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1 Introduction 

In recent years the interest in scalar-tensor theories of gravity has been renewed. 
One reason for this is the important role which these theories play in the 
understanding of infiantionary epoch. On the other hand the scalar-tensor 
gravitation (the so called" dilaton gravity") arises naturally from the low-energy 
limit of the super-string theory [l]. 

The predictions of scalar-tensor theories may differ drastically from these 
of general relativity. For example such a phenomenon - "spontaneous· scalar­
ization" was recently discovered by Damour and Esposito-Farese as a non­
perturbative strong field effect in a massive neutron star [2]. 

Many theories of gravity with.propagating torsion involving a scalar field· 
have been proposed in the last decades, too. In such theories contr~ry to 
the usual Einstein-Cartan gravity [3]-[5], there are long-range torsion mediated 
interactions. Carrol and Field [6] have examined some observational conse­
quences of propagating torsion in a wide class of models in'-:olving a sc,alar 
field. They conclude that for reasonable models the torsion .could .be .detected . 
experimentally. ' · 

Recently a new interesting model with propagating torsion. was propos~d 
by,.Saa [7]-[11]. This model involves a non-minimally coupled s.calar fi~ld .as· a . 
potential of the torsion of space'-time. As one can see Saa's mod~! is. very,dose 
to the dilaton gravity. . · · · . · 

In the present article we investigate both analytically and numerically a· 
neutron star in the Saa's model and compare obtained results. with' these' in 
the general relativity. We a:lso discuss new predictions of the theo;y under . 
consideration. 

The paper is organized as f~ilows. In s~ction 2 we consider briefly Saa's 
model. In section 3 we give the necessary information for the vacuum solutions 
of the field equations. The equations. determining' static equilibrium solutions 
for a neutron star are discussed in section 4. Numerical results for the neutron 
star are discussed in section 5. 

2 The model with. torsion-dilaton field 

Here we give a brief description of Saa's model. For more details one can see 
[7J-[9], {12]. 
Consider four-dimensional Einstein-Cartan manifold M(l,3

), i.e. four-
dimensional manifold equipped with metric · g0 p and affine connection r a/r 
with torsion tensor S0 /Y. 

The main idea of articles [7]-[9] is to make the volume form d4 Vol 
compatible with the affine connection on the Einstein-Cartan manifold M<1

,
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via the compatibility condition: 

£v ( d4Vol) = (V µvµ)d 4 Vol, (1) 

where £v is the Lee derivative along an arbitrary vector field v and V µ is the 
covariant derivative with respect to 'the affine connection. It turns out that 
compatibility condition (1) is fulfilled if and only if." the torsion veetor 

S0 = iSaµµ 

is potential, i.e. if there exists a potential 0, such that 

Sa= Va0 =OC:0. (2) 

In this case Saa's condition (1) implies the form 

<14Voi = f(x)d4
:E = e-3~Ji;ld4x (3) 

of the volu~e element in Einstein-Cartan manifold. As it was pointed oilt in 
[12] compatibility condition (1) ieads to i:ovariantly constant scalar density f = 
e-30 Jiil with resp~ct to-the, trajispose~ cofi*'ecti?n (f.T)c,/J ~ .. =: f /Jc,"/; noi,~itl1 
respect to the usual conriectioll f a/3 "I; Therefbre tlie. Einstein-Cartan m·anifol<l 
for which compatibility c6iiditibn (1) ts fulfilled' was call~d' trans~b'scd~e~i'ui~ . 
affine arid the corres:poiidfiig theory of gravity - trahsp\Jsed~~qhi-affine tfieoi·y 
of gravity (TEATG). _ _ . . . _ . .. .. . . :, 

The most impoitarit mathematical COJlSC(lUence ◊f the eondition( 1) which 
re.ads tC> He,\'{ ,equations of.gravity is the gerleralized Ga~ss''formula: ·, . ' : ' 

f. d4Vot'(V v"J = Ii ifE ·v". IM · µ lr;.;,.;;,· µ 
(4) ' 

T}ie ilatufar choice of Hie lagi-angilifr density fdr gta~ity is; 

Ca=-' -~R = - ~ (~ +6\7,,S" + 12SµS" - k,,,,>-f<µv>-), (5) 

C being the velocity of light, K = 81rc2G being the Einstein constant, G being 
the Newton con,stant. Here R = g"f3Ro!3 is the scalar curvature with 1resped 
to the affine connection, Kµv>. = I(;,,>, + 2gµ[vS>.J is the traceless part of the 

cont~rsii>h:''J{J.1 µv == [(µ "I' =' 0, and -~ is the scalar curvature with respect .to 
the Levi-Chevita connection. 

