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1 Introduction 

A Lagrangian theory of tensor fields over spaces with contravariant and co
variant affine connections and metrics [(Ln,g)-spaces] [1] has three essential 
structures [2], [3]: the Lagrangian density, the Euler-Lagrange equations and 
their corresponding energy-momentum tensors. 

The Lagrangian density can be considered as a tensor density of rank 0 
with the weight q = ½, depending on tensor fields' components and their first 
and second partial ( or covariant) derivatives. 

The Euler-Lagrange equations can be obtained by means of the functional 
variation of a Lagrangian density and of these of its field variables considered as 
dynamic field variables (in contrast to the non-varied field variables considered 
as fixed and non-dynamic field variables). 

The corresponding energy-momentum tensors can be found by means of 
the Lie variations (Lie derivatives) of a Lagrangian density and all of its field 
variables ( dynamic and non-dynamic field variables). By means of Lie varia
tions ( change of the field variables by draggings-along of the tensor fields and 
their covariant derivatives) the corresponding energy-momentum tensors can 
be found. 

1.1 Lagrangian densities of type 1 and type 2 

In accordance to the two different considerations of a Lagrangian density one 
can introduce the following definitions: 

Lagrangian density of type 1. Tensor density with weight q = ½ and rank 
0, depending on components of tensor fields (with finite rank) and their first 
( and second) partial derivatives with respect to the co-ordinates as well as on 
components of affine connections and their partial derivatives 

L = R-L(9ii, 9ii,k, 9ii,k,l, VA B, VA B,i, VA B,i,j) , (1) 

where L(xk) = L'(xk') is a Lagrangian invariant, g;j are the components of the 
covariant metric tensor field g = g;j.dxi.dxi = g0 13.e0 .el3, dxi.dxi = ½(dxi@ 
dxi +dxi@dxi), g;j = gii, VA B are components of tensor fields V or components 
of an affine connection r or P, d9 = det(g;J < 0, 

vA . = avA B vA .. = a2vA B 
B,, 8xi 8 '1 '

1 8xi8xi 
(2) 

Lagrangian density of type 2. Tensor density with weight q = ½ and rank 
0, depending on components of tensor fields (with finite rank) and their first 
( and second) covariant derivatives with respect to basic vector fields and to 
the corresponding affine connections 



where L(xk) = L'(xk') is a Lagrangian invariant, 9ij are the compone~ts of 
the covariant metric tensor field g, VA B are components of tensor fields V = 
VA 8 .eA 0 e8 = VA B-OA 0 dx8 with finite rank, A= i1 ... ik, B = j 1 ... j 1, k; l E 
N, VA B;i are the covariant derivatives of VA B with respect to the basic vector 
fields a; (ore;) (the Greek indices a, {3, ... are related to a non-coordinata basic 
vector field e; = ea)-

From the properties of the tensor densities and the invariant volume ele
ment dw [4] the properties of the product L.dw determining the action S of a 
Lagrangian system, 

S = j L.dw, (4) 
Vn 

follow. L.dw can be represented by means of the Lagrangian density L 

L.dwJ J-dg.L_l..E:A.wA = L_l..E:A.wA = n. n. 

= -dg.L.d(nlx = L.d(nlx = L.dVn , 
d(n)x = dx 1 I\ dx 2 I\ ... I\ dxn , dimM = n , 

CA = Ci1.,,in = Ce1.,,en , Jci1.,.in = Q , 
WA = dxi' I\ ... I\ dxin = ei1 I\ ... I\ ein . 

E:; 1 ... in is the Levi-Chivita symbol [4]. From 

(5) 

1 1 " 
Ve(L.dw) = ([L + 2.L.g[Veg]).dw = R(tL + 2"L.g[Veg]).d(n)x, (6) 

where (L = (i.L,; = L;;.(i, the relation follows between the action of Ve 
and Ve on L.dw 

l A - l A 
Ve(L.,.E:A.w ) = (VeL).,.E:A.w , 

n. n. 
(7) 

Ve(L.d(nlx) = (VeL).d(nlx, (8) 

VeL; ✓-dg{[L + ½.L.g[Veg]} = 
I , k = -dg(L;k + 2.L.g 1 -9ij;k)-f . 

(9) 

Two different definitions Vu and Vu for a covariant operator , acting on 
tensor densities (relative tensor fields) [4] as an automorphism in the relative 
tensors algebra, could be introduced and applied in the lagrangian formalism 
[l] for tensor fields. The covariant operator Vu along a contravariant vector 
field u = ui.e; = uk.ak, acting on a tensor density Q of the type 

Q = (dKY-Q , dK = det(K;j) =/- 0, K;j = I<ji , q ER, 
Q = QA B-EA 0 e8 = Q0 v-Oc 0 dxD , 

A= i1 ... ii, B = i1---i1, C = l1 ... li, D = rn1 ... rn1, 

is determined as 

V,. = Vu+ 2q.P/k.uk . 
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V,, is Ill<' covariant differential operator [l], [5] along u, acting on tensor 
fidds [for example, Oil a contravariant. vector field V = 1} .Ck = 1ra1, 

Vuv = v,, .. c,v = ui.Vc,V = (c;i/ + r;;.v1
).ui.Ck = (vk ,i + r;;.v1).1/.ch, 

or on a covariant vector field p = Pk ·ck = p1.dx1
, 

V11JJ = vtt'.r,P = 1/.Vc,P = (c;pk + PL.p,).1/.ck = ]Jk,i + I{.p,).1/.d.Tk .] 

