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1 Introduction 

Pion electromagnetic properties were intensively studied within.different theoretical ap­

proaches, such as perturbative QCD [1], the factorization theorems and QCD sum rules [2]­

[7], approaches based on the Beth~-Salpeter equation [8]-[10], the instanton liquid model 

[11), relativistic quark models [12, 13], nonlocal quark model with co~finement [14], and 

some others. The reason for this permanent interest is quite understandable: a variety of 

general features of strong interactions clearly manifest themselves in pion physics. First 

of all this relates to the mechanisms of chiral symmetry breaking in QCD and general 

behaviour, of electromagnetic form factors of hadrons. The charged forin factor played the 

particularly important role for explanation of the quark counting rules l15] and factoriza­

tion hypothesis within QCD (for review see, e.g. [2]). ·The two-photon decay of neutral 

pion and the transition form factor relates to the triangle anomaly and is important for 

testing the models of QCD vacuum. [1, 6). 

The present paper is devoted to· description of electromagnetic properties of pions 

within the model of induced nonlocal quark currents developed in our previous pa­

pers [16, 17]. Namely, we calculate the charge and transition for~ factors and two-photon 

decay constant of pion. The model is based on the assumptio~ that the (anti-)self-dual 

homogeneous field [19, 20, 21, 22] 
•' ~ ' 

Bl'(x)=nBI'vXv, n=A3cose+-Xssine, 

Bl'v = ±BI'V> Bp;pBpl' = -B2DJ,v (1) 

can be ~onsidered. as a dominating gluon configuratio~ .. in the QCD, vacuum, In. other 

words, it is assumed that the. effective potential for QCD: has a minimum at nonzero 
' ' . . . . 

strength o.f the background field [20, 23]. 

Va~uum field (1) leads to spontaneous violation ()fa range of symmetries such as CP, 

colour and 0(3) .. A satisfactory re~toration of these symmetri;s at the hadronic scale 

assumes an existence of domain structures in the vacuum. In.a given domainthe vacuum 

field has a specific direction and is either self~dual or anti-self-dual, but this is uncorrelated 

with the specific rc;:alization of Eq.(1) in anothl!r domain. The idea of dom~ins in the QCD 

vacuum was discu~sed in application to various homogeneous fields [19, 24, 25, 26]: In 

complete theory the domain walls should. be describable bJ: some appropriate classical 

s~litonic solutions of equatiof\s of motion. Jn the effective model·under consideration this 

i~ea is realized as. a prescription that different quark loops.(namely, those separated by the 

meson lines) in a diagram must be averaged over different, configurations of the vacuum 

field (1) independently of each other. 

D!ttCA.~Ii:'J.i.'kD J;:.::k1Jf I' 
1!ll~~!iiAX HCC.,~.~tr:~AUU! 

6vJSili<!OTEHA .. .........., ---.-



A consideration of both the quark-gluon dynamics in the external field (I) and its 

manifestations in meson properties indicates that this field provides for h. picture of cmi­

finement and chiral symmetry breaking which is unexpected but looks quite self-consisteut 

and agrees with meson phenomenology. 

Being taken into account nonperturbatively, the. ~acuum field under consideration 

changes analytical properties of the quark and gluon propagators drastically and makes 

QCD to be a nonlocal quantum field theory. ·The propagators of color charged fields 

in the presence of field (1) are entire analytical functions in the complex momentum 

plane [14, 16, 19, 23] which means an abs~ce of quarks and gluons in the observable 

spectrum of hadrons. The propagators are modified essentially in the infrared region and 

show the .usual behaviour· at short distances. Consideration of the Wilson loop in the 

presence of this field shows that the Wilson criterion is satisfied [27] with an oscillator 

potential between heavy quarks. The potential arises effectively due to an interaction of 

the charges with vacuum field but not by virtue of gluon exchange. 

Due to the (anti- )self-duality and homogeneity of the field (1) the operator "!"(a" -iB") 

has an infinite set of zero eigenmodes whose contribution 'to the quark propagator leads 

to the relation between densities of quark and gluon condensates: 

NF ' ' ' B2 
S' lim mf{iiJ(x)qJ(x)) = -NF-

2 2
, ~m1~o ~ 

f=l 
(2) 

which is valid to all loop orders in QCD. Equation (2) indicates a non-Goldstone mecha­

nism of chiral SUL(NF) x SUR(NF) symmetry breaking (for details see [23]). This way of 

violation of chiral symmetry is unusual but, as it will be discussed further below, is not 

in conflict with the observable meson properties [17]. 