Th~ traceless"~art of the torsion doesn't vanish only if spin~non-zero matter 
presentt fn 1t1ie' p'tesent article we consider only spinles; matter ( as we ki10w 
from Ein~tein-Cartan theory of gravity, the effects due to the spin become 
essenti~l aFcIJnsit'y''dver 1057g/cm3 [3] which' is too far from the physics in 

ijj_ f,\-"i:C:L'.'. 
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the stars). Therefore we put K0 r3-y = 0 and obtain a semi-symmetric affine 
connection: 

Sa(J "I = S[aOpJ· 

In this case we have: 

.Ca= - tR = - t (~ +6VµSµ + 12SµSµ). 

(6) 

(7) 

Denoting the lagrangian density for the matter by CM and using the volume 
element (3) we write down the action of gravity and matter in the form: 

A= Ao+ AM= - tJ d4¼l R + tf d4¼lCM. (8) 

Due to the new Gauss' formula, (4) the term 6VµSµ in the lagrangian (7) gives 
a surface term in the action integral (8) and doesn't contribute to the equations 
of motion. Hence, these equations may\be derived from the modified action: 

A= - t j d4
~l (~ +12S1'Sµ) ~- "t, j d4

¼l CM. (9) 

This action i.s very close to the one of the dilatonic gravity arising from 
low-energy limit of the superstring theory. Two essential differences between 
our case and the dilatonic one are: 1) the matter action includes the dilaton­
like term, e-30 which arises in a natural way, as a part of the volume element 
of space-time, and 2) the sign before the term 12SµSw Following the above 
described reasons we call· the field 0, which originates from the space-time 
torsion and plays the role of the dilaton field in Saa's model, "a torsion-dilaton 
field". 

Taking variations with respect to the metric 9of3 and torsion-dilaton field 
0, and using the generalized Gauss' formula, we obtain the following equations 
of motion for the geometrical fields g and 0: 

Gµ,, + Vµ V,,0 - gµ,, □0 = ~Tµ,,, 

□e = .!i, (cM - 1 ocM)- 1R 
c2 3 oe 2 • 

(10) 

Here Gµ,, = Rµv - ½Yµv is the Einstein tensor for the affine connection, its trace 
is G = gl'"Gµ,, = -R; Tµ,, = oCM/Jgl'" is the symmetric energy-momentum 
tensor of the matter ; its trace is T = gl'"Tµ,, and V .,S" = gl'"V µ V ,,0 = □0. 
From the first equation of the system (10) it follows that: 

2" ( OCM ) R = c2 a.cM -
80 

. + r .. (11) 
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Then combining this result with the second equation of the system (10) we 
obtain: 

v. S" = 00 = - 1!!. (cM - 1. UM + ! r) 
CT c2 3 50 2 • (12) 

The equation (12) shows that under proper boundary conditions, and in the 
presence only of spinless matter, the torsion-dilaton field 0 is completely de­
termined by the matter distribution. Further on, as a basic system we will use 
the system: 

Gµv+'vµ'v,_,0-gµ,_,O0= -[',Tµv, 

v S" = 00 = - 1!!. (cM _: 1 uM + !r) 
CT c2 3 50 2 • ( 1:3) 

From this system one can derive (using Bianchi identity) th~ differential con-
sequence: -

vs;+ r:sa = f RSa (14) 

- . {} 
which is a generalization of the. well-known conservation law 'v aT:', = 0 in 
general relativity. 

To have a complete set of dynamical equations one has to add to the above. 
relations the equations of motion of the very matter. For the purpose of the 
present article we need to consider only a perfect fluid. Its theory was recently 
described in [12]. Here we giv~ the basic results. 

The continuity condition describing the conservation of the fluid matter can 
be written in the form: 

f d3 'E0 n(x)ua(x) = 0, 
lac,.(1.3) (15) 

where u<>(x) is the fluid four-velocity, normalized by the relation 9af3U0 uf3 = l, 
n( x) is properly defined a fluid density, d3_'E 0 is a proper three dimensional 
surface element depending on the choice of the volume element via the Gauss' 
formula, and ~ (I,3) is an arbitrary_ domain•. 

