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I. INTRODUCTION 

In order to quantize a pure bosonic system one can apply supersymmetry as a mighty 
tool for dealing with the problems of a quantum theory [1] - [5). The quantization can be 
done in two ways. The first one is to embed the system in a four dimensional supersymmetric 
field theory and then reduce it to one dimension [2) - [3), [6), or alternatively, consider the 
desired Lagrangian as a bosonic part of a supersymmetric sigma-model after the dimensional 
reduction [7] - [SJ. These two approaches are not equivalent in general and the results can 
be different. The second method i.e., the method of supersymmetric Quantum Mechanics 
seems more convenient for our purposes and we shall follow it hereafter. 

In the spatially homogeneous cosmological models the only dynamical variable is time t, 
other (spatial) coordinates can be integrated out from the action. Therefore, one can simply 
consider the corresponding mechanical system and then try to make a supersymmetric 
sigma-model extension. The case of pure gravity and gravity with scalar fields was 
investigated recently by Graham and Bene in the framework of N = 2 SUSY Quantum 
Mechanics. However, the construction of quantum Hamiltonian, proposed there, is occurred 
to be Hermitean not self-adjoint for the case of indefinite signature of the metric in the 
minisuperspace. In this paper we use another construction of the corresponding Hamiltonian, 
which in accordance with general lines of quantization, is Hermitean self-adjoint for any 
type of signature of the metric in minisuperspace. The obtained quantum states coincide 
with those found in [7) - [SJ only in null fermion and filled fermion sectors, while in other 
fermion sectors they exist only if the manifold, determined by the minisuperspace metric 
has corresponding nontrivial cohomologies. 

We apply developed N = 2 SU SY sigma-model technique for the quantization of SU(2) 
Einstein-Yang-Mills system in homogeneous axially-symmetric Bianchi- !,II, VIII,IX, 
K antowski-Sachs (KS) and closed Friedman-Robertson-Walker ( F RW) cosmological 
models. Since the work by Bartnik and McKinnon [9) where an infinite set of regular particle­
like SU(2) non-Abelian EYM configurations was obtained, the further interest to EYM 
system is caused by an unexpected properties of their classical solutions. In particular, it 
has been shown, that non-Abelian EYM black holes violate naive "no-hair" conjecture in an 
external region [10], as well as they demonstrate rather unusual internal structure [11] - [12] 
with the generic space-time singularity being an infinitely oscillating, but not of a Mixmaster 
type. The metric in space-time region under an event horizon of spherically symmetric 
black hole is equivalent to homogeneous cosmological I< antowski - Sachs metric and this 
correspondence allows to apply the methods, developed in the quantum cosmology for study 
of black hole singularities. Classical EYM solutions in different (Bianchi) cosmologies are 
still not investigated so far, except axially-symmetric Bianchi - I model, where the chaotic 
behavior of the metric, inspired by chaos in YM equations of motion has been observed [13] -
[14). In all classical EYM systems mentioned above, the nonlinear nature of source YM field 
produces nontrivial space-time configurations mainly in strong field regions i.e., near black 
hole or cosmological space-time singularities, where pure classical description of space-time 
should be replaced by a quantum field theory and our present work is one step towards this 
goal. 

We show that all considered EYM models, containing initially purely bosonic 
(gravitational and YM) degrees of freedom, admit N = 2 supersymmetrization in the 



framework of N = 2 SU SY sigma-model. The inclusion of non-Abelian gauge fields 
to pure gravitational systems produces additional parts in superpotentials, which as we 
shall see below, are equal to Yang-Mills Chern-Simons terms. The connection between tlic 
superpotential and the "winding number" in some supersymmetric Yang-Mills field theories 
and sigma-models was discussed earlier (2] - (3]. However, direct generalization to the EYl\l 
supersymmetric sigma-models is not straightforward, since the expression for the space-time 
metric, which in turn determines the form pf the ansatz for Yang-Mills field, can be arbitrary. 
Therefore the fact, that N = 2 supersymmetric sigma-model based on the axially-symmetric 
homogeneous EYM systems respects this result is quite nontrivial. 

The paper is organized as follows: in Section II we discuss formal aspects of N = 2 SU SY 
sigma-models, starting with the superfield approach; in Section III the desired embedding 
of EYM systems into N = 2 SU SY sigma-model is described and explicit expressions 
for superpotentials are given; the quantization and SUSY breaking by YM instantons are 
discussed in Section IV. 

II. N = 2 SUSY QUANTUM MECHANICS 

Let us first recall some main features of N = 2 supersymmetric Quantum Mechanics, 
developed mainly in (1) - (5]. We shall follow the superfield approach, since it is 
more geometrical, rather than the component one, and obtained component form of the 
corresponding Lagrangian is obviously invariant under the desired SUSY transformations. 
Consider the superspace, spanned by the coordinates (t, 0, 0), where tis time, while O and it's 
conjugate iJ are nilpotent Grassman variables. The N = 2 supersymmetry transformations 
in the superspace with the complex odd parameter £ have the following form 

6t = i£0 + itO 

60 = l 60 = i', 

which are generated by the linear differential operators: 

n a ·o a 
"= a0 + i at' and 

_ a -a 
n = ao + iO at" 

Now one can introduce the main object of the theory - the real vector superfield <l>' 

