


1 Introduction

In recent years the interest in scalar-tensor theories of gravity has been renewed.
One reason for this is the important role which these theories play in the
understanding of inflantionary epoch. On' the other hand the scalar-tensor
gravitation (the so called "dilaton gravity”) arises naturally from the low-energy
fimit of the super-string theory [1].

The predictions of scalar-tensor theories may differ drastically from these
of general relativity. For example such a phenomenon — "spontaneous’scalar-
ization” was recently discovered by Damour and Esposito-Farese as a non-
perturbative strong field effect in a massive neutron star [2].

Many theories of gravity with propagating torsion involving a scalar field-
have been proposed in the last decades, too. In such theories contrary to
the usual Einstein-Cartan gravity [3]-[5], there are long range torsion mediated
interactions. Carrol and Field [6] have examined some observational conse-
quences of propagating torsion in a wide class of models involving a scalar..
field. They conclude that for reasonable models the torsion Could be detected ;
experlmentally :

Recently a new interesting model with propagating torsmn was proposed
by,Saa (7}-{11}. This model involves a non-minimally coupled scalar field as a -,
potential of the. torsion of space: tlme As one can see Saa. s model is very close \
to the dilaton gravity. ‘

In the present article we investigate both analytically and numerlcally a
neutron star in the Saa’s model and compare obtained results with’ these in.
the general relativity. We also discuss new predlctlons of the theory under
consideration. ; _

The paper is organized as follows In section 2 we consider briefly Saa’s
model. In section 3 we give the necessary information for the vacuum solutions
of the field equations. The equations determining static equilibrium solutions
for a neutron star are discussed in section 4. Numerical results for the neutron
star are discussed in section 5.

2 The fnodel with'to’rsion—dilaton ﬁeld

Here we give a brief descrlptlon of Saa. s model. For more details one can see
[71-{9], {12]. ‘
Consider four-dimensional Einstein-Cartan manifold M- 3) ie. four
dimensional manifold equipped with metric ' g.p and affine connection Fog” -
with torsion tensor - S,57. ' ‘

The main idea of articles [7]-{9] is to make the volume form d*Vol
compatlble with the affine connection onthe Einstein-Cartan manifold M)
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via the compatlblhty condltlon v -
(d4vol) (V,0")dVol, (1)

where £, is the Lee derivative along an arbifrary vector field v and'V“ is the
covariant derivative with respect to the affine connection. It turns out that
compatibility condition (1) is fulfilled if ‘and only if the torsion veetor

Su= 25,0
is potential, i.e. if there exists a potenti'el 9, such that
Su=Vi0=0.0. o
In this case Saa’s condition (1) implies thie form |

d*Vol = m)d“z = e~3bé“\/'—‘_d‘4m . (3)

of the volume element in Emsteln Ca.rtan niamfold As it was pointed out in
[12] compatlblhty condltlon (1) leads to cova.rla.ntly constant scalar denslty f =

for whlch compatxblht . coiidition }
affite and‘the” correspondmg theory of gravnty - tran
of gravity (TEATG)

“The most important- mathematlcal conSequence of the COndlthIl (1) whxch '

' } }eads to new equatmns of: gravrty is the generalized Gauss” formula: °

[ v”)—f o
The na,turarchmce of the Iagranglan dae e
Lo=—fR==4 (R 46V, 5% £195,5 = Koy f{u.ﬁ\) R

c bemg the velocity of light, x = 87rc G being the Einstein constant G bung ‘

the Newton constant. Herfe R = g"ﬂRaﬂ is the scalar curvature w1th respect
to the affine connection, K wr = Ko + 2gu[,S ] 1s the traceless part of the

contorsion:“K*,, = K*,, = 0, and R is the scalar curvature with 1espe<.t_to

the Levi-Chevita connection. .
The traceless’ part of the torsion doesn’t vanish only if spm—non zero matter
presents In 't} present article we consider only spinless matter (as we kriow
from Elnsteln—Cartan theory of gravity, the effects due to the spin become
essentlal at " dénsit ’bver 1057g/cm3 [3] Wh]Ch is too fa.r from the physics in

séd-e equl “alfine theor y’

(4!

the stars). Therefore we put I;’ag,, = 0 and obtain a semi-symmetric affine
connection: ’

Sa,a'y = S[a‘sg] (6)