Considering the volume element (3) as an universal one we must use it in 
the continuity condition, too. Therefore according to the generalized Gauss' 
formula we can rewrite relation (15) in the form of a continuity equation of 
autoparallel type: 

'v 0 (n(x)u 0 (x)) = 0. ( Hi) 

We take the lagrangian of the fluid with internal pressure p in the usual 
form: 

Lµ == -E = -nc2 
- nII, (17) 
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where fl is tlw elastic potential energy of the fluid ; all = -pd(¼) and the 
symbol'' i1" means that the corresponding differential form isn't exact. Taking 
i11t.o account the relation Lµ - ½ 88~; = pit's not difficult to obtain the eqyations 
of motion for geometrical fields 901 , and 0 in presence of perfect fluid: 

G1,,,,+(v1,'v,,,-gµ,,,D)0 =. -t,((c+p)uµu"-pgµ"), 

□0 = - f,(E - p); 

In addition one can show that: 

Ya1:~ 
{} 

v"T; 

= (E + p) (J~ - uau") S", 

3(E + p) tto- t1 0 S". 

or 

(18) 

( 19) 

Making use of (19) and of the continuity condition (16) one can obtain the 
equations of motion of the perfect fluid (just as in general relativity): 

" . . // {} - ( ri . !3) {} (~+p)u '\71311."- <>,,-u..,tt "\713p. (20) 

The equations ( 19) are equations of a geodesic type. In particular, considering 
dust matter (p = 0) we have: 

// {) 
u 'C\111 0 = 0, (21) 

i.e. we can conclude (just as in general relativity) that a test particle in the 
theory under consideration will move on a geodesic line. We will nec>d this 
conclusion in the next sections. For more details concerning the relativistic 
perfect fluid in the theory under consideration we refer to [I 2]. 

3 · Spherically symmetric vacuum solution 

The asymptotic flat, static and splwrica.lly symmetric general solutious of the 
vacuum geometrical field equations (10) are known [13], [14]. l11 Schwarzshikfs 
coordinates they are described as a two parameter - {/\·,a} family of solutions1

: 

\i 900 = 1·'', 

('K-J),, . -I ( I"'). 
r = ½at· 2 smh 2 , 

1 WP us,· asympt.oti, rnndit.ions v -t 0, 0 -t ()- at. r -t ,x, without. loss of gP1wralit.y. 
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9ll = e'\ = ( l+J ::.J!!:. · - 2-e 2 + 1-5 _e)-2 ~-e 2 
2 , 

p = /1 ( 11· - ½/ + ¼, 

J = 3K-l 
p 

( = ½v' = .!_ £ j_e(3/C;I)v }c 
2 p r2 e 2 

Sr= 0' = /\'(. (22) 

Here and further on the prime denotes a differentiation with respect to the 
variable r. All quantities in formulae (22) are represented as functions of the 
variable· v. This is the most convenient form of the vacuum solutions. 

The parameter K presents 'the ratio of the torsion force ( as defined in [12]) 
and the gravitational one: /{ = Sr/( ½v '). In the case when K = 0 we 
have the usual torsionless Schwarzshild's solution and a = rg is the standard 
gravitational r·adius rg. 

In the model under consideration the value of the fundamental parameter of 
the theory I< (which is constant in vacuum) is not ~n indept,ndent integration 
constant. Instead, we shall show that it is determined by the total mass of the 
star, or by its radius and depe_nds on the matter distribution, on the equation 
of statfi of the star's matter, and so on via the solution of the full system of 

· equation of the star's state. 

The parameter a is positive (a > 0), and may take arbi_trary values. It is 
related to the total mass of the star, too. 

The asymptotic behaviour of the solution is: 

900 ~ 1- 2MG 
c2r ' (23) 

9ll ~ 1 ; 2c(M - Mo) 
c2r ' (24) 

where M = ½t! describes the asymptotic dependence of'g00 on the variable 
r, and the mass Mo= 3limr-+oor2Sr describes the asymptotic dependence of 
the torsion-dilaton potential 0 on r ( or the asymptotic of Sr). The mass Mo 
may hr considered as a source of torsion-dilaton force and is analogous to the 
"scalar mass" introduced in [15]. As one can see the scalar mass Mo depends 
on I<, and may be less or greater than the mass M. 