<l>' = q' + 0(' - 0{i + 00F', 

( 1) 

(2) 

(3) 

where q' stands for all bosonic degrees of freedom of the system, (i and {' are their fermionic 
superpartners and F' is an auxiliary bosonic field. Since the superfield <l>' transforms under 
the supersymmetry transformations as 

6<I>i = (f"n + d'i)<r>i, ( 4) 

the most general supersymmetric Lagrangian can be obtained in terms of supercovariant. 
derivatives 
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a -a 
D = ao - iO at' and D = a_ - io a 

80 i)t' 
(5) 

which anticommutc with fl and fl; the resulting Lagrangian 

L = j dOdO(-~g;i(D<f>')(lJ<I>') + Jr). (6) 

is invariant under siqwrsymmetry transformations (4) by the construction and it corresponds 
to t lw om•-dimensional l\' = 2 supersymmetric sigma-model, characterized by the metric g,1 

(i.j = l, ... ,n) of the "target" manifold .\l(g,j) and the superpotcntial W. both being a 
functions of the superfiPld <l>'. 

Not,,. that the Lagrangian (6) is self - adjoint for any signature of tlw metric g,1. This 
fact is <'specially important for considering of homogeneous systems rnnpled with gravity. 
since· in these cases the manifold M described by the metric g;1 is not Hiemannian. 

AflPr intc·gration over the Grassman variables and elimination of an auxiliary field F'. 
one gets a more familiar component form of the Lagrangian 

L = ~g,_;(q)<i'<F + ·ig,J(q){i(~J + fi-,<i'"l'l 

+~R,1k1t'ete - ~g'J(q)D,IVDJW - 8,8JW{'e. (,) 

wlwre l?,jkl and q!- are the Riemann curvature and Christoffel connect.ion. corresponding to 
the metric g;J. The supersymmetry transformations can be also written in t II(' compo1wnt 
form 

Jq' = f(' - t(;. 
6(' = t(-iq' + qk{J e - 8'Hl), 

6{' = c(i<j' + qi1e· - 8'1V), (Is) 

which allow to find the conserved supercharges using tlw standard Nodher t hc•on·m 
t.Pclmique: 

Q = ((g,1<j1 + i8,W) 

Q = ('(g;J(J1 - iiJ,Hi) 

(9) 

Following the general lines of quantization of the system with bosonic and f<'rmionic 
degrees of freedom (15], introduce the canonical Poisson brackets 

{q',P.,} = Jj, {C,Pt,} = -Jj, {t,Pt,} = -,lj. ( 10) 

where P.,. l't,, and!'(, ,ll"c momenta, conjugate to q". C and('. Aft.er finding t!l<'ir c•xplicit 
form 

,,,,. = _q,.,,y + ;i·j,,kee·. (II) 

/'t' = -i_q,_;{i. /'t' = 0. ( 12) 
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one can conclude from (12), that the system possesses the second-class fermionic constraiuts 

\:(• = P(' + ig;i(1 , and X(• = Pt,, (l:l) 

smce 

{\:(,, X(,} = -ig,i. ( 14) 

Therefore, the quantization has to be done using the Dirac brackets, defined for any two 
functions V0 and ½ as 

{V., ½}v = {V., ½} - {\!~, Ye}-{ l } {Xd, Vi}. 
Xe, Xd 

(15) 

Using (1-'i), one can easily find non-vanishing Dirac brackets between bosonic and fermionic­
degrees of freedom 

{qi, Pq, }v = 8}, {C, (i}D = -iii. (16) 

Then, after replacing Dirac brackets with graded commutator 

Uv -+ i[, l±, (17) 

one obtains the following (anti)commutation relations: 

[l,Pq,]-=i8;, [(i,(iJ+=g•i. (18) 

To make a quantum expressions for supercharges (9) it is convenient to introduce thP 
projected fermionic operators (" = e~(µ and (" = e~(µ where e: is inverse to the tdrad cf 
(efeb = 8;:), related to the metric 9ij of the "target" manifold Mand to the metric of it's 
tangent space 1/ab in the usual way ef e11/ab = Yii. 

However, the explicit form of the supercharges depends on the choice of operator ordering 
and therefore is ambiguous. We take it as in [3] 

Q = Ce:(P; + iw;.b("e + ia;W) 
Q = ("e:(P; + iw,.b(•e - io,W), 

where w,ab is the corresponding spin connection. 

(19) 

In what follows, we shall consider the systems subject to the classical Hamiltonian 
constraint 

1 . . 1 .. 
Ilo = -g'1 P;Pj + -g'1(q)o;WojW = 0, 

2 2 (20) 

which in the quantum case should be replaced by the condition on the quantum state /p) 

H/p) =0, (21) 

with the Hamiltonian 
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\1 

,;, 

1 -
H = 2[Q,QJ+, (22) 

giving Jl0 in the classical limit i.e., when all fermionic fields are set equal to zero. 
The important point is that the operators (9) are nilpotent and mutually Hermitean 

adjoint with respect to the measure jf=gf d"q and therefore, the energy operator H is 
self - adjoint for any signature of the metric g;;. Now the Lagrangian (7) is self-adjoint by 
thP construction, since we use the real superfields and hence the complex Noether charges 
and their Quantum Mechanical expressions are Hermitean adjoint to each other. 

