


1. INTRODUCTION

In order to quantize a pure bosonic system one can apply supersymmetry as a mighty
tool for dealing with the problems of a quantum theory {1] - {5]. The quantization can be
done in two ways. The first one is to embed the system in a four dimensional supersymmetric
field theory and then reduce it to one dimension [2] - [3], [6], or alternatively, consider the
desired Lagrangian as a bosonic part of a supersymmetric sigma-model after the dimensional
reduction [7] - [8]. These two approaches are not equivalent in general and the results can
be different. The second method i.e., the method of supersymmetric Quantum Mechanics
seems more convenient for our purposes and we shall follow it hereafter.

In the spatially homogeneous cosmological models the only dynamical variable is time ¢,
other (spatial) coordinates can be integrated out from the action. Therefore, one can simply
consider the corresponding mechanical system and then try to make a supersymmetric
sigma-model extension. The case of pure gravity and gravity with scalar fields was
investigated recently by Graham and Bene in the framework of N = 2 SUSY Quantum
Mechanics. However, the construction of quantum Hamiltonian, proposed there, is occurred
to be Hermitean not self-adjoint for the case of indefinite signature of the metric in the
minisuperspace. In this paper we use another construction of the corresponding Hamiltonian,
which in accordance with general lines of quantization, is Hermitean self-adjoint for any
type of signature of the metric in minisuperspace. The obtained quantum states coincide
with those found in [7] - [8] only in null fermion and filled fermion sectors, while in other
fermion sectors they exist only if the manifold, determined by the minisuperspace metric
has corresponding nontrivial cohomologies.

We apply developed N = 2 SUSY sigma-model technique for the quantization of SU(2)
Einstein-Yang-Mills system in homogeneous axially-symmetric Bianchi — I, 11,VIII, IX,
Kantowski—Sachs (KS) and closed Friedman— Robertson—Walker (F RW') cosmological
models. Since the work by Bartnik and McKinnon [9] where an infinite set of regular particle-
like SU(2) non-Abelian EYM configurations was obtained, the further interest to EYM
system is caused by an unexpected properties of their classical solutions. In particular, it
has been shown, that non-Abelian EYM black holes violate naive "no-hair” conjecture in an
cxternal region [10], as well as they demonstrate rather unusual internal structure [11} - [12]
with the generic space-time singularity being an infinitely oscillating, but not of a Mixmaster
type. The metric in space-time region under an event horizon of spherically symmetric
black hole is equivalent to homogeneous cosmological Kantowski — Sachs metric and this
correspondence allows to apply the methods, developed in the quantum cosmology for study
of black hole singularities. Classical EYM solutions in different ( Bianchi) cosmologies are
still not investigated so far, except axially-symmetric Bianchi — I model, where the chaotic
behavior of the metric, inspired by chaos in YM equations of motion has been observed [13] -
[14]. In all classical EYM systems mentioned above, the nonlinear nature of source YM field
produces nontrivial space-time configurations mainly in strong field regions i.e., near black
hole or cosmological space-time singularities, where pure classical description of space-time
should be replaced by a quantum field theory and our present work is one step towards this

goal.
We show that all considered EYM models, containing initially purely bosonic
(gravitational and YM) degrees of freedom, admit N = 2 supersymmetrization in the
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framework of N = 2 SUSY sigma-model. The inclusion of non-Abelian gauge fields
to pure gravitational systems produces additional parts in superpotentials, which as we
shall see below, are equal to Yang-Mills Chern-Simons terms. The connection between the
superpotential and the “winding number” in some supersymmetric Yang-Mills field theories
and sigma-models was discussed earlier [2] - [3]. However, direct generalization to the EYM
supersymmetric sigma-models is not straightforward, since the expression for the space-time
metric, which in turn determines the form pf the ansatz for Yang-Mills field, can be arbitrary.
Therefore the fact, that N = 2 supersymmetric sigma-model based on the axially-symmetric
homogeneous EYM systems respects this result is quite nontrivial.

The paper is organized as follows: in Section II we discuss formal aspects of N = 2 .SUSY
sigma-models, starting with the superfield approach; in Section III the desired embedding
of EYM systems into N = 2 SUSY sigma-model is described and explicit expressions
for superpotentials are given; the quantization and SUSY breaking by YM instantons are
discussed in Section IV.