The covariant derivative VuQ can be written in the forms 

VJJ = (d1,)q.VuQ + [Vu(d1,)q].Q = 
- _-,- k - - A -k B = VuQ + 2q.P/k.u .Q = Q B;k·u .CA 0 e = 

[-QA + l'A -Q c + [>D -QA + 2 J:Ji -QA ] k ,0, B = B,k Ck· H Bk· D q. ik• B .U .EA,..,, C · 

( 10) 

The "Leibniz rule" for differentiation Vu[(dnY-Q] = (dnY·VuQ+[Vu(di:f].Q 
is fulfilled for V,. Q from ( l 0): 

For the introduced in ( l,n, g)-spaccs by other authors [4] covariant operator 
Vu by definition in a co-ordinate basis { O;} as 

- i k Vu= Vu+ 2q.Pki•U 

with 

VuQ = (d!i..l·V,.Q + [Vu(dK)q].Q + 2q.lh; i_uk.Q = 
_ - i k-_-A k B_ - v,,Q + 2q.Pki.u .Q - Q B;k-11 .DA 0 dx - ( l l) 

_ [-QA + l'A -Q c + J:JD -QA + 2 pi -QA ] k ~ ,.__,, d· .H - B,k Ck· B Bk· IJ q. ki• B .11. -UA .._,,. l , 

lh; i = rt - Pik , 

the first relation of (10) is not fulfilled. For tensor fields Vi: = V,, Ve 

Ve. 
If the components /{A a of a tensor field/{= /{A a-CA 0 cB = /{A B·i)A N 

dxB depend on components of other tensor fields and their covariant deriva

tives, i. e. if 
! .,A J·'A (VG ) 
\ B = \ B D, ··· , 

where A= i1 ... i1, H = i1---im, C = k1 ... kr, D = l1 ... l.,, then tlw following 
relations will be fulfilled after a change of the tensor basis to anot.hn t <'11sor 

basis: 

gA' B' = TA A'.TR, 8 ./\·A B, 

7, A'_ A. i\ A· i: 'I' R -1- i, ·1 j,,, A - 11 ii ... *l , B' - 1 1: ... ' 1:r. ' 
'/', C' _ \ k 1, A k~ '/' lJ _ A l1 1\ • 1 .• C - I k1 ••• llkr , IJ' - il[~ .... [~~ , 

/\. A' B' = /\' A' H'( \JC' /J', ... ) , \'CI) = 'f'c• C .'f'n I)'.\ ·c·• /)' 
Tc·• c = .,1,, k, ·1,., k,. 

. • ,,;I ··•. "r , 
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[) I{ A' B' 

Dve• D' 

8Ve D 
ave• = T.e 1 e 1" D' 

[J' • [J 

[) , A' B ,A , A',, B 8l{AB 
Dve• [JI (TA .TB, .Ii B) = TA .1 B' . ave• [JI = 

, A' B 8[{A B ave D A' B e D' iJK4 
B 

1A .TB, ·ave .-i) e• = TA .TB' .Tc, .TJJ . "\IC . 
D V D' (J [) 

It follows from the last expression that the partial derivatives of the com
ponents of a ten.50r field with respect to components of another tensor field 011 

which the first components arc depending are again components of a tensor 
field. This statement is proved by Schmutzer [6] (pp. 51-52) and is generalized 
for spinor and bispinor fields [6] (pp. 36-37). 

2 Variation operator 

Variation (variational} operator. Operator, acting on the components of tensor 
fields in a given basis and mapping these tensor fields in tensor fields with the 
same rank, with the following properties: 

l. Action on a tensor field K: 

J: [{ ----t JI{ , I<, JI{ E &l 1(M), 
JI{= J[{A B·eA ® e8 = J[{e [J.ae ® dxD, I<= [{Ji B·eA ® e8 = I<e D•ae ® dxD, 

[{ABE Cr(M), J[{A BE Cr(M), x EM. 

2. Action on a function f: 

J:f ➔ Jf, f, Jf E Cr(M) . 

3. Linear operator with respect to tensor fields: 

J(a.K1 + /3.K2) = a.JK1 + /3.JK2 , 
a,/3 ER (or C), I<; E ®k1(M), i = 1,2. 

4. Differential operator acting on tensor fields and obeying the Leibnitz 
rule: 

J(f.g) = Jf.g+ f.Jg, f,g E Cr(M), f,g E ®0 o(M), 
J(Q 0 S) = JQ ® S + Q 0 JS, Q E 0k 1(M) , SE ®m r(M) . 

5a. (Possible) commutation relations (commutation relations of type A) 

with the Lie-differential operator: 

J 0 £&, = £a, 0 J , JO £ea = £ea O J , 
J o £( - £s( = £( o J . 