Obviously, now one can consider two first order differential equations on the wave function 

Q/p) = 0, and Qlp) = 0, (23) 

and therefore linearize the operator equation (21); the existence of normalizable solutions 
of the system (23) means in turn, that supersymmetry is unbroken Quantum Mechanically. 

In order to solve the system consider the Fock space spanned by the fermionic creation 
and annihilation operators (• and (" respectively with [(", (bJ+ = 77•b. The general state in 
this Fock space is obtained in terms of the series expansion 

/p) = F(q)/0) + ... + ~("' ... (•n Fa, ... an(q)/0) 
n. 

1 - -= F(q)/0) + ... + 1 C' ... CnF,, ... in(q)/D), 
n. 

(24) 

where the coefficients in expansions of this series are p - forms defined on the manifold 
M(g,j), and their number due to the nilpotency of fermionic creation operators is finite. 
Since the fermion number operator N = ("(a commutes with the Hamiltonian H and 

[N,Q]_ = -Q, [N,Qj_ = Q, (25) 

one can consider the states characterized by the different fermion numbers separately. 
Now the solution in empty and filled fermion sectors is simply expressed in terms of the 
superpotential W as follows: 

/po)= const * e-WI0), 

I ) 1 - -
Pn = const * -("' .. .t"nE e+w /0) n! "3 a1 ... an • 

(26) 

(27) 

In order to investigate the solutions in other fermion sectors, let us first recall [2], that 
in the case of vanishing superpotential operators Q0 and Q0 (supercharges with W = 0) act 
on the p - forms F as an exterior and co-exterior derivatives respectively. So, the solution 
of equation Q0 /p) = D cannot be written as 

/pp) = Qo/ap-1), (28) 

only if the corresponding p-th co homology group HP( M) of the manifold M(g,j) is nontrivial. 
Before generalizing this result to the systems with non-zero superpotential W, first note that 
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Q=e-lVQ0ew, and Q=ewQ0e-w. (2>l) 

Now, using (28) and (29) one can prove that the general solution ill p - fermioll sPctors 
(p = 1, ... , n -1) of the first equation in (23) for the case of trivial cohomology group HP( ,U) 
lS 

IPp) = Qlap_i). (:lO) 

However, because Q and Q are Hermitean adjoint to each other, the second equation i11 
(23) indicates, that this state has zero norm and consequently is unphysical. Therefore 
the possible existence of supersymmetric ground-states i.e. the solutions of zero-erwrgy 
Shrodinger-type equation (21) is directly related with the topology of the collsidered manifold 
1'vf(gi1), since all states except those in purely bosonic and filled fermion sectors call he 
excluded even without solving the system (23), if the topology of the manifold M(g,1 ) is 
trivial. 

For purely bosonic systems with nonvanishing potential energy the described N = 2 
supersymmetrization turns out to be the simplest possible one and it can be applied for 

canonical quantization of any appropriate homogeneous cosmological model coupled with 
matter. After the choice of operator ordering in the supercharges equation (21) in llull 
fermion sector corresponds to the Wheeler-De Witt equation for the considered Einstein­
matter system and it's solution (26) is then easily obtained in terms of superpotential W, 
since SU SY allows to linearize the Quantum Hamiltonian equation. 

III. N = 2 SUPERSYMMETRIZATION OF SU(2) EINSTEIN-YANG-MILLS 
COSMOLOGICAL MODELS 

Now we are in a position to make the N = 2 supersymmetric extensioll of homogeneous 
axially-symmetric SU(2) Einstein-Yang-Mills systems given by the action 

S = J d4xvT="Gi( R - i J,~1JAµ"). (:H) 

'vVe restrict ourselves to a subclass of homogeneous space-times which admit representa­
tion in a form of an unconstrained Hamiltollian.system for a corresponding classical coupled 
system of equations, i.e., we consider axially-symmetric Bianchi - !, ! I, 
V l l l, IX (axially-symmetric Bianchi - V l l is equivalent to Bianchi - !), I< antuwski -
Sachs and closed Friedmann - Robt:rtson - Walker cosmological models. 

The general diagonal Bianchi -type axially-symmetric space-times are parametrized by 
two independent functions of a cosmological time b1(t) and b3 (t) 

ds
2 = -dt2 + bi(t)[(w1

)
2 + (w2 )2] + b~(t)(w3 )2, (n) 

where wi are basis left-invariant one-forms (dwi = ½C)kwi I\ wk) for the spatially homog<'­
neous three metrics, depending on 3 spatial (not 11ecessarily Cartezian) coordinates x, y, z: 
Bianchi - I 

w1 = dx, w2 = dy, w3 = dz. (33) 
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f, 

r 

Bianchi - I I 

l3im1<·hi - VI I I 

Bia11chi - IX 

w1 = d:, ,,} = dx, "} = dy - xd:. 

w1 = d.r + (1 + :r2 )dy + (.1· - y - .r
2
y)dz, 

,.,} = d.r + (-1 + _,.i)dy + (1· + y - .r
2 y)dz, 

,,? = 2.rdy + (1 - 2J:y)dz, 

w1 = si11 zd.1· - cos= sin .1·dy. 

w2 = ms :d.r + sin z sin .rely; 

w3 = cos :rdy + dz. 