II. N =2 SUSY QUANTUM MECHANICS

Let us first recall some main features of N = 2 supersymmetric Quantum Mechanics,
developed mainly in [1] - [5]. We shall follow the superfield approach, since it is
more geometrical, rather than the component one, and obtained component form of the
corresponding Lagrangian is obviously invariant under the desired SUSY transformations.
Consider the superspace, spanned by the coordinates (¢, 0, 8), where ¢ is time, while 8 and it’s
conjugate 0 are nilpotent Grassman variables. The N = 2 supersymmetry transformations
in the superspace with the complex odd parameter ¢ have the following form

5t = e + ied
0=c S0=¢ (1)
which are generated by the linear differential operators:

g 0 - d -0
Q_ﬁ-}-zaa, and Q_b—a-+zaa. (2)

Now one can introduce the main object of the t‘heory — the real vector superfield &

o' =¢' + 06 — 08 + 06 F", 3)

where ¢' stands for all bosonic degrees of freedom of the system, £* and £ are their fermionic

superpartners and F is an auxiliary bosonic field. Since the superfield ®¢ transforms under
the supersymmetry transformations as

50' = (eQ + )P, 4)

the most general supersymmetric Lagrangian can be obtained in terms of supercovariant
derivatives

e

o et

9 .0 R R )
D=5 =il and D=p—ils, (5)

which anticommute with Q and €; the resulting Lagrangian
L= /([0([0(—%g;,-(D(I>i)(D<I>") + W), (6)

is invariant under supersymmetry transformations (4) by the construction and it corresponds
to the one-dimensional N = 2 supersymmetric sigma-model, characterized by the metric g;
(7,7 = 1,...,n) of the “target” manifold M(gi;) and the superpotential W, both being a
functions of the superfield ®'.

Note, that the Lagrangian (6) is self — adjoint for any signature of the metric ¢;;. This
fact is especially important for considering of homogeneous systems coupled with gravity.
since in these cases the manifold M described by the metric g;; is not Riemannian.

After integration over the Grassman variables and elimination of an auxiliary field F*.
one gets a more familiar component form of the Lagrangian

L = 5gi(@)d'q’ +igii()€ (€ + T¢*¢")
+%ltijszi5jfk51 - ég"i(q)awajw — BOWEE (1)

where R;j and I‘;k are the Riemann curvature and Christoffel connection, corresponding to
the metric g;;. The supersymmetry transformations can be also written in the component

form
(Sqi — Efi _ C_Ei,
86 = (=i + I E6 — W),
68 = e(iq' + I E¢F — W), ()

which allow to find the conserved supercharges using the standard Noether theorem
technique:

Q = Egud’ +i0W) ()
Q = &(g,¢ —idW)

Following the general lines of quantization of the system with bosonic and fermionic
degrees of freedom [15], introduce the canonical Poisson brackets

{¢ PpY =28, {& Ps}=-8, {€ Pu}=-6. (10)

where Py, Pe, and Py are momenta, conjugate to ¢', € and €. After finding their explicit
form

Ppo= gid il b€, (i

Py = —ig;€, Pu=0. (12



one can conclude from (12), that the system possesses the second-class fermionic constraints
Ve = P +igii€?,  and & = Pr, (13)

since
{xewxo} = —igy;. (14)

Therefore, the quantization has to be done using the Dirac brackets, defined for any two
functions V, and V} as

{VaxVb}D = {Vﬂ, Vb} {‘/ﬂ"( } {\dv‘/b} (13)

{xe> x4}

. . . - . . -
Using (15), one can easily find non-vanishing Dirac brackets between bosonic and fermionic
degrees of freedom

¢ Puto =08, {£,8)p=—ig". (16)
Then, after replacing Dirac brackets with graded commutator
{a }D - i[a]iv (17)
one obtains the following (anti)commutation relations:
Ppl- =18, [£,8], =4%. . (18)

To make a quantum expressions for supercharges (9) it is convenient to introduce the
projected fermionic operators &= e“f“ and " = ef€* where €] is inverse to the tetrad e
(efe; = &), related to the metric g,y of the “target” manifold ]W and to the metric of it’s
tangent space 744 in the usual way ef eJq,,;, = §ij-

However, the explicit form of the supercharges depends on the choice of operator ordering
and therefore 1s ambiguous. We take it as in [3]

Q= £€,(P; + i +idW)
Q = e (P + vl e’ — idiW), (19)
where w;,; is the corresponding spin connection.

In what follows, we shall consider the systems subject to the classical Hamiltonian
constraint

1 1 ..
Ho = 567 PP+ 2g"(q)OW W = 0, (20)
which in the quantum case should he replaced by the condition on the quantum state |p)

Hlp) =0, (21)

with the Ilamiltonian

i = 31Q,Qls, (22)

giving Hy in the classical limit i.e., when all fermionic fields are set equal to zero.