4 

l 
·1 

ll 

I 

5b. (Possible) commutation relations ( commutation relations of type B) 
with the covariant differential operator: 

J o Va, = Va, o J , J 0 Vea = Vea 0 J , J o V ( - V se = Ve o J . 

5c. (Possible) commutation relations (commutation relations of type C} 

with the contraction operator S: 

JoS=SoJ. 

From the properties 2. and 4. it follows that Jl = 0, 1 E N c cr(M). 
Proof J(l.l) = (Jl).1 + 1.(Jl) = 2.(Jl) = Jl: Jl = 0. 
From the properties 2., 3. and 4. it follows that Ja = 0, a = const. E R 

(or C) c Cr(M). 
Proof J(a.g) =a.Jg= Ja.g +a.Jg: Ja = 0, \/g E Cr(M). 

3 Consequences from the commutation rela
tions of the variation operator with the Lie 
differential operator 

3.1 Consequences from c5o£ai = £ 0io c5 and c5 o£e"' = £e"'o c5 

l. Action of J and £ai on a function. From £a,! = 8if = f,i, f E cr(M), 
J(£aJ) = J(f,i), £a

1
(Jf) = (Jf),i, and Jo £ai = £ai o J the commutation 

between the partial derivatives along the co-ordinates and the functional vari
ation of a function f follows in the form 

J(f,j) = (JJ),j . (12) 

2. Action of J and £ 8i on a contravariant co-ordinate basic vector field. 
From £a,8; = [8i,8;] = 0 E T(M), it follows that J(£a,8;) =JO= 0. On 
the other side J(8;) = J(l.8;) = (Jl).8; = 0.8; = 0 E T(M). Therefore, 

J(£a,8;) = £a,(J8;) =JO= 0. 
3. Action of J and £ea on a contravariant non-co-ordinate basic vector 

field. From the relations £eaEf3 = Ca.{3-r·e-r, Jef3 = (Jl).ef3 = 0.ef3 = 0 E T(M), 
J(£eaEf3) = (JCa.{3"1).e-r, £ea(Je{3) = £ea0 = O, and J(£eaef3) = £ea(Je{3), it 
follows that 

JCaf3-r =0. (13) 

4. Action of J and £ai on a covariant co-ordinate basic vector field. From 

the relations £ 8,dxi = (Pii + rL).dxk, Jdxi = (Jl).dxi = 0.dxi = O* E 
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T*(M), o(£a,dxi) = [o(Pij + rL)J.dxk, £a,(odxi) = o·, and o(£a,dxi) = 
£a, ( odxt it follows that 

o(Pij + r15) = o , oPij = -o(rb) . (M) 

5. Action of o and £ea on a covariant non-co-ordinate basic vector field. 

From the relations £eae13 = (P~a + r{a + C2) 3).e'Y, 0(£e 0 eil) = [o(P~0 + I'~a + 
C2)i)J.e'Y, oeil = o•, £ea ( oeil) = o•, and o( £ea ell) = £ea ( oe13 ), it follows that 

o(P~a + 1'~0 + C,a 13 ) = 0. 

6. Action of o and £a, on a mixed tensor field. From the relations 

£a,K = KA B,j-OA ® dxB + KA B-£a,(8A ® dxB), 
£a,OA = 0, (£a,8; = 0), £a,dxB = (P/5j + rtJ.dxD, 

~rB - s Bk rY pB - s Bk pi Dj - - Di · h:J' Dj - - Di · kj> 

£a,K = [KAB,j + (Pfjj + rjj).KAD].oA ® dxB = 
= (£a/{A s).oA @dxB, 

(15) 

o(£a,K) = {o(KAB,j) + [o(Pfjj + rjj)].KAD + (Pfjj +rjj).oKAD}.aA ® dx 8 = 
= [o(£a,KA B)].oA ® dxB, oSAiBj = 0 (because of og} = 0), 

£a,(oK) = [(oKA B),j + (Pfjj + rjj).oKAD].oA ® dxB = 
= [£a,(oKA s)].oA ® dxB , 

D ~ D _ Dk i i Psj + r Bj - -SB; (Pkj + rh:i), 

(16) 

and p. 4., it follows that o(P{ji + fji) = 0, oP{ji = -of ji. 
From the commutation relation o(£a/<) = £a,(oK) ~ o(£a,KA s) = 

£a
1
(0KA B) the commutation between the partial derivative and the functional 

variation follows 
o(KA B,j) = (oKA s),j . (17) 

7. Action of o and £a1 on a contravariant affine connection r. From the 
relations 

Va,o; = r7j.ak, o(Va,o;) = ort.ak, 
£a, [o(Va,o;)] = £a,(or7j.ak) = (or7)_1.0k + orfj.£a,ok = (ort),1.0k' 

£a,(Va,oi) = £aj(I'fj.ok) = rt,1-0k + rt.£a,Ok = ffj,l·f)k,. 
o[£a,(Va,o;)] = o(rt,i).ok, 

the commutation between the partial derivative and the functional varia
tion of a contravariant affine connection follows 