Manifestations of this quark-gluon dynamics in the spectrum of' collective mesonic 

excitations were studied in [16, 17] within the model of induced nonlocalquark currents. 

Technically, the model is based on the bosonization of one-gluon exchange inter~ction of 

quark currents in the presence of the homogeneous (anti-)self-dual vacuum gluon field (I). 

The vacuum field determines basic properties of meson spectrum in the way that is 

completely consistent with experimental data. Namely, due to the zero modes in the 

quark propagator the masses of light pseudos~alar and 'vector mesons are strongly split, 

scalar and axial· mesons as a simple qij systems in the ground state are absent in the 

spectrtim•(there are no scalar and axial analogies of pions and p-mesonsr Zero modes . 

affect drastically the pion weak decay and determine the correct value of constant f". An 

entireness of quark arid gluon propagators results in· the Regge character of the spectrum 

of orbital 'and radial excitations of light mesons. Moreover, scalar and axial mesons 

with appropriate masses (e.g., a 1 meson) ·appear in the hyper-fine structure of orbital 
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excitations ofvector mesons. The mass of heavy quarkonium tends to be equal to sum of 

the masses of quarks, the heavy-light meson mass approaches a mass of a heavy quark, and 

the weak decay constant'for pseudoscalar heavy-light mesons has· asymptotic behaviour 

I/ .JffiQ, which is consistent with the Isgur-Wise symmetry. Quantitatively, the masses 

and decay constants of mesons from all different regions of the spectrum are described 

withiu ten percent inaccuracy. These <~ifferent phenomena are displayed with the minimal 

set of. parameters: gauge coupling constant, strength of the vacuum field·ai1d the quark 

masses. 

This paper proceeds a systematic analysis of possible manifestations of the vacuum 

field (I) in meson properties. We intend to give a kind oL unified .description. of a ·wide 

class of static (masses, decay widths). and. dynamical (form factors) characteristics ~f 
diffen·nt mesons with the set of parameters, that is minimal for QCD. Using the values 

of parameters fitted from the meson spectrum we got the electromagnetic form factors of 

pions to within 15% inaccuracy .. · 

Our main goal is to study the role of quark zero modes, induced by an interaction of 

quark spin with the vacuum field;·in the'two-photon decay· and transition form factor of 

1r0
• The main result is an observation that the vacuum field (1) can be responsible. for 

. ',, ',' ' '' . :_ ' .. ,,, ' . ·. ._,, .,, . 
both of them. Via zero modes the vacuum field affects in a crucial manner the form factor 

j J; ·1) ' 

and decay constant. In particular, we show that the spin-field interaction generates the 

triangle anomaly in the pion decay to two photons and leads to quantitati~·ely satisfactory 

description of the transition form f~cidr and tlecay width. 
I 

The main effect of the vacuum field under considerati<?n in tht• charge form factor is an 

increasing of the contribution of triangle diagram to the.form'factor at.'lnoderat.ely large 

transfer momentum Q2 • This effect is due to the presence of the background field both in 

the quark propagators and no,hlocal meson-quark. vertices, wl;ich cause~~ ~p~ecific interplay 

of translation and color gauge in variance ·in the quark. loop~. N amdy.' I he I ranslation 

x -> :1: +a causes a shift in the field B"vXv -> B"vXv + B,wav. which can be compe11sated 

by an appropriate gauge transformation. 'Therefore, only·g~uge invaria;iJ"(juaii'tilies lt;m 