The important point is that the operators (9) are nilpotent and mutually Hermitean
adjoint with respect to the measure (/| — g|d”q and therefore, the energy operator H is
self — adjoint for any signature of the metric g;;. Now the Lagrangian (7) is self-adjoint by
the construction, since we use the real superfields and hence the complex Noether charges
and their Quantum Mechanical expressions are Hermitean adjoint to each other.

Obviously, now one can consider two first order differential equations on the wave function

Qlp) =0, and Qlp) =0, (23)

and therefore linearize the operator equation (21); the existence of normalizable solutions
of the system (23) means in turn, that supersymmetry is unbroken Quantum Mechanically.

In order to solve the system consider the Fock space spanned by the fermionic creation
and annihilation operators £* and £° respectively with [£2, €], = n®. The general state in
this Fock space is obtained in terms of the series expansion

10) = F@I0) + .+ 8 £ Py ()10
= F@I0) + o+ £ Fiin(90), 20

where the coefficients in expansions of this series are p - forms defined on the manifold
M(gi;), and their number due to the nilpotency of fermionic creation operators is finite.
Since the fermion number operator N = £%£, commutes with the Hamiltonian H and

[N’ Q]— =-Q, [Nv Q]- = Qa . (25)

one can consider the states characterized by the different fermion numbers separately.
Now the solution in empty and filled fermion sectors is simply expressed in terms of the
superpotential W as follows:

[p0) = const + e77|0), . (26)

[
'pn) = const * 'Ttl'{ul---Eanful...ane+wlﬂ>' (27)

In order to investigate the solutions in other fermion sectors, let us first recall {2}, that
in the case of vanishing superpotential operators Qg and Qo (supercharges with W = 0) act
on the p - forms F as an exterior and co-exterior derivatives respectively. So, the solution
of equation Qolp) = 0 cannot be written as

|pp) = Qolap—l)v (28)

only if the corresponding p -th cohomology group H?( M) of the manifold M(g;;) is nontrivial.
Before generalizing this result to the systems with non-zero superpotential W, first note that



Q=eY"Que, and Q= erge’W, (29)

Now, using (28) and (29) one can prove that the general solution in p - fermion sectors
(p=1,...,n—1) of the first equation in (23) for the case of trivial cohomology group H?(AM)

18

) = Qlop-s). (30)

However, because Q and Q are Hermitean adjoint to each other, the second equation in
(23) indicates, that this state has zero norm and consequently is unphysical. Therefore
the possible existence of supersymmetric ground-states i.e. the solutions of zero-energy
Shrédinger-type equation (21) is directly related with the topology of the considered manifold
M(gi;), since all states except those in purely bosonic and filled fermion sectors can he
excluded even without solving the system (23), if the topology of the manifold M(g;;) is
trivial. .

For purely bosonic systems with nonvanishing potential energy the described N = 2
supersymmetrization turns out to be the simplest possible one and it can be applied for
canonical quantization of any appropriate homogeneous cosmological model coupled with
matter. After the choice of operator ordering in the supercharges equation (21) in null
fermion sector corresponds to the Wheeler-De Witt equation for the considered Einstein-
matter system and it’s solution (26) is then easily obtained in terms of superpotential W,
since SUSY allows to linearize the Quantum Hamiltonian equation.

III. N =2 SUPERSYMMETRIZATION OF SU/(2) EINSTEIN-YANG-MILLS
COSMOLOGICAL MODELS

Now we are in a position to make the N = 2 supersymmetric extension of homogeneous
axially-symmetric SU(2) Einstein-Yang-Mills systems given by the action

1
§= [de/i=GI(R - 5 EAP™) (31)

We restrict ourselves to a subclass of homogeneous space-times which admit representa-
tion in a form of an unconstrained Hamiltonian.system for a corresponding classical coupled
system of equations, i.e., we consider axially-symmetric Bianchi — I, 1],

VI, IX (axially-symmetric Bianchi — V11 is equivalent to Bianchi — ), Kantowski —
Sachs and closed Friedmann — Robertson — Walker cosmological models.

The general diagonal Bianchi -type axially-symmetric space-times are parametrized by

two independent functions of a cosmological time ,(¢) and bs(t)

ds? = —dt* + BO(w")? + (7)) + B W), (32)

where w' are basis left-invariant one-forms (dw’ = %kawj A w*) for the spatially homoge-

neous three metrics, depending on 3 spatial (not necessarily Cartezian) coordinates r,v, z:
Brianchi — |

w'=dz, W=dy, w®=dz (33)

Bianchi — I
W' =ds, w!=dr, W =dy-zd: (34)

Bianchi = VI

Hedi+ (L +2)dy+ (e —y— ;I'zy)d:,
Wrede+ (=L +aND)dy (e +y— riy)d=,
W = 2edy + (1 = 2zy)dz, (35)

.