(Jfjk),1 = o(r}k,l) · (18) 
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8. ,\ctio11 of o and £ 81 on a covariant affine connection P. From the 

rel at io11s 

£a,[o(v'a,dxi)] = £a,(oPf:j.dxk) = (oPJ.),1.dxk + oPf:j.£a,dxk , 
£ii,dxk = (P!1 + 1'~1).dxm , 

£ii
1
[o(v'a

1
dx;)] = [(oJt).1 +(!'>ft+ l'IT).oP~Jdxk, 

£ ('7 d i) - £ (/Ji d k) - pi d k + JJi £ d k -a, \' /J, X - a, kj. X - kj,l. X kj. a, .T, -

= [Pi. I + ( Pf:i + 'r;;i}o p~jl .dxk ' 
], - -

o ( Pi:1 + qu) = o , 
o[£a,(v'aJri)] = [o(P1j,l) + (Pf:i + rIT).oP~Jdxk, 

the commutation between the partial derivative and the functional varia
tio11 of a covaria11t affine connection follows 

(oPjk),1 = o(P]k,1) . (19) 

9. From the relations 

£c
0

CfJ = v'c
0

C13- v'c~Ca -T(c,,,c{J), 
o(£caefl) = o(v',,ac13) - J(v'c~Ca) - J[T(ca, c:13)], 

0C0 /J, .c, = ( oI'J" - or:13 - o'f'c,13 "1).e,., , JC"a "I = O , 

it follows the condition for oTafl "/ 

n;,{J "/ = JrJa - or:/3 . (20) 

3.2 Consequences from <5 o £< - £0< = £< o <5 

1. Action of o and £e on a function. From the relations £(! = U = (1.f.1, 

f E cr(M), £sd = (J()f = oe.J.j, £e(of) = ((of) = (of}.j.(1, (o O £, -
£se)f = (£e o o), it follows that o(J,i) = (of),1 for\/( E T(M) [s. (12)]. 

2. Action of o and £e on a contra variant co-ordinate basic vector field i);. 

From the relations £ea; = [Co;] = -(i ,;.oi, £se8; = -(o(i),;.01, J(£e8;) -
£seo; = [-o((i ,;) + (o(i),;].81, £e(oo;) = D, (o o £e - £se)o; = (£e o J)oi = D 
for \/( E T( M), it follows the relation 

o((i ,i) = (o(i),;. (2 I) 

3. Action of o and £e on a covariant co-ordi11atc basic vector field d.ri. 
From the relations 

£edxi = [(\t + (Pjk + I'~k).e].d:ri' . 

£s,d,ri = [(J(') .j_ + (Pjk + rlk).o(k].d.1< (J(') ,j_ = _fi ,.(oe).1.f; I , 

J(fed,ri) = [J((',j_) + J(Pjk + r1.).e + (l'jk + r1~-i.se·J.d,r1
• 
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£{(odx;) = £{(0*) = o· , 
o(£{dx;) - £ 0{dx; = £{(odxi) = O* , 

o("' ·J + o(Pi + r• ) ck+ (Pi + r· ) Jck - (o"') . - (Pi + r· ) Jck = <. ,!_ J k !_ k ~ <. J ~ !_ k · <. <._ ,!_ J k !_ k · c, 

= J(fi ,!) - (JC) ,i, o(Pjk + rtk) = o , 
a commutation relation follows in the form 

J(f ,j_) = (J(') ,!_' or i k l i k l o(J k-f ,1.fj ) = J k-(of ),1.fj . (22) 

The last relation after using (21) leads to e ,1.o(P k-fj 1) = 0 for ve ,I E 
cr(M) and therefore, to the relation for Pk and Ji 1 

i I J(j k-fi ) = 0 . (2:l) 

From o(P]k + r1k) = 0 and J(P k-fj 1) = 0, it follows that 

J(rlk) = o(r 1.r~k.Ji m) = Jflk = f /.or~k.Ji m 

and 
oPfk = - or£k . (24) 

4. Action of J and £{ on a contravariant non-co-ordinate basic vector field 
CfJ. From the relations 

£(Cf3 = -(e13('" + C/3-y 0 .(-Y).ea , 
£s{e/3 = -[ef3(J("') + C/3-r 0 .J(-Y].ea , 

J(£(e/3) = -[J(e{3(0
) + C13-y".o('Y + ('Y.JC13-y 0 ].ea, 

J(£(e13) - £s(Cf3 = £((oef3) = 0, 

the commutation relation follows in the form 

J(e13(0
) = Cf3(0( 0

). (25) 

.5. Action of J and £( on a covariant non-co-ordinate basic vector field. 
From the relations 

£(ef3 = [e,i3 + (Pff-r + r!-r + C2 -rfi°J.(-r].e0
, 

J(£{c13 ) = [J(c2 (i'I) + o(Pff-r + r!-r + C2 -ri'I).C + (Pt-r +rt+ C2 -ri'I).J('Y].e", 
o(Pff-r + r!-r + c 2 -ri'I) = o, 

£c1(C{3 = [eQ(J(i'I) + (Pt-y + r~-y + CQ-Y ripc].e" ' 
e2 (ofi'I) = fa -r .[e-r(o(P)].J13 ;, £((oef3) = o· , 

J( £(ef3) - £ 8(ef3 = £(( Jef3) = o• , 

the relations follow in the form 

J(c'!_(i'I) = eQ(J(i'I), J(f0 p-ffJ-Y) = 0: of° f3 = Jf2-i, 
of2 i = f p [3,or p•f" a . 