In this case we have:
£G=*iR:——"( +6VS“+125'S“> (7)

Denoting the lagrangian density for the matter by £,s and using the volume
element (3) we write down the action of gravity and matter in the form:

A= Ao+ A== £ [dWl R+ L [dlLy. (8)

Due to the new Gauss’ formula (4)-the term 6V ,5* in the lagrangian (7) gives
a surface term in the action integral (8) and doesn’t contribute to the equations
of motion. Hence, these equations may be derived from the modified action:

A=— —/a’“lol (R +125*8 ) /d“Vol L. 9)

This action is very close to the one of the dilatonic gravity arising from
low-energy limit of the superstring theory. Two essential differences between
our case and the dilatonic one are: 1) the matter action includes the dilaton--
like term e3¢ which arises in a natural way, as a part of the volume element
of space-time, and 2) the sign before the term 125*S,. Following the above-
described reasons we call'the field ©, which originates from the space-time
torsion and plays the role of the dlla.ton field in Saa’s model, ”a torsion-dilaton
field”.

Taking variations with respect to the metric g,z and torsion- dlla.ton field
©, and using the generalized Gauss’ formula, we obtain the following equatxons ’
of motion for the geometrical fields g and 0 R

G +V,9,0 - g,,00 = 5T,
w 6L\ : SR
00~ 3 (cy— (i ) - a0

Here G, = R, — 1gu, is the Einstein tensor for the affine connection, its trace

s G =¢*G,, = —R; T,, = 8Lp[d¢g" is the symmetric energy-momentum

tensor of the matter ; its trace is T = g**T,, and V.57 = ¢g**V,V,0 = D@
n

“ From the first equa.tlon of the system (10) it follows that:

R= %(3EM—§ﬁV+T).‘ (11)



Then combining this result with the second equation of the system (10) we
obtain:

The equation (12) shows that under proper boundary conditions, and in the
presence only of spinless matter, the torsion-dilaton field © is completelv de-
termined by the matter distribution. Further on, as a basic system we will use
the system

G+ VuV,0 = g,,00 = 5T,

: 6£M 1
=00 =~ % — --———— . :
V,57 =00 = (L:M S5t T). (13)

From this system one can derive (using Blanchl 1dent1ty) the differential con-
sequence:

vaTg +T135, = SRS, , , (14)

which is a generalization of the well- known conservation law VUT" =0in

general relativity.

To have a-complete set of dynamical equations one has to add to the above.

relations the equations of motion of the very matter. For the purpose of the

present article we need to consider only a perfect fluid. Its theory was recently’

described in [12]. Here we give the basic results.
The continuity condition descrlbmg the conservation of the fluid matter can
be written in the form: : B

Jaon ®Zorntat@ =0, 15

where u?(z) is the fluid four-veloaty, normalized by the reIa.tlon Gapu®uf =1,

n(z) is properly defined a fluid density, d°%, is a proper three d1mensronal
surface element depending on the choice of the volume element via the Gauss’

formula, and A3 is an arbitrary domain.

Considering the volume element (3) as an universal one we must use it in
the ‘continuity condition, too. Therefore according to the generalized Gauss’
formula we can rewrite relatlon (15) in the form of a continuity equation of
autoparallel type:

Va (n(z)u(z)) = 0. - (16)

We take the lagrangian of the fluid with internal pressure p in the usual
form:

L, =—¢=-nc —nll, (17)

where Tl is the elastic potential energy of the fluid ;. dII = —pd( l) and the
symbol 7'd " means that the corr espondmg dxffelentlal form isn’t exact. Taking
into ac (ount the relation £, — 3'559 = pit’s not difficult to obtain the equations
of motion for geometrical fields ¢.;3 and © in presence of perfect fluid:

G + (9%, =000 = 5((c +phu’ —pg™),
0O = —&(-pr (18)

-l addition one can show: that:

VT2 = (g4 p) (87 — uua) Ss. or
%,Tg = 3e+p)uuaSs. (19)

Makilrg use of (19) and of the continuity condition (16) one can obtain the
equations of motion of the perfect fluid (just as in general relativity):

. 0 S oa i o
(¢ + P Vo, = (87 ~ uat”) Vp. : (20)

The equations (1 ) are equations of a geodesic type. In particular, corlsidering
dust matter (p = 0) we have:

" ' RPN
,u.ﬁVguk.——*O, S : 7(31)

i.e. . we can conclude (just as in general relativity) that a test particle in tlre
theory under consideration will move on a geodesic line. We will need thrs
conclusion in the next sections. For more details concerning the relativistic
perfect fluid in the theory under consideration we refer to [12].

| 3 - Spherically symmetric vacuum solution

The asymptotic flat, static and spherically symmetric gencral solutions of. th'.e
vacuum geometrical field equations (10) are known [13], [14]. 11.1 b(‘h\\'arzs.luld‘s
coordinates they are described as a two parameter - { i, a} family of solutions':

— ’
N Goo = €,
i
o BR=e l_] pir :
r= zae 2z smh 7/

'We use asymptotic conditions v — 0,0 — 0 at. » = oo without loss of generality.
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% =0'= K¢ (22)

Here and further on the prime denotes a differentiation with respect to the
variable r. All quantities in formulae (22) are represented as functions of the
variable v. This is the most convenient form of the vacuum solutions. )

The paramieter A" presents the ratio of the torsion force (as defined in [12”

and the gravitational one: K = S /( %V'). In the case when K = 0 we
have the usual torsionless Schwarzshild’s solution and « = ry is the standard
gravitational radius r,. '

In the model under consideration the value of the fundamental parameter of
the theory K (which is constant in vacuuim) is not an independent integration
constant. Instead, we shall show that it is determined by the total mass of the
star, or by its radius and depends on the matter distribution, on the equation
of state of the star’s matter, and so on via the solution of the full system of

“equation of the star’s state. ' ’ '
- The parameter a is positive (a > 0), and may take arbitrary values. It is
related to the total mass of the star, too. ' N
The asymptotic behaviour of the solution is:

2MG
Yoo~ 1 — praa (23)
S tagm—mgy “
gn ~1 ‘%, (24)

where M = %%% describes the asymptotic dependence of 'goo on the if@riable
" r, and ‘the mass My = 3lim,_,,, r2S, describes the asymptotic dependence of
the torsion-dilaton potential © on r (or the asymptotic of S,). The mass M,
may be considered as a source of torsion-dilaton force and is analogous to the
"scalar mass” introduced in [15]. As one can see the scalar mass M, depends
on K, and may be less or greater than the mass M.

In the model under consideration; a test particle moves along geodesic lines.
Therefore, the keplerian-like mass measured by a test particle in the asymptotic.
region of space-time will be the mass M = lim,_, 1r2u’. As we will see in the

next section, the mass M is positively defined and it’s natural to consider it as
a total mass-energy of the geometric-fields-complex {g, 9}. '

The appearance of two masses in the asymptotic solution is relatf.:d 1'30 t}{e
violation of the strong equivalence principle (the weak equivalence principle is
not violated). In our case the ratio My to M is just 3K and depends on the
ratio A of the torsion-dilaton force to gravitational one in vacuum.

4 The Basic equations for a star

4.1 General considerations

Here we will discuss some general properties of the system of equations of the
star without specifying the matter’s equation of state.
The system of the equation (18 ) for geometrical fields g and © can be

rewritten in the form:
8; +3%; = 577,
,5° 35,57 = — &(c—p),

Ty = (e+p)u’uu —pgy, - (25)
where % is the covariant derivative with respect to the Levi-Chevita connection,
8; is the corresponding Einstein’s tensor and ‘

= %,‘S" + 5,5 — g;%aS" +9,5:5°. (26)

| In this paper we restrict ourselves with consideration of the static and spher-
ically symmetric case. Hence, the metric has the form

ds? = e {(cdt)? — dr® — r?(d6? + sin*(0)dp?) (27)
in which the functions v = v(r), A = A(r) depend only on the Schwarzshild’s

radial coordinate r and the torsion-dilaton field © depends on?y on r, too.
In this case we obtain the following equations for the functions v, A, ©; and

P
‘ e (1= X))t L= 3c-35,
R AR AT A B R
(S (252 + 2) S5, -352) = 5(e—p),
p’=—-%(€+P)V, ‘
p=ple). (28)
7



Here P= p(e) is the matter’s equation of state and correspondingly:
Zo=(S)— NS+ 25, - 5,2) e,
2{ = ( %V'Sr'-i- %Sr_— 25,2) e,
2 _ '’ . A . ; ‘
2=(s+ IS = IN 4 15, = 5.2 (29)
. 0
The‘second cquation of the system (28) (ie. .G'; +3%! = 3T ) may be
considered as a constraint creating a relation between- S, v ahi] e, namely:

Y 14+rv'—6rS, — $r2'S, + 61252

1+ %pr? 'A R (30)
Using this relation we can put our system (28) in a normal forms
v'= 2%,
el = Sr’ ‘
& =— §_+ ( %5‘6— fé ‘C%(s—p)r§) e, -
S==%+(8E-n - S sepps)e,
o co e e =—(e 4 p)e,
5 L+2r€ = 6rS, — 3125, + 61252
et =2 = . (31)

1+ Zpr2 |

It’s seen that the first two equations’ are separated, and the est generate o
subsystem independent of them. e S

. -T}‘le’ equations (31) must be solved with proper initial and boundary con-
~ ditions. F.‘rom"a physical point of view the solutions regular at the center are
the most interesting. The regularity means that there exists g local lorentzian
system.in neighborhood of the center, i.e. *© =1 and the pressure is finite
at r = 0. Hence, we have lim,_,, ré(r) = 0, otherwise, as it méy be seen from
equation for p, the pressure will have at least logarithmic singularity at the cen-
ter. On the other hand the condition e*® = 1 requires that lim, o rSp(r) = 0
too. The expansion of ‘the ‘equations for ¢ and S, around the center is: ’

X

===

of QSr »
Sp = —— (32)

-

Hence. the behaviour of € and S, around r =0 is gensiant o fulfill the above
restrictions at » — 0 we must put constant = 0. Hence, we obtain £(0) = 0,
Sy(0) = 0. As a final result these considerations imply the following initial

conditions:

c)- (33)

n

£(0) =0, S(0)=0, p(0)=p.. ((0)=

At the star surface » = R we have to match interior solution with the exte-
rior (vacuurn) solution. We will consider the model of the star without surface

- tension, hence p(R) = 0. Then the matter distribution must be continuous at

the surface of the star and one can show that ¢ and ‘S, must be continuous at
r= . Obviously v and © must be continuous at the star surface. too. Using

‘matching conditions:

. E(R) =£7(R), | :
CS(R) = SR, (31)

we can obtain‘the vacuum solitions parameters I\ and a as functions of ., i.e.
hN=~K(z), a=a(s). _ : (35)

For arbifra.ry values v, = v(0) and O, = O{0), v and © will not fulfill the -

matching conditions:

v(R) = v (R), . ‘

- Therefore, the separated equations v’ = 2¢ and ©’ = S, must be solved under

proper initial conditions in the following forin:

R

Ve = UY(R) - / 2(r) dr,
. ' ° R :
0. = O“!(R) — /0 O(r) dr. .@n

As:a result we obtain all parameters K, a, v, ©., R as functions only of
the central density e.. Hence, the whole geometry of the space-time in vacuum
and in the star is completely determined by the matter which carries only the
same properties described by mass, matter density, pressure, equation of state
and so on which are familiar from the general relativity. A very important ‘
feature of the model under consideration is that we are not forced to assign (o
the matter new properties, charges, or something else. Nevertheless we have a
new geometric field (the torsion-dilaton field 0O) the physical problem is well
defined by the usual physical properties of the matter.



Let’s go back to the subsystem:

Sp=— & 4 ( Gle—p)— &~ Sl —1))75',.) e,
P = (e + pe,
- p=ple),

| o = LH 26 =615, — 30265, 4 6r25,2
o > - - i n c%prz )

(38)

We can’t define a local gravitational mass in the form mep(r) = 2‘%,7"(1 —
€™*) , as in general relativity because in our case mgr(r) is in general not
positively defined (see for example the vacuum solution). ‘As'we have noted in
the previous section the full mass felt by a test particleis lim,_,.. r2¢(r) Hence,
in the theory under consideration we define the local massas m(r) = %r%’(r) .
Similarly, we can define a local scalar mass my(r) = 3%2.r25,‘(r) . Because of
the initial conditions we have m(0) = 0 and me(0) = 0. Now the system (38)
can be rewritten in terms of the masses m(r) and hzg(T):

oom'= (1 -~ (1 + Hl(e —'p)r2) e") = + Brrleet,

my = (1 - (1 + S(e ~ p)rQ)‘e’\) e 4 %WT?(E —p)e?,
B P=-5%e+p 2

pP= p(5)7

2
1+ %(m — myg) ~.§3mg(m - %ng)

= Lo : (39)

"1+ Spr?