Bianchi — I'X

W' = sin zdr — cos zsin rdy,
w? = cos zdr + sin zsin xdy;

w? = cosrdy + d=. (36)

As it was shown by Darian and Kunzle [13], the general ansatz for SU(2) Yfmg-Mills
field, compatible with the symmetries of axially-symmetric Bianchi -type cosmological mod-
els is also expressed in terms of two independent real valued functions a(!) and (1) of a

costological time only and has the form
A= o) (w'n +win) + () ra, (37)

where 7; are SU/(2) group generators, normalized as [rio 1) = ciemre
K antowski — Sachs space-time

ds? = —dt* + B3 (0)dr* + b (¢)do* + bi(t)(sin 0)%dé’. (3%)

does not belong to Bianchi classification and admits an additional spherical symmetry, so
SU(2) YM ansatz has the differeut form, otiginated from Witten ansatz for static spherically
svinnetric case after mutual replacement 7 — £, ¢ — 1t

Ay =0, A = y(O) L1, Ag = —Ls + a(t) Lz, Ag = sin 0(La + (1) L), (39)

where Ly = (sin 8 cos ¢, sin 0 sin ¢, cos ), Ly = (cos 0 cos ¢, cos 0 sin @, — sin ),
Ly = (— sin ¢, cos ¢,0) are spherical projections of SU(2) gencrators.

We also consider closed Friedmann — Robertson — Walker model separately. because
it’s general YM ansatz [16] (SU/(2) YM field on 5%) is not obtained from Bianchi —1X alter
setting (1) = v(1) in (37). Closed FRW model with the interval

ds? = —di? + VP()(d\? + sin? Y(d0? + sin® 0dg?)). (-1

(x, 9 and ¢ are angles on S%) admits the following representation for ST/(2) YM field,
expressed in terms of single real-valued function «(t):

Ag=0 A; = %(u'(l) + Do U, (1)
U = exp(iy(sin 0oy cos ¢ + oy sin @) + oy cos #); j=123 (42}
7



Inserting these ansatzes into the action and integrating over all variables except t one
obtains the one-dimensional Lagrangian

1 sieg . . , .
Lo = 595(0)4'¢’ = Vig) = K = V. (43)

here g;;(q) is the metric in the extended minisuperspace i.e., in the configuration space
of spatially homogeneous axially-symmetric three-metrics coupled with the corresponding
SU(2) Yang-Mills fields.

Let us consider the functions ¢' = (b, b3, @,7) as a bosonic components of the superfield
(3). One can introduce the same number of fermionic fields (€ and €) and therefore make
N = 2 supersymmetrization of the Lagrangian L if, and only if, the potential V'(q) admits
the expression via a function W({q), called superpotential:

1, W(q)dW(q)

]
597 97 Op (1)

Vig) =

In this case N = 2 SUSY Lagrangian (7) and the corresponding Hamiltonian, obtained
after usual Legendre transformation are self — adjoint for any signature of the metric g;; in
the extended minisuperspace.

The kinetic terms for all Bianchi models and Kantowksi — Sachs are the same:

. .. .2
K = —b,"by — 2bybsby + a2bs + P (45)
3

and the only difference between them is due to the potential terms. Using the expression
for the metric on the extended “minisuperspace”

b2
ok, = _2b3) Gbiby = _2bh Goaa = 21)37 Gy = ZTI’ (46)
3

and the explicit form of the potentials, we have found some superpotentials as a solutions of
(44), hence making N = 2 SUSY extension of the given Einstein-Yang-Mills systems. The
results are collected in the Table I.

One should note that the obtained superpotentials W in all these cases turn out to be
the direct sums of pure gravitational W, (first listed in [8] in terms of Misner variables)
and Yang-Mills parts Wy . This fact is quite interesting and does not follow a priori from
the general expectations, since in the sigma-model approach considered above, gravitational
and Yang-Mills variables in the Lagrangian Lo are not separated. Moreover, it seems that
the YM field is a unique one, which being coupled with gravity can allow the corresponding
superpotential to be in the form of direct sum. It follows from the statement, that the
superpotential is also the least Euclidean action - solution of the Euclidean Hamilton-
Jacobi equation of the considered system. One can reconstruct from the superpotential
the corresponding Euclidean solutions, those which give the main contribution to the wave
function in a quasiclassical approach. So, the gravitational part of the superpotential
W, determines the Euclidean gravitational background configurations which should not
be changed if a matter field is added. It is possible, only if a matter configurations do

e g T g

TABLE I.