(:34) 

(:1'i) 

(:3(i) 

As it was shown by Darian and Kunzie [13], the general ansatz for 5T(2) Yang-1\lills 
fi<'ld, compatible with the symmetries of axially-symmetric Bianchi -type cosmological mod­
Pis is also expressed ill terms of t\vo illdepcndent real valued_ functions n(I) alld 1 (1) of a 

cosmological time ollly and has tilt' form 

A.= n(l)(w 1r 1 + w 2
r2) + ,(t)w

3
r 3 , 

when, Ti are SU(2) group generators, llormalized as [r;, r;] = l.ijkT! .. 

{\' a11fou•.,ki -- Sachs space-t.inw 

,L,2 = -dt2 + b;(t)dr2 + 1,i(l)d02 + bi(l)(sin0)1d,j/. 

(:!,) 

(:l~) 

docs not belong lo Hianchi classification and admits an additiollal spll<'riral symnwtry. so 
SU(2) YM ansatz has the ditforellt form, originatPd from Witt.PH ansat.z for static spherical!_,. 

symmdric cas<' aft.Pr mutual replac('lll<'Ht r --t I, t --t r: 

Ao= 0, Ar= ,(t)L1, 1\0 = -L3 + n(t)L2, A¢= sill O(L2 + n(/)Le1), (:19) 

whPrf' L 1 = (si110cosef,,sillOsinef,,cosO), L2 = (cosOcosef,,cosOsin</),-sinO), 

L;i = (- sill ef,, cos ef,, 0) are splwrical projections of SU(2) generators. 
We also consider closed F1··ie:dma1111 - Rob,:rtson - lV a/1.-c.,- model sPparatrl_v. l,,,ca11s<' 

it's gellera.l YM ansatz [16] (SU(2) YM field on S3
) is not. obtailled from Bia11chi - IX aftn 

setting n(I) = 1 (1) in (:17). ClosPd FHW modPl with thP intPrval 

,1.,2 = -d/ 2 + b2 (1)(d\ 2 + sin2 \(d02 + sill2 Od</>2
)), (·lll) 

(X, 0 and ef> are anglPs oll S3 ) admits tlw following rPprrsPntation for SI '(2) Y~I fi,·ld. 

exprpssed in 1.c,rms of single real-val11ed function n(I): 

Ao= 0 Ai= ~(n(I) + I )lliJ}'-
1

• 

I 1 = <'Xp(i\ (sin 0(<T1 ms <1> + <T2 sin</>)+ a:1 ms O); j = I. 2, :I: 
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Inserting these ansatzes into the action and integrating over all variables except I 01w 

obtains the one-dimensional Lagrangian 

1 . . 
Lo= 29i)(q),j'q1 - V(q) = [\. - V, (.1:1) 

here g;j(q) is the rnetnc m the extended n11111superspace i.e., in the configuration spac<' 
of spatially homogeneous axially-symmetric three-metrics coupled with the corresponding l 
S'l/(2) Yang-l\lills fields. 

Let us consider the functions q; = ( bi, b3 , a, 1 ) as a bosonic.components of thE' supcrfield 11 
(3). One can introduce the same number of fermionic fields((' and (') and therefore make I) 
1\· = 2 supersymmetrization of the Lagrangian L0 if, and only if, the potential V(q) admits : 
the expression via a function W(q), ca]led superpotential: I 

V(q) = ~ij(qJ8W(q)8W(q) 
2 8q• 8qi · 

(11) 

In this case N = 2 S'US'Y Lagrangian (7) and the corresponding Hamiltonian, obtained 
after usual Legendre transformation are self - adjoint for any signature of thE' metric g;j in 
the extended minisuperspace. 

The kinetic terms for all Bianchi models and K antowksi - Sachs arc the same: 

• 2 • • 2 • bf 
K=-~~-~~~+~~+~~' (45) 

and the only difference between them is due to the potential terms. Using the expression 
for the metric on the extended "minisuperspace" 

Yb 1b1 = -2b3, Ybib, = -2bt, Yaa = 2b3, 
bf g,,,, = t;' (46) 

and the explicit form of the potentials, we have found some superpotentials as a solutions of 
(44), hence making N = 2 SUS'Y extension of the given Einstein-Yang-Mills systems. The 
results are collected in the Table I. 

One should note that the obtained superpotentials W in all these cases turn out to be 
the direct sums of pure gravitational W9 r (first listed in [8] in terms of Misner variables) 
and Yang-Mills parts WvM• This fact is quite interesting and does not follow a prio1·i from 
the general expectations, since in the sigma-model approach considered above, gravitational 
and Yang-Mills variables in the Lagrangian L0 are not separated. Moreover, it seems that 
the YM field is a unique one, which being coupled with gravity can allow the corresponding 
superpotential to be in the form of direct sum. It follows from the statement, that the 
supcrpotential is also the least Euclidean action - solution of the Euclidean Hamilton­
.Jacobi equation of the considered system. One can reconstruct from the superpotcntial 
the corresponding Euclidean solutions, those which give the main contribution to the wave 
function in a quasiclassical approach. So, the gravitational part of the superpotential 
Wgr determines the Euclidean gravitational background configurations which should not 
IH, changed if a matter field is added. It is possible, only if a matter configurations do 
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TABLE I 