8 
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6. Action on J and £( on a mixed tensor field. From the relations 

£{[{=[{A B,j-(i.f)A@ dx 8 + [{A B•£((8A@ dx 8 ) = £([{A B·8A@ dx 8 , 

£(aA = SAm Cn.(m ,n.ac ' 
£{dx 8 = -[('",!!. + (P:J + r~).e].dxA' 

£ } 'A _ }~A t:i S An- ,~c t:m 
( i. B - \ B,j•<, + Cm .11 B·<,, ,n-

-SBm Dn_J{A D-W'',!!. + (P:J + r~).e]' 

the commutation relations follow in the form 

J(J{A B,j) = (JJ{A B),j . (27) 

7. Action of J and £( on a contravariant affine connection r. From the 
relations 

'vel'Ca = r:/3.e-Y 1 J('\Jel'Ca) = (or:13).e-y 1 J(e-y) = 0 1 

£([J(Vel'ea)] = [e.es(or:/3) - (esC + Csp -r.e).Jr!/3].e-r, 
£s(('vel'e") = {oe.esr:/3 - [es(J(-r) + Csp -r.J(PJ.rt/3}.e-r, 

oCa/3-y = 0, J(ef3(0
) = Cf3(ot"'), 

the commutation relations in a non-co-ordinate basis follow in the form 

J( esr:/3) = es( or:/3) . (28) 

8. Action of J and£( on a covariant affine connection P. From the relations 

've~e"' = P!f-r.ef3, o('ve~e"') = oP!f-r·e/3, 
£(('ve~e0

) = ((''.euP!f-r).ef3 + P,~'-y-[ef!..t' + (PJP +rip+ Cf!_p ").(P].ef3, 
J[£(('ve~e0

)] = [ot".euP!f-r + t".o(euPi)].ef3+ 
+oP~'-y-[ef3l" + (PJP +rip+ C{3p ").(P].ef3+ 

+P~'-y-[o(ef3l") + o(P.(Ph +rip+ Cf3p°:') + tP.o(PJp +rip+ C13p ")].ef3, 
- o(PJP + r~p +cf!_~")= o, o(e[!_e") = e[!_(o["), -

the commutation relations in a non-co-ordinate basis follow in.the form 

o(euPJ-r) = eu(oPJ-r) . (29) 

4 Consequences from the commutation rela
tions of the variation operator with the co
variant differential operator 

4.1 Consequences from Jo 'v ai = 'v ai o J and Jo 'v ea = 'v ea o J 

1. Action of J and Va, on a function. From the relations Va, f = ai f = f,i, f E 
cr(M), o('vaJ) = o(f,i), 'va,(of) = (of),i, and (Va, o o)f = (o o 'va,)f, it 
follows that 

( J f),j = o(f,j ). 
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2. Action of J and Va, on a contra variant co-ordinate basic vector field o;. 
From the relations 

Va,o; =rt.Ok, J(Va,8;) = Jft.ok, Jo;= 0, 
Va,(J8;) = Va,O = 0, 

(Jo Va,)8; = (Va, o J)8;: J(Va,o;) = Va,(J8;) = 0, 

it follows that 
Jfk. = 0. 

•1 
(30) 

3. Action of J and V e/3 on a contra variant non-co-ordinate basic vector 
field. From the relations 

Ve
13

ea = r:/3.e..,,, J(Ve13 ea) = Jr:/3.e..,,, Jee,= o, 
Ve13 (Jea) = Ve13 O = 0, 

(Jo Ve
11

)ea = (Ve11 o J)ea: J(Ve11 ea) = Ve11 (Jea) = 0, 

it follows that 
Jr~..,,= o. (31) 

4. Action of J and Va, on a covariant co-ordinate basic vector field dxi. 
From the relations 

Va,dxi = Pi;-dxk, J(Va,dxi) = JPi;-dxk, J(dxi) = Jdxi = O*, 
Va,(Jdxi) = Va,O* = O*, 

(Jo Va,)dxi = (Va, o J)dxi: J(Va,dxi) = Va,(Jdxi) = O* , 

it follows that 

JPjk = o. (32) 

5. Action of J and V e
11 

on a covariant non-co-ordinate basic vector field ea. 