Superpotential
W =W, +Wym

Lagrangian Lo

BI K- [ga?r + 2—'131,(14]; 0+ o?y;
. b3 2
B K - [353 + 550777 + 323 (e +9)°); 183+ (@%y + 377);

1 1

3
BVII| K —[igh+bs+ g’ + 38(e® - 1)) 3(26% - B3) + (@®y = 377);

3
BIX | K —[3 - ba+ Ea2(y— 1) + 38807 9)"| 3282+ 8) + (0F(y ~ 1) - 37)
or

5(63 - 4b1bs) + (@*(y - 1) — 37%);

KS K —[ga’y? —bs + %%}‘(az -1)%; 2b1b3 + 7(a? — 1);
FRW ~3bb? 4 Lbg? 4 3p — 1 A=l 3+ (Fo® - a);

not contribute to the energy-momentum tensor. Yang-Mills part of superpotential Wy,
just provides such possibility since it produces self-dual YM instantons with the energy-
momentum tensor identically vanished. We discuss this point in more details in next Section.

Note that full superpotential W = W, + Wy does not exist as a solution of (44) if we
cancel one of the relevant YM function a or v; there are no nontrivial self-dual solutions
of YM equations of motion with one of YM functions canceled and Wy s ceases to exist in
this case. The question about other solutions of equation (44) which are not a direct sums
of gravitational and YM parts is still opened, however, it seems unlikely that such solutions
can be obtained in a closed analytical form.

On the other hand, the one more crucial observation can be done, that for all considered
models Yang-Mills part of the superpotential coincides with the corresponding Chern-Simons
functional, calculated on a 3 -dimensional slice ¢ = const. Indeed, it can be checked the YM
Chern-Simons terms

1 1 rabe 4a c
Wym = §/d31\/| — G| (A58, A% + §fﬂb ASALAD), (47)

turn out to be a solutions of Euclidean Hamilton-Jacobi equation and therefore play a role of



the Yang-Mills part of the superpotential. Such coincidence of YM Chern-Simons terms (47)
with YM superpotentials (44) in framework of the one-dimensional sigma-model describing
YM field coupled with gravity, seems to be very surprising. Definitely, this statement is
not true in a general case of an arbitrary space-time and takes place for the suggested
models as a consequence of the symmetries of the space-time metrics and corresponding YM
ansatzes. Note, that there exist no similar expressions for the W, part of the superpotential
in terms of a functional of gravitational variables except Bianchi— I X model with a nonzero
cosmological constant, where Chern-Simons functional in terms of Ashtekar’s variables [17]
is also an exact solution of Ashtekar-Hamilton-Jacobi equation [18).

So, we have shown, that the considered homogeneous axially-symmetric EYM systems
admit N = 2 supersymmetric sigma-model extension with the superpotentials given
explicitly in the Table I and this gives us the suitable background for the quantization.

IV. THE QUANTIZATION AND SUSY BREAKING BY YM INSTANTONS
A.

As it can be seen from the supersymmetry transformations (8), in order to prevent N = 2
SUSY breaking at the classical level, the classical pure bosonic configurations must satisfy
the properties

¢(t)=0, and FW(g(t)=0, (48)

along with the classical Hamiltonian constraint (20). Such classical configurations really
exist in an usual field theory in a flat space-time, and the simplest well-known example is a
scalar rest particle (¢ = 0) on a bottom of a potential with V(g')=0.

In contrary with such examples, dealing with unconstrained homogeneous systems with
gravity included, any nontrivial classical solution of Einstein (or Einstein coupled with a
matter) equations never has all momenta vanished ¢'(t) £ 0. These systetns satisfy (20) due
to the dynamical balance between the kinetic and potential terms with both positive and
negative signs.

Hence, any homogeneous Einstein (or Einstein-matter) system, being embedded into N=
9 supersymmetric sigma-model never has solutions of equations of motion with unbroken
supersymmetry, i.e., supersymmnetry is always spontaneously broken at the “trec level”.

Let us see what happens in the Quantum Mechanical approach. In the Einstcin-Yang-
Mills systems considered above the number of bosonic functions ¢* is four, which is also the
fermion number of the filled fermion sector. Therefore we shall consider the solutions of zcro
energy Schrédinger-type equation (21) in these empty and filled fermion sectors.