In the model under consideration;·a test particle moves along geodesic lines. 
Therefore, the keplerian-like mass measured by a test particle in the asymptotic 
region of space-time will be the 'mass M ::::C limr-+= ½r2v '. As we will see in the 
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next section, the mass M is positively defined and it's natural to consider it as 
a total mass-energy of the geometric-fields-complex {g, 0}. 

The appearance of two masses in the asymptotic solution is related to the 
violation of the strong equivalence principle (the weak equivalence principle is 
not violated). In our case the ratio Mo to M is just 3K and depends on the 
ratio /1.· of the torsion-dilaton force to gravitational one in vacuum. 

4 The Basic equations for a star 

4.1 General considerations 

Here we will discuss some general properties of the system of equations of the 
star without specifying the matter's equation of state. 

The system of the equation (18 ) for geometrical fields g and 0 can be 
rewritten in the form: 

n,, "',, "'T,, 
Gµ+3uµ=~µ, 

Bus" - 3SuS" = - ~(l - p), 
r; = (t: + p)u11 uµ - pg:, (25) 

{} 
where V is the covariant derivative with respect to the Levi-Chevita connection, 

n,, · h d" E. . ' d G µ 1s t e correspon mg mstem s tensor an 

"' 11 n s 11 s· s 11 11 n S" 11 S S" ( ) u µ = V µ + µ - g µ V" + g µ " . 26 

In this paper we restrict ourselves with consideration of the static and spher­
ically symmetric case. Hence, the metric has the form 

ds 2 = ev(rl(cdt)2 - e>-(rldr2 - r2 (d82 + sin2(B)d<p2) (27) 

in which the functions v = v(r), >. = ,\(r) depend only on the Schwarzshild's 
radial coordinate r and the torsion-dilaton field 0 depends only on r, too. 

In this case we obtain the following equations for the functions v, ,\, 0, and 
p: 

->. ( 1 >-') 1 "' --,°"O -e ;: - -;:- + ;:, = -;;re - <1u0 , 

-e-x(_~ + 1-) + 1- = - ..!!..p- 3E1 
r r 2 . r2 c2 1, · 

.!.e->- (v" + lv'2 + v'->-' - v'J..') = - .!i.p - 3E2 
2 2 r 2 c2 2, 

e->- (s; + ( 11 ';>-' + !) Sr - 3Sr 2) = ~(e - p), 

7 

p' = - ½(e+ p)v', 

P = p(e). (28) 



Here p = p( e) is the matter's equation of state and correspondingly: 

E
0
=(S'- 1-X'S + is -S 2)e->. 0- r 2 r rr r , 

E1 = ( lv'S ·+ is - 2S 2) e->. 1 2 r r r_ r , 

~2 (s'· 1 's 1,, is c:2) ->­L,2 = r +. 'iv r - 2" + ;:- r - Lr e . '(29) 

{} 
The second equation of the system (28) (i.e. G\ +3E~ = 4Tl ) may be 
considered as a constraint creating a relation between· Sr, v' and e·\, namely: 

>. I+ rv' - 6rSr - ~r2v'Sr + 6r.2Sr 2 . 
e =--------:---::-

1 + z,pr2 

Using this relation we can put our system (28) in a normal form: 

v' = 2(, 

c' = _ { + ( ~e _ { _ 
~ r· c2 r 

s; = - ~ + ( z, ( e - p) - ~ -

0' = Sr, 

~(e - p)r() e\ 
;:}(e - p)rSr) e\ 

p' = -(e + p)(, 

p = p(e), 

.\ .· l + 2r( :- 6rSr - 3r2(S,. + 6r2 Sr 2 
e = . . 

1 + ~pr2 
. . 

(:30) 

(31) 

It's seen that the first two equations are separated, and the rest gener~t~ a 
subsystem independent of. them. 