From the relations 

" ea = pa e1' J(V ea) = Jpcx e..,, J(ecx) = Jecx = O*· 
V e/3 ')'/3" ' e/3 ')'/3" ' ' 

Ve13(Jec,) = Ve/3O* = o·' 
(JO Ve/l)ec, = (Ve/3 0 J)ec,: J(Ve/lec,) = Ve/l(Jec,) = o·, 

it follows that 

JP$..,,= 0 . (33) 

6. Action of J and Va, on a mixed tensor field. From the relations 

Va,K = KA B;j-OA 0 dxB, 
J(Va,I<) = J(KA B;;).8A 0 dxB , 
Va,(JK) = (JKA B);j-OA 0 dxB, 

(Jo Va,)K = (Va, o J)K: J(Va,K) = Va,(oI<), 
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the commutation relations between the covariant derivative and the func
tional variation follow in the form 

J(/{A H;j) = (JJ{A H);j . (:M) 

From the last. expression, after writing the explicit form of J(/\·..1 H:j) and 
(J/\·..1 H):i using the expressions 

1,,1 J'A l'A j'C pD J'A \. H;j = \ B,j + Cj· \ H + Hj· \ JJ, 

l •A _ 5 Ak l'i [JD 5 Dk /Ji r5 Ak _ () 
Cj - - Ci · kj , Bj = - Bi · kj , o Ci - , 

JI'~i = O, JPfli = O ,JI\;= O, JPi,i = o, 

J(J{A H;j) = J(I{A H,j) + r~j_JJ{C B + P~.n\·A [J, 

(JKA H),i = (JKA H),j + r~j.J1<c H + PhJ.oh·A n , 
J(l{A H;j) = (Jl{.4 B);j , 

the commutation relations between the partial derivative and the function al 
variation follow 

J(/{A B,j) = (Jf\·A B),; · (3S) 

7. Action of J and Va, on a contravariant affine connection I'. From the 
relations 

VaA = l'f;.ok, J(Va,8;) = Jl°7;.ok, Jq,j = 0, 
Va,(Va,8;) = Va,(rt.ak) = (It,1 + l'i].l'~1).ok, 

J[Va,(Va,8;)] = [J(rt,1)].8k, 
Va,[J(Va,8;)] = Va,[Jrt.ak] = (JI'7;),1.8k + Jl'7;.Va,ok = 

= (JI't),/.Ok = 0, 
J[Va,(Va,8;)] = v'a,[J(Va,8;)], 

the commutation relations follow in the form 

J(rk 1) = (Jrk) 1 = 0. 
2], iJ 1 

(36) 

From Jqk = 0 and J(r;k,i) = ( sqk),1 = 0, it follows that tlw functional 
variation of the components of the contra variant curvature t.cnsor is equal to 
zero, i. e. 

JRi jk/ = 0 . (:l,) 

8. Action of 1S and Va, on a covariant affine connection P. From t lw 
relations 

" d ; _ /Ji i k '(" d i) _ .,,i d k •[Ji _ o 
Va, X - kj·( X ' (I Va, X - (I -kj· .x ' (I Rj - ' 

Va,[J(Va,d:r.i)] = (JPU,1.dxk + JPi;.Vo,dxi = (<IPJ.;),1.cJ.rk = (), 
J[Va,(Va,d:ri)] = [JUt,1)].rf.rk, 

J[V,,,(Va/ri)] = Va,[rl('v;,,d.ri)] = 0. 
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the commutation relations follow in the form 

8(Pij,l) = (Ht),1 = 0. (:l8) 

From 8P]k = 0 and 8(P]k,l) = (8P]k),1 = 0, it follows that the functional 
variation of the components of the covariant curvature tensor is equal to zero, 
I. e. 

8Pijkl=0. 

9. From the relations 

8r:13 = o , 8T013 "')' = 8rJer - 8r:13 - 8Cer13 "')' , 

it follows that 
8To/3 "')' = - 8Co/3 "')' . 

4.2 Consequences from r5 o \7 ~ - \7 c5( = \7 ( o r5 

1. Action of 8 and 'v € on a function. From the relations 

'vd = u = ( 1.J,j' f E cr(M)' 'vsd = (8Of = 8(i.J,j' 
8('vd) = 8(U) = 8W.J.i) = 8(i.J,j + (i.8(f.j), 

8('vd) - 'vsd = (i.8(J.i) , v€8f = ((8!) = (i.(81),j , 

the commutation relations follow in the form ( 12) 

8(J.i) = (8!),j (in a co-ordinate basis), 
8(eerf) = e0 (8f) (in a non-co-ordinate basis). 

(39) 

( 40) 

2. Action of 8 and 'v< on a contravariant basic vector field ( e0 or 8;). From 
the relations for e0 ( analogous relations are valid for 8;) 

'v€eo = (13 .'vepeo = e.r:/3.e'Y' 
8('v€eer) = 8((13 .'vepeo) = (8(13 .r:/3 + (i'.8r:J3).e-y, 

'v J€Cer = 8(13 • 'v epeo = J(/3 .r:/3.e'Y , 
8('v€eo) - 'vwer = e.8r:/3.e'Y' 

'v€(8eer) = 'v<O = 0, 
8('v€eer)- 'vs€eer = ( 13 .8r:13 .e"')' = 'v€(8eer) = 0, V( E T(M), 

e.Jr:/3 = 0, 

the following relations for the variation of r:13 (or qk) arc fulfilled [s. (31), 
(:JO)] 

or:/J = 0 (in a non-co-ordinate basis), 8r~k = 0 (in a co-ordinate basis). 
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3. Action of 8 and 've on a covariant basic vector field (eer or dxiJ, From 
the relations for eer ( analogous relations are valid for dxi) 

