1998 

Donets E.E., Tentyukov M.N., Tsulaia M.M. E2-98-238 
Evolution of Nonlinear Perturbations Inside Einstein-Yang-Mills Black Holes 

We present our results on numerucal study of evolution of nonlinear perturbations inside spherically 
symmetric black holes in the SU (2) Einstein-Yang-Mills (EYM) theory. Recent developments 
demonstrate a new type of the behavior of the metric for EYM black hole interiors; the generic metric 
exhibits an infinitely oscillating approach to the singularity, which is a spacelike 
but not of the rnixmaster type. The evolution of various types of spherically symmetric perturbations, 
propagating from the internal vicinity of the external horizon towards the singularity is investigated 
in a self-consistent way using an adaptive numerical algorithm. The obtained results give strong 
numerical evidence in favor of nonlinear stability of the generic EYM black hole interiors. Alternatively, 
the EYM black hole interiors of S (chwarzchild)-type, which form only a zero measure subset 
in the space of all internal solutions are found to be unstable and transform to the generic type as 
perturbations are developed. 

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics 
and at the Laboratory of High Energies, JINR . 
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