Lagrangian L0 Superpotential 

W=W9r+WvM 

Bl I(_ [ la,212 + ~a,4]· 
bs 2b1 ' 

o+a2-y; 

BIJ I(_[!~+ _!_0212 + !~(a,2 +-y)2]; 
4 b 1 bs 2 b1 

½b5 + (02-y + h2); 

bs b 2 
½(2bf - b~) + (a2

1 - h 2); BV III I( - [¼~ + b3 + ta2-y2 + ½J;½(a2 - -y) ]; 
1 1 

BIX F [1 b
3 

b 1 2( )2 1 b ( 2 )2] { - 4 i;f - 3 + i;.o 1 - 1 + 2 -1;f a - 1 ; ½(2br + bJ) + (.02(-y - 1) - h 2J; 
or 

½(b5 - 4b1b3) + (a2('i'-1) - h 2); 

KS [( - [t;a2-y2 - b3 + Ht(a2 -1)2]; 2b1b3 + 1 (a2 - 1); 

FRW - ;!_bb2 + lba? + ;!_b - I (t-a•j• · 
2 2 2 2 b ' W+(½a3-a); 

not contribute to the energy-momentum tensor. Yang-Mills part of superpotential WvM 
just provides such possibility since it produces self-dual YM instantons with the energy­
momentum tensor identically vanished. We discuss this point in more details in next Section. 

Note that full superpotential W = W9r + WvM does not exist as a solution of.(44) ifwe 
cancel one of the relevant YM function c, or 1 ; there are no nontrivial self-dual solutions 
of YM equations of motion with one of YM functions canceled and WvM ceases to exist in 
this case. The question about other solutions of equation (44) which are not a direct sums 
of gravitational and YM parts is still opened, however, it seems unlikely that such solutions 
can be obtained in a closed analytical form. 

On the other hand, the one more crucial observation can be done, that for all considered 
models Yang-Mills part of the superpotential coincides with the corresponding Chern-Simons 
functional, calculated on a 3 -dimensional slice t = const. Indeed, it can be checked the YM 
Chern-Simons terms 

W = ~ j d3x r,--;:;jl - GllO>.µv(A"8 A"+ ~fabcAa Ab Ac) YM 2 VI - '-'I >. µ v 3 >. µ v, (47) 

turn out to be a solutions of Euclidean Hamilton-Jacobi equation and therefore play a role of 
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the Yang-Mills part of the superpotential. Such coincidence of YM Chern-Simons terms (47) 
with YM superpotentials (44) in framework of the one-dimensional sigma-model describing 
YM field coupled with gravity, seems to be very surprising. Definitely, this statement is 
not true in a general case of an arbitrary space-time and takes place for the suggested 
models as a consequence of the symmetries of the space-time metrics and corresponding YM 
ansatzes. Note, that there exist no similar expressions for the iVgr part of the superpotent.ial 
in terms of a functional of gravitational variables except Bianchi- IX model with a nonzero 
cosmological constant, where Chern-Simons functional in terms of Ashtekar's variables [17) 
is also an exact solution of Ashtekar-Hamilton-Jacobi equation [18). 

So, we have shown, that the considered homogeneous axially-symmetric EYM systems 
admit N = 2 supersymmetric sigma-model extension with the superpotentials given 
explicitly in the Table I and this gives us the suitable background for the quantization. 

IV. THE QUANTIZATION AND SUSY BREAKING BY YM INSTANTONS 

A. 

As it can be seen from the supersymmetrytransformations (8), in order to prevent N = 2 
SUSY breaking at the classical level, the classical pure bosonic configurations must satisfy 

the properties 

</(t) = o, and aW(qi(t)) = o, (48) 

along with the classical Hamiltonian constraint (20). Such classical configurations really 
exist in an usual field theory in a fiat space-time, and the simplest well-known example is a 
scalar rest particle (qi= 0) on a bottom of a potential with V(l) = 0. 

In contrary with such examples, dealing with unconstrained homogeneous systems with 
gravity included, any nontrivial classical solution of Einstein (or Einstein coupled with a 
matter) equations never has all momenta vanished qi(t) j 0. These systetns satisfy (20) due 
to the dynamical balance between the kinetic and potential terms with both positive and 

negative signs. 
Hence, any homogeneous Einstein ( or Einstein-matter) system, being embedded into N = 

2 supersymmetric sigma-model never has solutions of equations of motion with unbrokPn 
supersymmetry, i.e., supersymmetry is always spontaneously broken at the "tree level". 

Let us see what happens in the Quantum Mechanical approach. In the Einstein-Yang­
Mills systems considered above the number of bosonic functions qi is four, which is also the 
fermion number of the filled fermion sector. Therefore we shall consider the solutions of zero 
energy Schrodinger-type equation (21) in these empty and filled fermion sectors. 

The superpotential W(q) is always defined up to the sign, since it is the "square root" 
of the bosonic potential V(q). Both signs are physically acceptable and correspond to the 
solutions in empty (26) and filled (27) fermion sectors when finding the supersymmetric wave 
functions. The normalizability of bosonic wave function for "positive" superpotential means 
in turn the normalizability of filled fermionic wave function for the "negative" superpotential 

and vice versa. We define the norm of the physical state as ± f ~(p\\p)d4q in order 
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to an,id the problem of the negative norm in four fermion sector. caused by tllP timP-like 
con1pom•nt of the fermionic field. The plus sign in the definition of the norm corresponds 
to +ll'(q) while the minus sign has to lw taken for -1\'(q). 