The superpotential W(q) is always defined up to the sign, since it is the “square root”
of the bosonic potential V(g). Both signs are physically acceptable and correspond to the
solutions in empty (26) and filled (27) fermion sectors when finding the supersymmetric wave
functions. The normalizability of bosonic wave function for “positive” superpotential means
in turn the normalizability of filled fermionic wave function for the “negative” superpotential
and vice versa. We define the norm of the physical state as & [ /| — gl{pl|p)d*q in order

10

to avoid the problem of the negative norm in four fermion sector, caused by the time-like
component of the fermionic ficld. The plus sign in the definition of the norm corresponds
to +W (g) while the minus sign has to be taken for - (q).

Let us accept. for definiteness the positive sign of the superpotential. First consider the
pire gravitational systems, when a and y functions along with their fermionic partners are
sel equal to zero. As it was stated above, the supersymmetry is spontancously broken for
any nontrivial solutions of Linstein equations. Quantum Mechanically the supersymmetry
is vestoved for Bianchi — 1,11, 1Xy). KNantowsk: — Sachs and F RV models since the
solution of (21), [pf") = const + ¢~"+7{0) in null fermion sector are normalizable:

tr F .
/0 dby /0 dbsy/| = gle™" < oo (19)

Therefore we are facing the interesting situation, where unlike to the ordinary
supersvimetric Quantum Mechanics, the supersymmetry being spontancously broken at
the *tree level™ is then restored Quantum Mechanically.

The only exceptions are the second (in the Table I) superpotential for Bianchi — 1 Xz
and Bianchi—V 111 where the supersymmetry remains broken at the quantum level as well.
since their norm (49) diverges al the upper limit.

The further inclusion of Yang-Mills field spontaneously breaks the supersymmetry again.
because, as one can see from the Table I, Yang-Mills part of the superpotential 1y for
all considered models, being the corresponding Chern-Simons term. is the odd function of
o and y; consequently, YM parts of wave functions [p§”) = const * i) both in null
and filled fermion sectors are not normalizable:

+ou +oo .
/ ! (/n/ dyy/| = gleT? M - oo, (50)

In order to find possible supersymmetric wave functions in one, two and three fermion
sectors, one has to investigate the topology of the extended minisuperspace. The simplest
way of doing that is going to the Misner parametrization [19] of the space-time metric (32):

; . g 1 . . 1. .
dsl = _N 2()‘,)({!2 T 64'2'4(0*'28“)[(4.01)2 + (w2)2] + 66_;,4(;)‘45“)(&3)2. (-")I)

1 terms of Misner variables the metric in the extended minisuperspace (46) has the simple
diagonal form

—-_ _ _ 9, ~2A-2B 2444 ..
gar=—1, gup=1, goa=2e"F g =P (52)

which shows that the topology of the extended minisuperspace is equivalent to the Minkowski
one with all cohomologies trivial I1P(M(g;;)) = 0, p = 1,2,3 and, in accordance with the
discussion of Section II, no physical states in one, two and three fermion sectors exist since
they have zero norm. Similarly, there are no physical states except the ones in null and filled
fermion sectors in a considered pure gravitational systems.

11



B.

Let us discuss in more details the mechanism of the spontaneous supersymmetry breaking
in null fermion sector when YM field is added to a pure gravitational system (such as
Bianchi — I,I1,IX(1), 'S and F'RW) which is Quantum Mechanically supersymmetric,
since it admits normalizable zero energy solution of Whecler-De Witt equation (21). This
mechanism is occurred to be quite similar to the one considered in [1], [20] - [22] where the
SUSY breaking by instanton configurations has been discussed.

Indeed, as it was already mentioned, the superpotential W(q) (if exists), is one of the
solutions of Euclidean Hamilton-Jacobi equation and represents a “least™ Euclidean action
of field configurations, giving the main quasiclassical contribution into the wave function
and providing the SUSY breaking after inclusion of the Yang-Mills field. Explicit form of
superpotential allows to reconstruct such classical configurations by solving the first order
system:

g O(We 4 Wya) =
959 = aq . (53)
For pure gravitational degrees of freedom these equations are equivalent to the (anti)self-
duality gravitational equations R\, = £R,,\, while Wyas(q) part of the superpotential
in (53) gives rise to the (anti)self-dual Yang-Mills equations Fj, = :{:13’:,, on a given
gravitational background determined by the W,.

Then, (anti)self-dual Yang-Mills instantons in our systems can be interpreted as a
tunneling solutions (with the nonvanishing Euclidean action) between topologically distinct
vacua. In this case YM instanton contribution provides the SUSY breakdown due to
the energy shift from the initial zero to some positive level and this fact is expressed in
nonnormalizability of YM part of zero energy wave function |p} M) = const x e~y #10).