<iut to be translation invariant. This results in nonconservat.ion of eiwrg/illOI{IPIIttl\n in 

the separate vertices of Feynman diagrams, but the conservation i~ s'till held for a 'wh~>le 
diagram if it is gauge invari~nt. This peculiarity changes an asympt.ot ic behaYiour of 

some Feynman diagrari1s at large momentum transfer. This is piuticularly rele\'atlt·to the 

triangle diagram for the charge form f~ct.or. Usually the asympt.otic lwh;wiour. :.__, ( 1';Q2
)
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of this diagram .is. a direct consequence of the behaviour of.a nwson-quark wrll-1' <!rul 

quark propagator at short distanc1~s [8]. The presence of t.lw V<tnmm. field dtallge:,; t lw 

asymptoticscardinally, and it l;ecomes ~ 1/( Q2tt:"~lH, ~vlwre 111,1· is, t ht• qu;,'rk mas~ a11d 
,, - \ • ,. "1 ·•' 
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B is the strength of the vacuum field. This improves the form factor at iuternwdiate and 

moderately large Q2. However, the absolute asymptotics of the form factor withiu the 

model under consideration comes from the so-called bubble diagrams. These diagrams 

can be treated as describing tlw. hard rescat.tering of quarks inside a pion via virtual 

gluon exchange. This mechanism is in agreement with the general analysis within quark 

counting rules and perturbative QCD [2, 15]. 

In the next section we review shortly the model and introduce the electromagnetic 

interactions into its structure. Section III is devoted to calculation of transition form 
~' 

factor, where we analyze.the role of quark zero modes. Charged form factor of pion is 

calculated and the manifestations of the vacuum field in asymptotics of Feymnan diagrams 

at.large momentum transfer is discussed in sect. IV. The details of calculations can be 

found in [18]. 

2 The Model of Induced Nonlocal Quark Currents 

2.1 Basic Approximations and Notation 

The functional inte'gral for Euclidean QCD in the presence of the vacuum field ( 1) can be 

written in the form (23] 

NJ 

z = N r das r Dpr;(G,JJ) r II DrulNu 
}En }g };:- 1 

exp{j d4 xiiJ(x).[i\7- m1 + gG] q1(x)}, 

D!lc;(G, B)= DGD.Ff.'(G, B]8 (V'(B)G]exp{j d4 xCvM[G + B]}, (3) 

6 = 1,..c,.., V= 1,..v,.., v,.. =a,.- iB,... 

il';' 

The vac~um field B,.. (gJJ := B) is characterized by angle e and two spherical angles ( tp, 0) 

defining th~ directions in the color and Euclidean spaces respectively. The measure of 

. integration das is defined as 

1r 21r 21r 

r das=L:-( 
1
)2Jd0sin0jdtpjde, 

}Ea ± 471" • 
0 0 0 

(4) 

where'tlw symbol 2:::± denotes averaging over the self- and anti-self~dual configurations. 

The functional space Q'contains the quantum gauge fields G~ va'nishing at the space­

tiirie infinity. The fermionic function~i integral spans the Grassmann algebra Fof square 
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integrable quark fields. An anti-hermitean representation for Euclidean 1-matrices is 

adopted. . , 

The functional integral (3) contains the iritrinsic di~ensionful quantity B, which is a 

gauge. and renormalization i~va;iant st~ength 'of the vacuum fi~ld;'~hich by assu~ption .. 

minimizes the QCD effective potential ( e:g., seJ (20,' 19, 21 ])~ This field stre~gth' (or 

gluon coridens~te) provides the natural referedce scal~for running quark masses IDJ(P) 
and gauge coupling co~stant a.(p). Therefore, the strength of the va~uum field B, the·' 

quark masse~ and coupling constant atth~ scale IL = v'lJ can be considered as th~ ph;sical · 

(intrinsic) parameters of QCD in representation (3). The strength B can be' related to~he' 
fundamental scale AQcD [20, 23]. Values of the parameters have t~ be extrad~d f~orri the 

,. 't • > j_·, • , 

analysis of hadron spectrum. To be able to do this one needs to rewrite representation (3) 

in terms of composite hadron fields,,descriging collective c~lorless excitations in the QCD 

vacuum. For meson fields this program has been ~ealiied in paper~ (16, 17], where the. 

model of bosonization, referred below as the model of induced nonlocal quark currents, 

has been developed, and the masses and weak decay const~nts of mesons from the different 

regions of meson spectrum have been calculated. The values of parameters are summarized 

in Table 1. 

A derivation of the model goes through the following steps.· 

fields G .one ca~.rewrite Eq. (3)·in ~he f~rm 

Integrating ove~ gluon 

·,·-:_!_ 

1 1 
NJ ' 

Z ~ N. da~ II DqJDiiJ 
Es :F 1 . 