'veeer = (-Y.'ve~e 0 = (-Y.P!f"')'.e 13 , 

8('veeer) = 8((-Y.'ve~eer) = (8('Y.P!f-y + ('Y.8P!f-y).e13 , 
~ er _ £(:"')' ~ er _ per £(:"')' J3 
V J{C - U<, . V e~C - J3-y·U<, .e 1 

8('veeer) - 'vseeer = ('Y.JP!f-y-e13 , 

've(8eer) = 'veO* = O* , 
8('v€eer) - 'vseeer = (-Y.8P!f-y.e13 = 've(8eer) = 0* , 

(-Y.8P!f"')' = 0 for V( E T(M), 

the following relations for the variation of P:13 ( or Pjk) are fulfilled [s. (33), 
(32)] 

8P:13 = 0 (in a non-co-ordinate basis), 8Pjk = 0 (in a co-ordinate basis). 

4. Action of 8 and 've ori a mixed tensor field. From the relations 

'veK = J(A B/er-(er.eA ® eB' 
8('v€K) = [8(KA B/er•ler)].eA ® eB = 

= [(".J(J(A B/er) + 8(er.J(A B/er].eA ® eB, 
'vs<K = J<A B/er·J(er.eA ® eB, 

--J('v€I<) - 'vseK = eer.8(J<A B/er).eA@ eB, 
'v€8I< = (8J<A n);a-(er.eA ® eB , 

J('veI<) - 'vseK = 'veJK, 
(er.8(I<A B/er) = (8J<A n);er-(er, V( E T(M), 

the commutation relations follow in the form [s. (34)] 

8(J<A B/er) = (8J<A n); 0 (in a non-co-ordinate basis), 
J(J<A B;i) = (JJ<A n);i (in a co-ordinate basis). 

By means of the relations 

8(J<A B/er) = 8(eerJ<A n) + fct.8J<C B + Pfer.8J<A D, 
(8J<A B)/er = eer(8J(A B) + f~er.8J<C B + Pf0 .8J<A D , 

(because of 8r~er = - 8 ( Sc-y A/3. r;er) = 0 , 
8Pf0 = - J(SB-y DJ3.PJ

0
) = 0) , 

commutation relations follow in the form (s. (35)] 

8(eerJ<A n) = eer(8J<A n) (in a non-co-ordinate basis), 
8(J<A B,i) = (r5J{A n),i (in a co-ordinate basis). 

5. Action of 8 and 'v< on a contravariant affine connection r. From the 
relation 

've('vepeer) = 've(r:we-y) = [eur:13 + r~13 .r;ul-(O".e"')', 
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commutation relations follow in the form [s. (36)] 

J(eur:13 ) = eu(or:13 ) = 0 (in a non-co-ordinate basis), 
o(qk,1) = ( or}k),1 = 0 (in a co-ordinate basis). 

6. Action of o and v'e on a covariant affine connection P. From the relation 

v'e(v'e/') = v'e(P;"l.e13 ) = (euPp-y + Pp°.y.P$uH".e13 ' 

commutation relations follow in the form [s. (40)] 

o(euPJf-y) = eu(oP!f...) = 0 (in a non-co-ordinate basis), 
o(Pjk,1) = (oPM,1 = 0 (in a co-ordinate basis). 

5 Consequences from the commutation rela
tions of the variation operator with the con
traction operator 

If the variation operator commutes with the contraction operator, i.e. if the 
commutation relation 

00S=Soo, ( 41) 

is valid, then by means of the relations in a co-ordinate basis or in a non
co-ordinate basis 

S(dxi 0 oi) =pi , S(ea 0 e13) = j" 13 , 
(o o S)(dxi 0 oi) = op i , (o o S)(ea 0 e13) = of" 13 , 

o(dx; 0 oi) = 0 E 0 11(M), o(ea 0 e13) =·o E 0 11(M), 
o(dx;) = o• , Jea = o• , ooi = o , oe13 = o, 
(o o S)(dxi 0 oi) =(So o)(dx; 0 oi) = 0, 

the conditions for op i and of" 13 

of j = o, or 13 = o 

follow. 

(42) 

Since the contraction operator commutes with the covariant differential 
operator and with the Lie-differential operator the following commutation re
lations can be used if the variation operator commutes 

( a) with the covariant differential operator: 

v' a, o ( o o S) = ( o o S) o v' a, , 
( S O o) 0 y' a, = y' a, 0 ( S O o) , 
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( 11:J) 

( b) \\"ii h the Lie differential opera I or: 

£a, o ( o o S) = ( o o S) o £a, , 
(So J) o £ 81 = £ 81 o (So o) , 
£ 01 o ( o o S) = ( S o o) o £a, 

From the relations (,12) and 

(£a, 0 0 0 S)(dxi 0 Ok)= (£a, 0 o)P k = (JP k),j = 0' 
(SOJO £a,)(dxi 0 Ok)= (JO £a,)t k = o(t k,j), 

it follows that 

_ J(t k,j) = (JP k),j = 0, 
J(P:,,i + !'~) = 0 (bec_ause of £a, o J =Jo fa,), 

J[(P~j + r~).r k] = o. 