Lt'! us accept. for ddinite•npss the positive sign of tllP superpotPntial. First consider tlw 
pme· gravitational s~•stc>ms. when o and -y functions along with their fermionic part1wrs are 
set Peptal to zero. ,\s it was stated above, the supersymmetry is spontaneously broken for 
;rn~- 11011! rivial solutions of l•:instein Pqnations. Quantum tllechanically the snpersymmetr~­
is re·ston·d for !3ianchi - l,/l,!Xp)- !{antotcsh - Sachs and FRI!' models since tlw 
solution of (21 ). lpl,") = cons! *, -11 ·,· IO) in null fermion sector are normalizable: 

r+x 1+c• r---i 211· /,. db1 db,y I - !JI< - g• < CX). 

'0 () 

(1!)) 

ThPn•forc we an· facing the intPn·sting situation, when• unlike· to th<• ordinar~­
s11p,•rs>·1nnwtric Quantum t\lc-chanics, t.lw supe•rsyrnmctry !JPing spontanl'onsly brok<'n a1 
tlw "( n·e· level" is then rpstored Q11a11l1trn 11lechanica.lly. 

Tlw only exc<'pt.ions ar<' tlw second (in the Table I) sttpl'rpo!c-ntial for /Jionchi- /.\'(2) 
and /J ianch i - \ · 11 I where· 1 lw Sll[H'rsymmdry rPmains broken at 1 lw quan1 uni !en·! as \H

0 ll. 
since thPir nonn (•1!J) diverges at t.ll(' uppl'r lirnit. 

Thl' further inclusion of Yang-Mills field spontaneously hreaks tlw su1JPrsym111<'try again. 
h<'canse, as om· can SP<' from the Table I. Yang-tllills part. of tlw supPrpol<'n1 ial II ·L\/ for 
all considered mockls. heing the corr<'sponding Chern-Simons term. is the• odd fun ct ion of 
o and 1·; consPqttcnlly. Yl\l parts of wave functions IPt') = const. * c±ll\-.,,10) both in null 
and filled fl'rmion sectors arl' not normalizable: 

j +<X• j+"· r---i 211· 
-m do -oc, ,/-yy I - gl,.± "'' ➔ oo. (50) 

In order to find possible supersymmctric wave functions in om·. two and t hr<'P fprmion 
sectors, on<' has to investigate thP topology of the l'Xtt>nded minisuperspac<'. Tlw sirnpl<'sl 
way of doing that. is going to the Misner parametrization [19) of the space-t inw rnP!ric (:!2): 

,182 = -N2(t.)dt2 + ~~.2A(t)+2H(tl[(w1)2 + (w2)2] + ~,.2A(f)-1Ht1\w")2. 
6 6 

(:,I) 

ln terms of Mis1wr variables the metric in t.lw ext.ended minisupcrspac<' (-16) has the sirnpl<' 

diagonal form 

!/AA=-), !/BB= 1, 9crcx = 2e-2A-2H g~,- = c-H+4H (52) 

which shows that the topology of the Pxtended minist1perspace is equivaknt tot 11<' l\linkowski 
one with a.II cohornologies trivial /JP(J\1(g;1)) = 0, p = 1,2,:1 and, in acrnrdancP with tlw 
discussion of Section II. no physical states in one, two and thrC'C' fl'rmion sPctors <"xist sinn· 
they havp zero norm. Similarly, there are no physical stat~s Pxcept the on1•s in 11111! and fili<-d 
fermion sc,ctors in a considcrP<l pt1re gravitational syst.ems. 
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B. 

Let us discuss in more details the mechanism of the spontaneous supersymnwtry breaking 
in null fermion sector when YM field is added to a pure gravitational syst<'m (such as 
Bianchi - I, II, JX11 i, /{ S and F Rlt') which is Quantum l\lechanically supersymnwtric, 
since it admits normalizable zero energy solution of Wheeler-De Witt equation (21 ). This 
mechanism is occurred to be quite similar to the one considered in [I], [20] - [22] where th,, 
SUSY breaking by instanton configurations has been discussed. 

Indeed, as it was already mentioned, the superpotential H'(q) (if exists), is one of the 
solutions of Euclidean Hamilton-Jacobi equation and represents a "least" Euclidean action 
of field configurations, giving the main quasiclassical contribution into the wave function 
and providing the SU SY breaking after inclusion of the Yang-Mills field. Explicit form of 
superpotential allows to reconstruct such classical configurations by solving the first order 
system: 

iJ(W9 r + Wnf) 
iJqi 

g,jl/ = (.53) 

For pure gravitational degrees of freedom these equations are equivalent to the ( anti )self­
duality gravitational equations Rµv>.a = ±11µv>.a while WyM(q) part of the superpotential 
in (.53) gives rise to the (anti)self-dual Yang-Mills equations F;:v = ±P;:v on a given 
gravitational background determined by the W9 r. 