The equations (31) must be solved with proper _initial and boundary con­
ditions. From a physical point of view the solutions regular at the· ceu'ter are 
the most interesting. The regularity means that there exists a local lorentzian 
system.in neighborhood ofthe center, i.e.· e>-<0> ;; 1 a~d the pre~~ure is.finite 
at r = 0. Hence, we have limr➔O r((r) = 0, otherwise, as it may be seen from 
equation for p, the pressure will have at least logarithmic singularity at the cen­
ter. On the other hand the condition e>.(o) = 1 requires that lim,.➔0 rSr(r) = 0, 
too. The expansion oi:the equations· for ( and Sr around the center is: 

( = - 2( 
r, 

s; = _ 2S,. 
r (32) 
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Hence. the behaviour of ( and S,. around r = 0 is eon:iant. To fulfill the above 
restrictions at r ➔ 0 we must put constant = 0. Hence, we obtain ((0) = 0, 
S,.(0) = 0. As a final result these considerations imply the following initial 
conditions: 

((0) = 0, S,.(0) = 0, p(O) = Pc• (.:(0) = Ee). (:33) 

At the star surface r = R we havp tQ match interior solution with the exte­
rior (vacuum) solution. We will consider the model of the star without surface 
tension, hence p(R) = 0. Then the matter distribution must be continuous at 
t.he surface of the star and one can show that ( and Sr must be continuous at 
r = R. Obviously v and 0 must be continuous at the star surface. too. li::;ing 
matching conditions: 

((R) = C'.1(R), 

. S,.(R) = S/,.1(R), (3-1) 

we can obtain the vacuum solutions parameters I< and a as functions of Ee, i.e. 

A"= I<(Ec), a= a(Ee)- (35) 

For arbitrary values Ve = v(0) and 0c == 0(0), v and 0 will not fulfill thP · 
matching conditi01is: 

v(R) = 1F1(R), 

0(R) = 0,,.1(R). (36) 

Therefore, the separated equations //' = 2( and 0' = S,. must be solved under 
pi·oper initial conditions in the following form: 

Ve= Vext(R) -lR 2({r)dr, 

0c ~ eext(R) - lR 0(r) dr. (a,) 

As a result. we obtain all parameters /\., a, 11c, 0c, R as funct.io11s only of 
the central density e,.. Hence, the whole geometry of the span•-tinl(' in vacuum 
and in the star is completely determined by the matter which carries 011/y the 
same properties described by mass, matter density. pressur<', equation of st al<' 
and so on which are familia.r from the general relativity. A V<'1-:,· import.ant 
feature of the model under consideration is that we are not. forc<'d to assign to 
t.he matt.er new properties, charges, or something elsP. NPv<0 rt helc·ss \I"<' have a 
Jl('W geonwtric field (the torsion-dilaton fif·ld 0) th<' physical problc·rn is well 
defincd by the usual physical propertiPs of the matt.er. 
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Let's .go back to the subsystem: 

t:' ' ( 2" ' " .( . ) ) I " = - ; + ~c - ~ - ~ E - p r( 1 · • 

s; = - ~ + ( -J,(c - p) - ~ -· --J,(E - p)rS,.) c-'. 

p' = -(E + pg, 
p=p(E), 

., 1 + 2r( - 6rS,. - :3r2(S,. + 6r2 S,.2 
e =----7--:--...,,..--,::------

. I + -J,pr2 (:38) 

We can't define a localgravitational mass in the form rnc;R(r) = ;·~r(l -
e-") ,, as .in general relativity because in our case maR(r) is in general not 
positively defined (see for example the vacuum solution). As we have noted in 
the previous section the full mass felt by a test particle is limr➔oc, r 2((r) Hence, 
in the theory under consideration we define the local mass as m( r) = t r·2(( r) . 

Similarly, we can define a local scalar mass m0(r) = 3fr25',.(r) . Because of 
the initial conditions we have m(0) = 0 and m0(0) = 0. Now the system (38) 
can be rewritten in terms of the masses m(r) and ~0(r): 

m' = (1 - (1 + ;;'½-(c-p)r2
) e·1) ~ + 1:,,,.r2ce", 

m~ = ( 1 - ( 1 + -J,(c :- p)r2
) e") ~ + 2;'t r 2 (c - p)e", 

I G( ) ·mfr\ p=-~c+p o/ 
P = p(c), 

1 2G ( ) G
2 

( 2 ) , + ,--- m - .mo - .,,mo m - ,-31n0 ( ) e" = C r C r • • 39 
. · · 1 + ~pr2 

This system is a generalization of Tolman-Oppenheimer-Volkoff's one for a 
star in general relativity [16). Using the first and the second equation, it's not 
difficult to show that ,m( r) and mo( r) are positively defined. Indeed, taking 
into account regularity at the center we obtain: 

m = eA(r) r e-A(r) J~,r cr2dr, 
lo · c 

me= eA(r)for e-A(r) 2~,,-(c -·p)r2dr, 

where, 

A(r) = for 1-(1+::1"~•-p)r.2)e' dr. 