( 4-1) 

(•Fi) 

From the commutation relations v' a, o Jo S = So Jo v' a1 , v' a1 o o = Jo V a1 

and Jo S = So J it also follows that 

J(f k,j) = (Jf k),j = 0. 

The method using commutation relations of type A is the common ( conven
tional) method used in the classical field theories and could be called me/hod 
of Lagrangians with partial derivatives (MLPD). The method using commut a
tion relations of type B is called method of Lagrangians with covariant dcrir
atives (MLCD). In this case the affine connections appear as n011-dynamic 
fields variables and the variation commutes simultaneously with the partial 
and the covariant derivatives of the tensor fields components. The commu
tation relations of type C could ,be used when the contraction tensor field 
Sr = f\.D; C>9 dxi = fa 13.e0 0 e13 is considered as a (fixed) non-dynamical 
tensor field or when Sr = I<r = g).D; 0 dxi = gz.ea 0> c13 , i.e. when the 
contraction tensor field Sr is equal to the Kronecker tensor field /\' r. In both 
cases Jo S =So o appears as a sufficient condition for opi = 0. 

The MLCD has been used in the Einstein theory of gravitation [7] for 
finding out in a trivial manner the Einstein equations and the corresponding 
energy-momentum tensors. It has also been used for construct.ing the Eins!Pin 
theory of gravi tat.ion in ( V,., g )-spaces [8]. 

6 Conclusions 

In this paper the variation operator is introduced and its commutation relations 
with the covariant differential operator, with th<' Li<' dilfPn•ntial opnator a11d 
with thP contraction operator act,ing on tensor fidds aff co11sidn<'d. It is 
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shown that the commutation relations of the variational operator with the 
covariant differential operator lead to necessary conditions for the application 
of the method of Lagrangians with covariant derivatives in (Ln, g )-spaces. In 
this method the affine connections appear as non-dynamic field variables and 
only the tensor fields and their covariant derivatives as constructive clements 
in a Lagrangian density take the role of dynamic field variables. This fa.ct. 
distinguish the MLCD from the MLPD and could be used in entirely covariant 
Lagrangian formalism for describing tensor field theories over differeut iahlc 
manifolds with affine connections and metric. 
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MaHOB C., llttMmpoB E. E2-98-205 
(in' g)-npocTpaHCTBa. BapHaUHOHHbIH onepaTOp 

Onpe.ueneH Bap0au00HHbIH onepaTOp KaK JIHHettHbIH .umpcpepeHUHaJibHbIH one
paTOp, .ueiicTByIOIUHH Ha TeH30pHoe none B 3a)laHHOM 6a3HCe. BBe.ueHbl KOMMY
TaUlIOHHble COOTHOllleHH}I 3TOro onepaTOpa C .llHcpcpepeHUHaJibHblM onepaTOpOM JIH, 
C KOBapHaHTHblM .UHcpcpepeHUliaJibHblM onepaTOpOM lI C onepaTOpOM CBepTKlI 
(KOHTpaKUHH). nonyqeHbl CJie.UCTBlI}I npHJIO)l(eHHH 3TlIX KOMMYTaUHOHHI,IX COOTHO
weHHH BapHaUHOHHOro onepaTopa K pa3HblM .lllI<pcpepeHUliaJibHO-reOMeTpH'IeCKlIM 
061,eKTaM (cpyttKUH}IM, CB513HOCT51M, TeH3opHblM IlOJI51M). Ha 3TOH OCHOBe onpe.uene
Hbl )lBa THna narpaH)l(eBbIX MeTo.ua: 061,1qHI,IH (KaHOHHqecKHH) MCTO.ll narpaH)l(HaHOB 
C qacTHbIMH npOH3B0)lHbIMH (MJiqn) lI MeTO.ll narpaH)l(HaHOB C KOBapHaHTHb!MlI 
npoH3BO.llHbIMH (MJIKTT). 

Pa6orn BbinOJIHeHa B Jla6opaTOpHH TeopeTHqecKoii cpmHKH HM. H.H.EoroJII0-
6oBa 0115111. 

npenpHHT Qm,e)lHHeHHOro HHCTHryTa imepHLIX HCCJJe)lOBaHHii. lly6ua, 1998 

~anoff S., Dimitrov B. E2-98-205 
(Ln, g)-Spaces. Variation Operator 

A variation operator is determined over (Ln' g)-spaces as a linear differential 

operator, acting on tensor fields in a given basis. Its commutation relations with the 
Lie differential operator, with the covariant differential operator and with the 
contraction operator are imposed. The corollaries from using the different 
commutation relations in a Lagrangian formalism are found and two types of 
variation methods are distinguished: the common (canonical) method of Lagrangians 
with partial derivatives (MLPD) and the method of Lagrangians with covariant 
derivatives (MLCD). 

The investigation has been performed at the Bogoliubov Laboratory 
of Theoretical Physics, JINR. 
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