This system is a generalization of "Tolman-Oppenheimer-Volkoff’s one for a
star in general relativity [16). Using the first and the second equation, it’s not
difficult to show that .m(r) and my(r) are positively defined. Indeed, taking
into account regularity at the center we obtain: R

m = 4 /r e~4lr) 1Brer2dr,
. A : . ‘
mg = eA(’)‘/ e~ Al U (¢ — p)ridr, o . (40)
)
where .

L ~ e—’ r2)er
A(r) :/ Mdr'
o .

r

In the same way from the above equations we have:

(m—my) = (1 — (1 + (e - p_)rz) é’\) e — Hrle—3p)et. (41)

10
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Solving this equation with an initial condition (m — m4)(0) =0 we obtain :
m = mg = =" [ =40 _gp)gr. C @)
0

Hence, it’s seen that m — m, < 0 inside and outside the matter if ¢ — 3p >

0. In other words we obtain for k(r) = %":1—"((’5)1 that k£ > £ and k takes a value
1

5 when the matter is ultrarelativistic (¢ = 3p). The parameter % takes its

maximum value 3 in the case of nonrelativistic matter (¢ > p). If we assume
following Zel’dovich [18], [19] that ¢ < 3p may happen, then in general the
vacuum value of k which is just K = k(R) may change its sign passing through

the zero at ¢ = p. For realistic equations of state we obtain K € 3, 2.

For completeness we wilt give an expression which is a generalization of the
well-known Tolman’s formula, [21]. From equations (25) we have

Oy L 0 ‘
Ro+3Vo &= 5 (19~ IT) - 206, S (43)

In‘the static and spherically symmetric case, one may show that the folldwing
relation is fulfilled: - .

RIS 1 | ' {} |
. Re+3Ve S = —5 —0a (\/fgfe"s_egoé pogé’> , (44)
ae e=*®ylgl : ' ‘
where {I‘}Qg" = {:ﬂ} are Christoffel symbols. Hence’we ’obtaip

(0 L0 : e
/M'(Rg +3 Vo SO) 6‘39\/lg]d3z =]§‘ g‘),_‘.’»[log?e‘ ,39\/|g]d201= 47 %Q (45)

Th“erqf;')'r;e fog tﬁe total mass we can write doWIi :
0o 0 Y L -
M= % (128 +3 Vo S") e /lgld’x =
I /

L[ 1= 1) flglats - 2 2 [ v flgida. (46)

M

Taking into account that
[ noe e figlea =4
aJ;d 218 — T = € + 3p we obtain: o ‘
M= 1 /M(e +3p)e®\/lgld’z + 1M, (47)
On the other hand, taking into account that

My=3KM= 3 /M(s - p)e /g2

11



one can rewrite the above formula in the form
M= 5 c%fM(E+3p)6‘3")\/lglﬂ’3I
2

. (R .
= ':?/ e /|gld’z = T—z”/(; e =302y (48)
M ,

4.2 Neutron star model
First we consider non-interacting neutron gas at zero temperatgtg .[17], [22].
The energy density and the pressure in a proper normalization are given by:

mic®
€= ﬁlig(:u)a

sf(#),

mic
T 3n2Rd

where

9(p) = -‘,;(8;1\/#+u2—\/u+u2(2u—3)—3ln(\/ﬁ+\/1+#)>’ o
flw)= 3 <\/#+ﬂ2(2ﬂ =3)+3n(Vu+ /1 +u))7 (49)

u= (15;5&‘)2, QFermi beipg the Fermi’s momentum, my bei'ng.the neutron mass.
We are interested in the difference between the predictions of the the?ry
under consideration and of the general relativity. For this purpose the equation
of state for a non-interacting neutron gas is sufficient. .
As a more realistic equation of state we consider the analytical approxima-
tion (according to Zel’dovich and Novikov [19}) of Tsuruta—Camerc_m’s equa.jmon
of state [20]. In this case the interaction between the nucleons is taken into

account in a simple approximation and the pressure-is given by:

2 2 4 1/2 :
PoC PocC
p=et o= (1 + pTc?) | | (50)

where pp = 5% 10%g/em?. ) . . .