I ~ f 

exp { J d4
xiiJ(x) (i\7 ~ m.J) qJ(x) + ~ L.n r (5) 

gn J 4 J 4 . ·a, . ·a~' a, ... an r Ln = n! d Yt··· d YnJ,..,(Yt) . ... J,..JYn)G,..,, .. ,..n\~l,··:,Yn I B), ' 
r•." 

NF 
j:(y) = LiiJ(x)l,..taqJ(x) .. 

I 

(6) 
'~ . ~ . ~ 

The functions G~~·:.~~';. are the exact"n-point gluon Green's functions in the external field 

B; . 
The model of induced nonlocal quark currents is based on the assumption that the four-

quark inte~action Lz in E~. ( 5) pl~ys the mai~ tole in' the formation of mesonic qij collective 
• I . • . : ~ -· ;• " • . 

modes, but the rest of terms Ln (n > 2) can be omitted in tl!e first approximation. Thus, 

we consider Eq. (5) with the quark-quark interaction truncate'd up to the term L2 
' ' . ,t"· ~ ,; . - • 

Nt • , \~ 

Z=N hs daB LflDqJDij1 exp{jd4xij1(x)(iv-·~1)q1(x)+L2 }· 
J .. '· • '·" (. ,. ~ . ' 

5;:; 



L2 = ~
2 JJ d4xd4y j~(x)G~~(x,y I B)jt(y). (7) 

Gluon two-point function C,~t(x,y _IB) is.appr~ximated by the gluon propag~tor in the 

external field (1 ), so that the vacuum field is taken into account exactly but the radiative 

co~rections are neglected in the model. The sub~equent steps are straightforward and 

c~:msist in a standard Fiertz transformation, decomposition of L 2 into an infinite series of 

Cll;rren~-current interaction terms and bosonization of the effective four-quark interactions. 

Fo~ details we refer to papers [16, 17]. 

. .The starting point for incorporating the e!edromagnetic interactions into the model . 

uncle~· consideration is the representation [17] ,, ' ' . ' ~ 

where• · 

l+sJ · 

L2 = L L 2~2G}tn J d4x [IaJlni(x)]2' 
aJtn i=ll-sJ! 

a=0,1, ... ,N,, J=S,P,V,A, £=0,1, ... , 'f!=O,l, ... , 

Sp = Ss = 0, Sy = SA = 1,. 

(8) 

2 2 (£+1) 
GJtn = CJ g 2t '(n )'' Cs = Cp = 1/9, Cv = CA = 1/18 (9) n. <-+n. 

The currents IaJlnj are nonlocal, carry a complete set of quantum numbers (isospin a, 

spin-parity in the ground state J, orbital£ and total angular j momenta, and a radial 

nu'ffiber n) and has the following form 

IbJlnl =·:JbJln for J = S p 
/Jl .. ·P.l IJ.I···J..I.l ' ' £ '2 0 (j = £), 

I!JOn1 =:!:Jon for J = v~ A,. £ = 0 (j = 1), 

{ 

1 p [cS 'TbJln ] · - £ 1 · 
' (!+1)2 °1'l···l't ""'" p,pp2 .. ·1't ' J - - ' 

IbJlnj = _L l J.bJl:' · . . · _ :JbJln . . · = £ 
apl .. ·l't l+I Lt=l [ a,p, ... ,.,_,p,+l· .. l't ,..,a ... p,_ll'•+l .. ·l't]' J ' 

1 p [ '7bJln 1 /) 'TbJln ] · - £ + 1 
l+l 0 Jl1···J.Ll Vcx,l-'l···IJ.t- l+l 0 JltVp,pJ.L2···JLt ' J- ' 

(10) 

Symbol Pa,1 ... ,., denotes a cyclic permutation of the indices (ap1 ... Jlt)- The curr.ents :JbJtn 

in Eq. · (10) read 

:1:~~1~ •• ,,(x) = iiJ(x) [v;/~.:,(x)] 11 , q!'(x), 

bJln _ b J. '\! ff' (X) . (l) · 1 '\! / /' (X) 

{{ (
-2 ) ( - ) }} [va,,, ... ,.,(x)]ff,- Mff,ra Fnt A2 TJ', ... ,, i. A . , 

1
1 ' 

Fnt(4s)'= sn dttl+ne·", (11) 
0 . 