As the illustration of these statements, let us consider Euclidean configurations in
Bianchi — I X and Kantowski — Sachs EYM systems.

BIX. The solutions of Hamilton-Jacobi equations (53), which correspond to the
gravitational part of both possible superpotentials Wy (51x,,,) = %(2b?+b§) and Wy (p1x,,) =
%(bg — 4b,b3) have been discussed by Gibbons and Pope [23]. For our purposes we would
like to mention some of them using the slightly different notations.

One of the solutions of equations (53) with the normalizable superpotential Wer(Bixay)
is occurred to be the (anti)self-dual Eguchi-Hanson [24] metric which has the form

dst = Pt T+ W) 4 T (54)
with
’ a3 (55)

and w' is determined by (36). In order to bring this metric to the form (32), one should
introduce the “Euclidean time” r as

di=(1- (%Y Yan. (56)

r

12

Eguchi-Hanson metric has vanishing Euclidean action S§gy = 0, which is completely
determined by it’s surface contribution {25], since the volume contribution is canceled
identically (R = 0 “on shell”) for EYM systems.

Inserting the expression for the metric functions into the Hamilton-Jacobi equations for
Yang-Mills part of superpotential Wy pprx) = —a*(y — 1) + 37* and differentiating with
respect to the introduced variable r one obtains the system

&= %fz(a'y—a), (57)

a

3= 2(a? - ), (59)

which is self-duality YM equations on Eguchi-Hanson background solved by the family of
instanton solutions [26] . :

2

a sinh(p) v = a; tanh(p) coth(ay(p + a2}), = = coth Ph 59
a2

a= sinh(a:(p + a2))’

with the action SEY = 8%25}2;1- fora; > 1,a; =0, and S5 = 8#25—2’2- fora; > 1,0 < a; < oo,
where @, and a, are the constants of integration.

The extremal Euclidean configurations, produced by the nonnormalizable superpotential
Wgr(B’X(g)) are self-dual Taub-NUT gravitational instantons with the nonvanishing action
[27]; similarly, YM part of the superpotential gives rise to the self-dual YM instantons [28]
on a Taub-NUT background.

KS. For EYM system in Kantowski-Sachs space-time with W, (xsy = 2b1b3 the
gravitational degrees of freedom &; and &; obey to the following self-duality equations

bybg + bsb, = by, (60)
i)] = 1, (61)

satisfied by
b1 = t, and b3 = 1, (62)

which is nothing more than flat Euclidean R space-time metric with r and ¢ interchanged.
From the Yang-Mills part of (53) with Wy axs) = —v(a® — 1) one obtains the usual YM
(anti)self-duality equations in R*, written in the “polar” coordinates

a=ay, (63)

At = o — 1, (64)
with well-known family of YM instanton solutions, having the topological charge k =1 [29]

v = 1[’7 and a= e\bg’ (65)
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where

1—g a—t a;—1t
—, = -z -

1/):_111( 2t (11+t (12+t.

(66)

Note, that the dimension of the moduli space M of SU(2) Yang-Mills instantons with
a topological charge k on a given Riemannian 4 — D manifold M (which has first Betti
number ¢; and the dimension ¢; of maximal submanifold in cohomologies H2(M, R) where
the corresponding intersection form is negatively defined) is [30)

dim(Msyy) = 8k —3(1 — ¢ +¢5), (67)

and in a simplest K antowski— Sachs case with M = Rt (k =1, ¢; = ¢; = 0) is equal to five.
In the framework of our approach, since we quantize the system reduced to one-dimension,
only some of these instantons are taken into account. In fact, we deal with the subclass of
all possible YM instantons, originated from the chosen ansatzes, which share the space-time
symmetries in Lorentsian sector. However, their contribution breaks the supersymmetry
fatally in conformity with the general expectations, as it should take place in a full 4 — )
quantum theory.

To summarize, it is shown that the spontaneous supersymmetry breaking which takes
place if the Yang-Mills field is added to pure gravity is caused in a quasiclassical approach
by YM instanton contribution to the wave function. This contribution, in accordance
with general expectations, provides the energy shift AE from a zero level. To estimatc
this energy shift for EYM systems an instanton calculation technique can be used, which
also should give the possibility to find the lowest level normalizable wave function |p'),
H{pPYMY = AE|pEYM) for the considered models. This work is in a progress now.