In the same way from the above equations we have: 

(m - m0)' = (1 - (1 + ~(c - p)r2
) e") 
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m-mq _ 
r !;r2 (c - 3p)e,\. 

(40) 

(41) 

i 

J 
J r 
I 

t /\) I [ 

\ l 
d 

r 

Solving this equation with an initial condition (m - mo)(0) = 0 we obtain : 

m - mo = -'-eA(r) for e-A(r)(c - 3p)dr. (42) 

Hence, it's seen that m - mo :SO inside and outside the matter if c - 3p;:::: 
0. In other words we obtain for k(r) = ½ 7:(½l that k 2:· ½ and k takes a value 

1 when the matter is ultrarelativistic (c =. 3p). The, param~~er k takes its, 
maximum value ½ in the case of nonrelativistic matter (c » p). If we assume 
following Zel'dovich [18], [19) that c < 3p may happen, then in general the 
vacuum value of k which is just K ~ k( R) may change its sign passing through 
the· zero at c = p. For realistic equations of state we obtain KE [½, ½]-

For completeness we will give an expression which is a generalization of the 
well-known Tolman's formula [21). From equations (25) we have 

{} {} ( ) Ro+ 3" 50 - !i:_ r,o - !y - ~ □0 0 VO - c2 0 2 2 • ( 43) 

In the static and spherically symmetric case, one may show that the following 
relation is fulfilled: 

no o o 
1 

"' ( f'I -3e 0.0° °') R0 + 3 Vo S = lr:iu°' V 1g1e g fo,0 . , 
. e-3ev lgl , , .. , (44) 

wliere ¥ a/3 -Y = {op} are Christoffel symbols.• Hep~e'J:~e obtain 

1(~g + 3 B~ s~) e-
30~d3x = i g0;H.0)~:~~e~d~

0 
= ~1r ~a- (45) 

M :Eoo .. ; , _ .. , , 

Theref~~e for the total mass we can write dowri · 

M = _L { (fu +; ~o so)C-3e 19ld3x = 41rGJM , . . V IYI' 

* !M (2rg - T)e-
30 
~d

3
x - /:a ~ !M □ee-30 ~d3x. 

Taking into account that 

/.,t □ee-30 Jjgid3x = - ~,,. Mt/' 

and 2rg - T = c + 3p we obtain: 

M= ;I,jM(c+3p)e-36~d3x+ ½Me. 

On the other hand, taking into account that 

Me = 3K M = -} { ( c 
C JM 
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p)e-3e~d3x 

(46) 

(47) 



l 

., 
i 
1; 

r 

ii 

one can rewrite the above formula in the form 

M = t-½K ;!,- jM(e + 3p)e-3e/j9'd3x 

1 ft:j . {R JH..!i = ~ M ee-3e V lgld3x = i;," lo ee , -3er2dr. (48) 

4.2 Neutron star model 

First we consider non-interacting neutron gas at zero temperature [171, (22]. 
The energy density and the pressure in a proper normalization are given by: 

m'Jvc5 

e = 31r2h39(µ ), 

m'Jvc5 

p = 31r2h3f(µ), 

where 

g(µ) = ½ (sµJµ + µ 2 - Jµ + µ 2(2µ - 3)- 3ln(ytµ + /!+µ)), 

f(µ) = ½ ( Jµ + µ 2 (2µ - 3) + 3ln(ytµ + ✓1 + µ)), (49) 

µ = ( 'lE.=ni )
2

, qFermi being the Fermi's momentum, mN being the neutron mass. 
ffiNC 

We are interested in the difference between the predict,ions of the theory 
under consideration and of the general relativity. For this purpose the equation 
of state for a non-interacting neutron gas is sufficient. 

As a more realistic equation of state we consider the analytical approxima­
tion (according to Zel'dovich and Novikov [19]) of Tsuruta-Cameron's equation 
of state [20]. In this case the interaction between the nucleons is taken into 
account in a simple approximation and the pressure is given ·by: 

p = E + poc2 - poc2 ( 4e ) 1/2 
2 2 l+­poc2 

where Po= 5 * 1015g/cm3 . 