- It turns out that these two examples present typical results which qualita-
: 3

tively agree with the results for the other equatxons‘of state of star’s matter.

12

4.3 Numerical results and discussions

We have solved the system of equations (31) coupled with the state equations
(49) and (50) nutnerically using the method due to Runge-Kutta-Merson with
automatic error control. The results are shown in the corresponding figures.

.

M/Msyn
\ 1 N
ipresent article i \\ present
i 0.8 //' \ article
. /{"\\ \\ -
0.6 I\ T
.'/.'/ \\ \»-/
¥l \ -
/i e

/ / .gen. relativity

5 10 15 20 25 30 35 ' 14 16 '18 20 22
R, km ‘ " log(epsilon)

Fig’ur:e 1: a) M — R dependence. b)zW —log(c:) dependence.

First we concentrate our attention on the case of non-iiltera(‘tiug neutron
gas.” In Fig. 1a) the M - R dependence is represented. It's seen that tlhe °

M - R curve in our case is fairly similar'to the one of general relativity, but

there are significant differences, too: The maximum mass Mar In our case is.
~ 1My, while in general relativity the Oppenlieimer-Volkofl*s mass is Moy =
O.TMQ. The radius corresponding to the mass M~ is R = 4.2km, while in
the case of- general relativity R = 9.6km. If we look at Fig. 1bh) where the
dependence of M on'the central density ¢, is shown, wé note that Mm“ lies at
e A 4.5%10'g/em3, while Moy lies at . & 5% 10%3g/em® in general relativity.
The average density in our case is about’ 10 times greater than the one ny
general relativity. Heuce, in'the model under consideration the neutron star is
more compact and has a mass aboutl 1.5 - times greater than AMoy-.

‘At the ]*‘ig.i 2a) the dependence k(r)

is shown inside the star (for central

density 7.5%10'%g/cm3)

- Inaccordance to the general considerations

kincreases

from the center of the star to the surface,"where & takes a value Iy ="k(R) =~

0.45 — ().A'I'(i_,‘ which is.close to 0.5.
central d‘[”.,'si.tty: &. is. shown in Fig.

The: dependerice K'(s:) of Iy ‘on the star
2b). - It’s sechn that K™ decreases whey

i
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Figure 2: a) K" — r dependence. b) K — In(e.) dependence.

density increases, which is similar to the previous case. So, the ratio of the
‘torsion force to the gravitational one takes its minimum value at the center of
the star and is the greatest at the surface.

0.46

0 0.2 0.4 0.6 0.8 1.0 4
M/Msun

Figure 3: a) K — M dependéncé‘ .b) K — R dependence.

As it may be seen from Fig. 3a) expressing the dependence K(M), the.

torsion-urged effects are relatively strongest in the case of small masses — with

increasing of the star mass {up to the point where the star loses its stability) -
K" decreases. It’s seen from Fig. 3b), where the dependence of K on the star -
radius R is shown, that in the area of stability K decreases when R decreases .

too. - the more compact stars are, the smaller K they have.
Fig. 4a) presents the dependencies 6(r) and v(r) inside the star. One may

. see that 1v—30 < 0 everywhere. The dependencies m(r) and mg(r) are shown

in ig. 4b) for central density 7.5 % 1015
14

mass
theta —""
-0.2| "€ =L 0.8 scalar mass
-0.4 0.6

: ///’ 0.2y ’
-1.0 - grav. mass

0 1 2 3 4 3 0 1 2 3 4 7%
r, km r,km

Figure 4: a) ©,v — r dependence. b) m,my — r dependence.

The following figures illustrate the case of Tsuruta-Cameron equation of
state (TCES). : :

M/Msun M/Msun
/N ‘

4 / \ Ppresent ] 4 present

/ 4 article article
s/ \ . 3 '
2 gen. relativity : 2 gen. relativity

e

6 8 10 12 14 16 15 16 17 18

R, km : log(epsilon)‘

Figure 5: TCES: a) M — R dependence . b) M — In(e.) dependence.

We see from Fig. 5a) that the maximum mass in this case is about 4.5M
and the corresponding radius is about 7.5km - the same quantities in general
relativity are correspondingly ~ I.GMO' and ~ 11.5km. Hence, the interaction
between the nucleons leads to an increase in the maximum mass, as in general
relativity, ' , :

Note the differences between the Fig. 3b) and Fig. 4b) (for the case of
non-interacting neutron gas), and the corresponding Fig. 7b) and Fig. 8b) (for
the case of Tsuruta-Cameron equation of state). There one can see the strong
dependence of some results in the Saa’s model of gravity with propagating
torsion on the equation of state of star’s matter.
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b) m,my — r dependence.