Then, (anti)self-dual Yang-Mills instantons in our systems can be interpreted as a 
tunneling solutions (with the nonvanishing Euclidean action) between topologically distinct 
vacua. In this case YM instanton contribution provides the SUSY breakdown due to 
the energy shift from the initial zero to some positive level and this fact is expressed in 
nonnormalizability of YM part of zero energy wave function Jp/i'M) = const * e-Wn,J0). 

As the illustration of these statements, let us consider Euclidean _ configurations in 
Bianchi - IX and /{ antowski - Sachs EYM systems. 

BJ X. The solutions of Hamilton-Jacobi equations (.53), which correspond to the 
gravitational part of both possible superpotentials Wgr(BIXclJ) = ½(2bi +b5) and W 9r(BIXi,)) = 
½(b5 - 4b1b3) have been discussed by Gibbons and Pope [23]. For our purposes we would 
like to mention some of them using the slightly different notations. 

One of the solutions of equations (.53) with the normalizable superpotential W 9 r(BIXclJ) 

is occurred to be the (anti)self-dual Eguchi-Hanson [24] metric which has the form 

r2 r2 
ds2 = f2dr2 + 4((w')2 + (w2)2) + 4 r2(w3)2, (.54) 

with 

2 a 4 -I 
J =(1-(-)) , 

r 
(.5.5) 

and w' is determined by (36). In order to bring this metric to the form (32), one should 
introduce the "Euclidean time" r as 

I a 4 -2 
dt = ( 1 - ( - ) ) dr. 

r 

12 

(.56) 

Eguchi-Hanson metric has vanishing Euclidean action SJ;H = 0, which is completely 
determined by it's surface contribution [2.5], since the volume contribution is canceled 
identically (R = 0 "on shell") for EYM systems. 

Inserting the expression for the metric functions into the Hamilton-Jacobi equations for 
Yang-Mills part of superpotential WYM(BIX) = -a2

(, - 1) + ½,2 and differentiating with 
respect to the introduced variable r one obtains the system 

a=~J2(a,-a), 
r 

(57) 

')' = ~(a2 - ,), 
r 

(.58) 

which is self-duality YM equations on Eguchi-Hanson background solved by the family of 
instanton solutions [26] 

a= a, sinh(p) 
sinh(a,(p + a

2
)), 'Y = a, tanh(p) coth(a1(p + a 2)), r

2 

= coth(p), 
a2 

(59) 

with the action Sr}/ = 81r2
~ for a 1 > 1, a2 = 0, and S';;;:/ = 81r2¥ for a1 > 1, 0 < a 2 < oo, 

where a 1 and a 2 are the constants of integration. 
The extremal Euclidean configurations, produced by the nonnormalizable superpotential 

W 9r(BIXc,)) are self-dual Taub-NUT gravitational instantons with the nonvanishing action 
[27]; similarly, YM part of the superpotential gives rise to the self-dual YM instantons [28] 
on a Taub-NUT background. 

KS. For EYM system in Kantowski-Sachs space-time with W9r(KS) = 2b1b3 the 
gravitational degrees of freedom b1 and b3 obey to the following self-duality equations 

b, b3 + b3b1 = b3, (60) 

ii,= 1, (61) 

satisfied by 

b1 = t, and b3 = 1, (62) 

which is nothing more than flat Euclidean R4 space-time metric with r and t interchanged. 
From the Yang-Mills part of (.53) with WYM(KS) = - 1 (a2 

- 1) one obtains the usual YM 
(anti)self-duality equations in R4, written in the "polar" coordinates 

a=a,, (63) 

i'f2 = a 2 
- 1, (64) 

with well-known family of YM instanton solutions, having the topological charge k = 1 [29] 

,=¢, and a=e'"g, (6.5) 
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where 

1 - 92 

1P = - In ( ~), g= (°'-t)(°z-t)_ 
a1 + t a2 + t 

(66) 

Note, that the dimension of the moduli space M of SU(2) Yang-Mills instantons with 
a topological charge k on a given Riemannian 4 - D manifold M (which has first Betti 
number c1 and the dimension c2 of maximal submanifold in cohomologies H 2(M, R) where 
the corresponding intersection form is negatively defined) is [30] 

dim(Msu(2J) = Sk - 3(1 - c1 + c2), (67) 

and in a simplest I< antowski-Sachs case with M = R4 (k = 1, c1 = c2 = 0) is equal to five. 
In the framework of our approach, since we quantize the system reduced to one-dimension, 
only some of these instantons are taken into account. In fact, we deal with the subclass of 
all possible YM instantons, originated from the chosen ansatzes, which share the space-time 
symmetries in Lorentsian sector. However, their contribution breaks the supersymmetry 
fatally in conformity with the general expectations, as it should take place in a full 4 - D 
quantum theory. 

To summarize, it is shown that the spontaneous supersymmetry breaking which takes 
place if the Yang-Mills field is added to pure gravity is caused in a quasiclassical approach 
by YM instanton contribution to the wave function. This contribution, in accordance 
with general expectations, provides the energy shift t:;.E from a zero level. To estimate 
this energy shift for EYM systems an instant.on calculation technique can be used, which 
also should give the possibility to find the lowest level normalizable wave function IP1 ), 
HlpfYM) = t:;.ElpfYM) for the considered models. This work is in a progress now. 