(50) 

It turns out that these two examples present typical results which qualita­
tively agree with the results for the other equations of state of star's matter. 
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4.3 Numerical results and discussions 

\Ve have solved the system of equations ('.31) couplPd with the state equations 
( 49) and ( 50) mimerically using the method due to Runge-Kutta-Merson with 
automatic error control. The results are shown in the corresponding figures. 
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Figure 1: a) M - R dependence. 
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First we concentrate our atterition on the case of 11011-i11teracti11g neutron 
gas.· In Fig. la) the M - R d<'pendenc<' is represented. Ifs seen that the 
M _; R rnrw in our case is fairly similar to the ~ne of general relativity. but 
there are significant differences, too: The maximum mass Alm.,,· in our case is­
~ lMO; while in general relativity the Oppenheimer-Volkoff's mass is 1l!

01
.• = 

0.7M0. The radius corresponding to the mass MO is R = 4.'2km. while in 
the case of general rdativity R = 9.6km, If we look at Fig. lb) wherP the 
dependence of kl on the central density Ee is shown, we· not.<:' that M,,,

0
,,. lies at 

Ee~ 4.5* l0
16

g/cm
3

, while Mov liPs at E., ~ 5* 1015g/cm3 in general 1:elat.ivity. 
The average density in our case is about" 10 times greater than the one in 
general relativity. Hence, in: the model under consideration thr nPutron star is 
mon• compact and has a mass about 1.5 - times greater than Alm·. 

At tlw Fig. 2a) the deprndencP k(r) is shown insicle t.h<··st.ar (for n·11!ra) 
cl<:'i1sity 7.5*10

1
~g/pn:

3
). In accordance to the genrral rn11siderations /.· i11ci·<'a~es 

from the center of the star to the fHtrface, when• I.: taki·s a value' /\. ·= "!-.-(l{j ;;:::: 
O.t!5 - 0..-JG, ~vbich is dose to 0.5. The" depcndPnn• l\"(E,- )'or/\' 011 ilu: star 
n·ntral 1~,:1_1s(f,y Ee is. shown in Fig.· ·2b). lt.'s se"e'n that: /\ 0

' dP(T('i!Ses' wh1;1_1 
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density increases, which is similar to the previous case. So, the ratio of the 
torsion force to the gravitational one takes its minimum value at the center of 
the star and is the greatest at the surface. 
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As it may be seen from Fig. 3a) expressing the dependence I<(M), the 
torsion-urged effects are relatively strongest in the case of small masses - with 
increasing of the star mass ( up to the point where the star loses its stability) 
/\" <lecreases. It's seen from Fig. 3b), where the dependence of Kon the star 
radius R is shown, that in the area of stability I< decreases when R decreases 
too the more compact stars are, the smaller I< they have. 

Fig. 4a) presents the dependencies O(r) and v(r) inside the star. One may 
see that ½v-30 < 0 everywhere. The dependencies m(r) and m0(r) are shown 
in Fig. 4b) for central density 7 .. 5 * 1015 • 
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The following figures illustrate the case of Tsuruta-Cameron equation of 
state (TCES). 
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M/MsuN 

present 
,article 

relativity 

17 
log (epsilon) 

18 

b) M - ln(cc) dependence. 

We see from Fig. 5a) that the maximum mass in this case is about 4.5M0 
and the corresponding radius is about 7.5km - the same quantities in general 
relativity are correspondingly~ l.6M0 and~ 11.5km. Hence, the interaction 
between the nucleons leads to an increase in the maximum mass, as in general 
relativity. · 

Note the differences between the Fig. 3b) and Fig. 4b) (for the case of 
non-interacting neutron gas), and the corresponding Fig. 7b) and Fig. Sb) (for 
the case of Tsuruta-Cameron equation of state). There one can see the strong 
dependence of some results in the Saa's model of gravity with propagating 
torsion on the equation of state of star's matter. 
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We have also examined the Harrison-Wheeler's equation of state [16]. As 
in genl'ral relativity the numerical results are very close to these for the non­
interacting neutron gas. For example the maximum mass is :::::: lA/0 and the· 
corresponding radius is 3.8km'. . 