We have also examined the Harrison-Wheeler's equatlon of state [16]. As
in general relativity the numerical results are very close to these for the non-
interacting neutron gas. For example the maximum mass is ~ ‘MO and the
corresponding radius is 3.8km.

Other equations of state (of politropic type) have been examined, too.. The
corresponding maximum mass of a neutron star reaches a value about 6 —

6.5Mcy- .

4.4 Summary

In this article we have examined the basic spherically svmmetnc stationary
state of stars in the Saa’s model of gravity with propagating torsion.

In the model under investigation there is no need to consider unknown
charges creating the torsion-dilaton field. Its source is the very spinless mat-
ter. The whole geometty, of the space-time (including metric and torsion) is
determined by the familiar properties of this matter. :

The paramneters of the vacuumn solution are determiued only by the spinless
matter without adopting ah existence of new properties, too. 'In contrast to the
corresponding models in the general relativity here we have two parameters /v’
and a of the vacuum solutions. The values of these parameters depend on the
mass distribution in the star which is related with the cquation of state of the

- star’s matter. For a fixed equation of state both parameters becomeé functions

only of the total mass, but these functions are uot the same for the different
equations of state. The first parameter L' beiug the ratio of tlie niagnitude
of torsion-dilaton force and of the magnitude of gravitational force for realis-
tic equations of matter state takes values in the iuterval (3, 3], depending ou
the total mass. The second one - a is analogous to the gravitational radius .
in general relativity and takes positive values dependmg on the value of the
parameter K and on the value of the total mass of the star. ' :'
To be specific in the present article we restrict our attention to lhe model
of neutron stars. Numerical results and analytical considerations show tliat.
the space-time torsion may have a siguificant role in their structure. The new

_ lorsion force decreases the role of the gravity in the star configuration and may

lead to an increasing of the maximuin neutron star mass up to 5 — 6Mqy. If
real, these properties of the nmodel may (‘hdnge esqentlally the iute lpwtdllou of
the observations in astrophysics.

The consistence of the present model of stars, as far as of the whole Saa’s
model of gravity with propagating torsion with the reality is still an open”
problem. The results of the present article may have not ouly independent
value, but are necessary for reaching the solution of this critical problem. The-
corresponding results will be presented elsewhere.
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Bosmxues T., Ousues I1., Azagxues C. E2-98-218
HeiirpoHHas 3Be3ga B IPHUCYTCTBUH MONS KPYYEHUI-THIATAIHH

Paseura obuias Teopus 3se3n B Momend Caa rpaBHTaUMH € PaclpoCTpaHs-
IOUWMMCS KpYYEHHEM M H3Y4EHO OCHOBHOE CTALHOHApHOE COCTOSHHE HEHTPOHHON
3Be3abl. Hallig yucsieHHele pe3y/bTaTel TOKa3HIBAIOT, YTO CHIIA KPYYEHHS yMEHbIIAEeT
PONb PaBUTALUH B CTPOEHHH 3BE€3 H YBETHYHBAeT MAKCHMaIBHO BO3MOXHYIO Maccy
HEHTPOHHOMN 3Be3lbl BILIOTH 10 5 — 6M ), B 3aBUCHMOCTH OT YPaBHEHHs COCTOSHHS

3BC3IBI.

Pabora semonuena B JlaGoparopun reopernyeckoii ¢usukn um. H.H.Boronto-
ooea OUSIN.

Mpenpunr O6beAMHEHHOTO HHCTUTYTa SACPHEIX MccaenoBaHuid. lybHa, 1998

Boyadjiev T., Fiziev P., Yaz‘adjiev S. E2-98-218
Neutron Star in Presence of Torsion-Dilaton Field
2

We develop the general theory of stars in Saa’s model of gravity
with propagating torsion and study the basic stationary state of neutron star. Our
numerical results show that the torsion force decreases the role of the gravity
in the star configuration and increases the maximum of the neutron star mass up
to 5 - 6M¢, depending on the equation of state of matter.

The investigation has been performed at the Bogoliubov Laboratory
of Theoretical Physics, JINR.
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