V. CONCLUSIONS 

We would like to conclude with the following remarks. N = 2 SUSY Quantum 
Mechanical sigma-model approach allows to obtain the conserved supercharges being 
Hermitean adjoint to each other, along with the self-adjoint expressions for Hamiltonian 
and Lagrangian for any signature of a sigma-model metric. This gives the possibility to use 
the supersymmetry as a tool for quantization of various homogeneous systems coupled with 
gravity if they can be embedded into the considered N = 2 SU SY sigma-model. The desired 
embedding has been done for coupled SU(2) EYM systems in some cosmological models 
which admit explicit expressions for the superpotentials being direct sum of gravitational 
and Yang-Mills parts. After the quantization the only nontrivial zero energy wave functions 
in null and filled fermion sectors turn out to have diverging norm and this fact indicates 
spontaneous breaking of supersymmetry, caused by YM instantons. 
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JloHeU E.E., TeHTIOKOB M.H., Uyn3ll M.M. 
06 N = 2 SUSY O)IHOpD)IHOll KBaHTOBOll KOCMOJIOllIH; 
cHCTeMLI 3iiHllITeiiHa-51Hra-MHJIJica 

E2-98-214 

O6c)'lKJlaeTCll npHMeHeHHe N = 2 cynepCHMMeTpH'IHOii KBaHTOBOii MeXaHHKH Jt)IJI KBaHTOBaHHll 
npoCTpaHCTBeHHO O)IHOpO)IHl,IX CHCTeM, CBll3aHHLIX C rpaBHTautteii. OCHOB1,183llCL Ha cynepnoneBOM 
q:,opMaJIHJMe B N = 2 cynepCHMMeTpH'IHOii CHrMa-MO)leJIH, IlOJI)"leHM 3pMHTOBO conplllKeHHhle Bhlpa­
)l(eHHll Jt)IJI KBaHTOBOro raMHJILTOHHaHa H narpaHlKHaHa npH npOH3BOJILHOii CHrna-rype MeTpHKH B MHHH­
cynepnpOCTpaHCTBe. Pa3BHTLiii q:,opMaJIH3M )laJiee npHMeHeH K CBll3aHHl,IM SU (2) CHCTeMaM 
3iiHllITeiiHa-51Hra-MHJIJica (351M) s aKCHwiLHO CHMMt:TpH'IHLIX DHaHKH-1,11,VIII,IX KOCMOJIOlll­
'leCKHX MO)leJillX, a TaKlKe B MO)leJillX KaHTOBCKOro-CaKca H <l>pHJlMaHa-Po6epTCOHa-YoKepa. IloKa­
JaHO, 'ITO see 3TH MO)leJIH )lOllYCKalOT cynepCHMMeTpH3auHIO B paMKax N = 2 CHrMa-MO)leJIH " ITOJl)"ICHLI 
COOTBeTCTBYIOIUHM BLlpalKCHHCM )lJ]ll cynepnoTeHUHaJIOB, KOTOpLie OKa3LIBalOTCJI npllMOii cyMMOii rpasn­
TaUHOHHOii n llHr-MHJIJICOBLIX tJaCTeil. 51Hr-MHJIJICOBa 'laCTL cynepnOTeHUHaJia npn 3TOM s TO'IHOCTH 
pasHa 'IJICHY qepHa-CaiiMOHCa. CnoHTaHHOe HapyrneHHC cynepCHMMCTpHH, 81,13BaHHOe llHr-MHJIJICO­
BLIMH HHCTaHTOHaMH B 351M CHCTeMax, o6C)'lKJlalOTCll Ha HeCKOJILKHX qJH3H'leCKH COJleplKaTeJILHLIX 
npnMepax. 

Pa6oTa BLillOJIHeHa s Jla6oparnpnn Te.opeTH'leCKOii QJHJHKH HM. H.H.Eoronw6osa O1-UIH. 

IIpenpnHT O61,e)lHHeHHoro HHCTHTYTa ll)lepHLIX HCCJie)lOBaHHii. Jly6Ha, 1998 

Donets E.E., Tentyukov M.N., Tsulaia M.M. 
Towards N = 2 SUSY Homogeneous Quantum Cosmology; 
Einstein-Yang-Mills Systems 

E2-98-214 

The application of N = 2 supersymmetric Quantum Mechanics for the quantization 
of homogeneous systems coupled with gravity is discussed. Starting with the superfield formulation 
of N = 2 SUSY sigma-model. He,mitean self-adjoint expressions for quantum Hamiltonians 
and Lagrangians for any signature of a sigma-model metric are obtained. This approach is then applied 
to coupled SU (2) Einstein-Yang-Mills (EYM) systems in axially-symmetric Bianchi-I,II,VIII,IX, 
Kantowski-Sachs and closed Friedmann-Robertson-Wa.lker cosmological models. It is shown, that 
all these models admit the embedding into N = 2 SUSY sigma-model with the explicit expressions 
for superpotentials, being direct sums of gravitational and Yang-Mills (YM) parts. In addition, YM 
parts of superpotentials exactly coincide with the corresponding Chern-Simons terms. The spontaneous 
SUSY breaking, caused by YM instantons in EYM systems is discussed in a number of examples. 

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics, JINR. 
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