Other equations of state ( of politropic type) have been examined, too .. The 
corresponding maximum mass of a neutron star reaches a value about 6 -
6.5:\/0. 

4.4 Summary 

In this articlt• we have examined the basic spherically symmetric stationary 
state of stars in the Saa's model of gravity with propagating torsion. 

In thl' model under investigation there is no need to consider unknown 
charges· creating the torsion-dilaton field. Its source is the very spinless mat­
ter. The whole geometi'y, of the space-time (including metric_and torsion) is 
determined by the familiar properties of this matter. 

The parametl'rs of the vacuum soluti,on are ddl'rmined only by the spinless 
matter without adopting all existencC' of new properties, too.· Jn contrast to the 
correspondi_ng models in the genera.I relativity here we have two parameters K 
and a of the vacuum solutions. The values of thesl' parameters depend on the 
mass distribut_ion in the star which is related with the equation of state of the 
star's matter. For a fixed equation of state both parameters become fu11cti~ns 
only of the total mass, but these functions are 1iot 'the same for the ·different 
equations of state. The first parameter /\. being the ratio of tliP magnitude 
of torsion-dilaton force and of the magnitude of gravitatior1al forcp for realis­
tic equations of matter state takes values in the interval [½, ½], depl'tiding on 
the total mass. The second one - a is analogous _to the gravitational radius 
in general relativity and takes positive values depending on ti1e value of the 
parameter /( and on the value of the total mass of the st~r. . 

To be specific in the present article we restrict our attention to the model 
of neutron stars. Numerical results and analytical considerafions sho\\' that 
the space-timl' torsion may have a significant role in their st.rurt.un·. The lit'\\' 

torsion force decreases the role of the gravity in thl' star configuration and may 
lead to an increasing of the maximum neutron star mass up to 5 - GJ/0. If 
real, these properties of the model may changl' essentially tlw inl<-rprl'latiou of 
thl' obsPrvations in astrophysics. 

The consistence of the present modl'l of stars, as far as of ti!(' \\'hok Saa ·s 
model of' gravity with propagating torsion with thl' rl'ality is st ill au open 
problem. The results of the present artidP may have not only indqH'nden1 · 
value, hut are 1wcPssary for reaching tlw solt:tio11 of this critical prohl<'m. The 
corr<•sporl(ling results will be presented elsl'W]l('r<'. 
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Eo51m1rneB T., <l>mtteB TI., 513a,n)KHeB C. E2-98-218 
HettTpOHHIDI 3Be3.ua B opttcyrcTBllll IJOmI KpyqeHH51-,lllUUITaQllll 

Pa3Bl1Ta o6mIDI TeopH51 3Be3,ll B MO,Uenll Caa IpaBHTaQllll C pacopOCTpaH51-
IOll.(HMC51 KpyqeHHeM ll H3yqeuo OCHOBHOe CTaQHOHapuoe COCT05IHHe HeHTpOHHOH 
3Be3.Uhl. Harntt •mcneHHh!e pe3ynhTaThl IlOKa3bIBaIOT, 1ITO CHna Kpyqeum1 YMeH!JruaeT 
ponh rpaBHTaQHH B CTpoeHHll 3Be3,ll H yaen11q11aaeT MaKCHMaflhHO B03MO)KHYIO Macey 
HeHTpOHHOH 3Be3,llhl BilflOTh .uo 5 - 6M0, B 3aBHCHMOCTH OT ypaBHeHH51 COCT05IHH51 

3Be3.llhl. 

Pa6orn Bhmonueua B Jia6opaTOptttt TeopemqecKoii cptt3HKH HM. H.H.Eoronm-
6oaa Ol15Il1. 

ITpenpHHT Qm,e111111e1111oro IIHCTl!Tyra 51/lepHblJC. l1CCJ1e1t0Batt11ii. lly611a, 1998 

Boyadjiev T., Fiziev P., Yaiadjiev S. E2-98-218 
Neutron Star in Presence of Torsion-Dilaton Field 

" We develop the general theory of stars in Saa's model of gravity 
with propagating torsion and study the basic stationary state of neutron star. Our 
numerical results show that the torsion force decreases the role of the gravity 
in the star configuration and increases the maximum of the neutron star mass up 
to 5 - 6M0 depending on the equation of state of matter. 

The investigation has been performed at the Bogoliubov Laboratory 
of Theoretical Physics, JINR. 
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