V. CONCLUSIONS

We would like to conclude with the following remarks. N = 2 SUSY Quantum
Mechanical sigma-model approach allows to obtain the conserved supercharges being
Hermitean adjoint to each other, along with the self-adjoint expressions for Hamiltonian
and Lagrangian for any signature of a sigma-model metric. This gives the possibility to use
the supersymmetry as a tool for quantization of various homogeneous systems coupled with
gravity if they can be embedded into the considered N = 2 SUSY sigma-model. The desired
embedding lias been done for coupled SU(2) EYM systems in some cosmological models
which admit explicit expressions for the superpotentials being direct sum of gravitational
and Yang-Mills parts. After the quantization the only nontrivial zero energy wave functions
in null and filled fermion sectors turn out to have diverging norm and this fact indicates
spontaneous breaking of supersymmetry, caused by YM instantons.
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Toneu E.E., Tentiokos M.H., Lynas M.M. E2-98-214
06 N=2 SUSY ogHopoaHo# KBaHTOBOH KOCMOJIOTHH;
cHcTeMbl DifHIITeHa—Hra—MHuiLIca

O6cyxnaeTcs npuMeHeHHe N =2 CynmepcHMMETPHYHO! KBaHTOBGH MEXaHHKM [ KBaHTOBAHMA
MpPOCTPAHCTBEHHO OJIHOPOHBIX CHCTEM, CBA3aHHBIX C rpasuTaupeil. OCHOBHEB2ICL HA CYNEPNQNCBOM
copmatusme B N =2 CYNepCHMMETPHYHOR CHIMA-MOJE/IH, NMOMYYECHBl 3PMHTOBO COMNPSXEHHHE Bhipa-
XEHNA JU1d KBAHTOBOTO FaMIJIBTOHHAHA i JTarpaHXHaHa NpH NPOM3BOIBHOM CUTHATYpe METPUKH B MHHH-
cynepnpocTpaHcTee. Paseuteii  cdopManmuiM naiee npuMeHeH K cBi3anHmiM- SU(2)  cucremam
DitnwTeiina—SIura—Miuica (358M) B akcHaibHo cuMMeTpHunbix Buanku-LILVIILIX xocMonoru-
YeCKHX MOZE/IX, a Takxe B Mofenax Kanrosckoro—Caxca u dpunmana—Pobeptcona—Yokepa. Ioka-
3aHO, YTO BCE ITH MOAE/H ROMYCKAKT CYNEPCHMMETPH3ALHIO B paMKax N =2 curMa-Mofeny H Moy4deHbl
COOTBETCTBYIOUIHM BBIPaXEHHEM U1 CYTIEPNOTEHUHANIOB, KOTOPLIE OKA3BIBAKOTCA NPAMOH CYMMOH IpaBH-
TALKOHHOMH M SHI-MWUICOBLIX HacTeil. SIHI-MMILICOBA YacTb CyNEpHOTEHUHAA NMPH 3TOM B TOUYHOCTH
pasHa wieHy Yepna—CaiiMonca. COHTaHHOE HapyleHHe CYNEPCHMMETPHH, BBI3BAHHOE SHI-MHJLICO-
BLIMH HHCTaHTOHamMu B DSIM cHcTeMax, o6CyXnaloTcd Ha HECKQUIBKHX (DM3MYECKH CONECPXATENbHBIX
npuMepax.

Pa6ora Bemonuena B JlaGoparopun teopernyeckoii ¢usukn uM. H.H.Boramo6osa OUAN.

Mpenpunt OGBeIHHEHHOTO HHCTUTYTA ANCPHBIX HccaenoBanuil. ybHa, 1998

Donets E.E., Tentyukov M.N., Tsulaia M.M. E2-98-214
Towards N =2 SUSY Homogeneous Quantum Cosmology;
Einstein—Yang—Mills Systems

The application of N=2 supersymmetric Quantum Mechanics for the quantization
of homogeneous systems coupled with gravity is discussed. Starting with the superfield formulation
of N=2 SUSY sigma-model. Hermitean self-adjoint expressions for quantum Hamiltonians
and Lagrangians for any signature of a sigma-model metric are obtained. This approach is then applied
to coupled SU (2) Einstein—Yang—Mills (EYM) systems in axially-symmetric Bianchi-LILVIILIX,
Kantowski—Sachs and closed Friedmann—Robertson—Walker cosmological models. It is shown, that
all these models admit the embedding into N=2 SUSY sigma-model with the explicit expressions
for superpotentials, being direct sums of gravitational and Yang—Mills (YM) parts. In addition, YM
parts of superpotentials exactly eoincide with the corresponding Chern—Simons terms. The spontaneous
SUSY breaking, caused by YM instantons in EYM systems is discussed in a number of examples.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 1998