'\ljf'= ~! v -~!' v, V=a -iB, V=:a +iB, ~! =;m,/(m, + mf'), 
fs =I, fp = hs, r~ = 1'", rA = 1'51'"· 

6;; 

Till' polynomials T,W.,,(x) arc the irreducible ~ensors.of 0(4). The doubled brackets in 

Eq. (II) mean. that the covariant derivatives commute inside these brackets. For the sake 

of simplicity the scale /1. 2 = ,;:JJJ is introduced and a-particular direction n• = c5"8.of the 

vacuum field in the. color space is fixed, so that: 

Ji,pBpv = -t•2A1 c51w, v_= diag(l/3,1/3,2/:J). ( 12) . 

Fur\ lwr details concerning above representations can be fmind in papers [16. 17]. 

Form-factors J•:,t(.~) appeared as a result of dPcomposition of hilocal quark currents 

ovn \Ill' orthogonal complete• set of polynomials for which gluon propagator plays the 

role of a weight. fund ion. ThPy an• entire analytical fund ions in the complPX ·'·plan<'. 

which is a manifc~st.at.ion of the gluou coufitJcrncnt. ·~ow at\ iitlet:adioit b'c;tz\:ePit q.ti~~ks is 

expn•ssc•d in terms of the llonJ~cal quark cur;cnt.s," whifit ar(• elelllCIJ\ary Ctlfl·~iitS oft}l!' 

syst.Pm in the sense of classification civcr' quantum mtilil>Prs: 

2.2 Electromagnetic Intera:ctions 

lnterac.tion of quarks with e!Pct.romagndic field A,, rait he 'intrl>du(·('(l i;tto repn·sentatiou 

(7) with L2 written in tlJ<' forrn of Eq. (8) by means of t lw minimal substitution (see 

also [12]) 

V-+V -ie1A(x), 

V-+V +ie,A(x) (I:l) 

both in the free quark Lagrangian a.nd vertices VnJtni. Here(' f = cQJ· and Q-is tlw rharg<· 

matrix. 

Equation (7) takes the form (N = {aJfnj}) 

Z[A] = J daa J DqDq CXJ;{/ d4xqJ(x)[i1',, V,, ""',m/+ c·n,,A,,(:r)]qJ(:r.) 

+ ~ 2~2 G:V J d4x IIN(x.i A)- TrVN(x.l O)S(r,:r I 0}1 2 
}· (1·1) 

I . ~ ; \ 

where the currents IN( X I A) include clect.romagnetic fic•lcl A through t.lw ver\Px functions 

V"'"(x I A) = M'l'' {{ /•~, ("~\~)) '/'~~ ( + {J yi) }} (I :i) 

_,, [_,, ] : [_,, ] 
})//'= ~/. '\! +ic,A''(x) - ~!' '\7 :-icf'N'(:r) , (Hi) 

.,. 
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One can check that under the gauge transformation 

qj(X) :-;-:' qj(x) = eicJo(x)qJ(x), 

ru(x) ->qj(i) = iJJ{x)e-ie,o(x), 

A,.(x)--+ A~(x) = A~(.i:) +D,.a(x) (17) 

the. currents IN are transformed with the electric charge ( c f _- e f') corresponding to a 

meson composed of qf and iir: 

I_\'(x I A) --+ I,'v(x I A) =.f(erc,.Jcx(x)IN(X I A), 

I_tr(x I A)--+ I'};(x I A)= I_tr(x I A)e-ih-•,.Jo(xl. (18) 

.The curren~_-curre~t interaction I_tr( x )I_,v( x )is invariant under U( 1) .transformations ( 17). 

._By I?eans of the standard bosonization procedure [16, 17] applied to Eq. (14) the 

functional integral Z[ A] can be ~epresented in terms of the composite meson fields 4> N 

i( 

';' 

Z[A] = N j fJ D4>_,vexp { ~ j jd4 xd4 y4>_,v(x) [(D- M~) 5(x- y)_ 

. --; h~II~(x-:- y)j 4>_,v(y) +lint [4> I AJ}, 

lint=- j d4 xh_,v4>_,v(x) [I'_,v(x I A)- I'_,v(x I 0)] 

( 19) 

-~ j d4 x1 j d4 x2h_,vh_,v.4>_,v(xi) [I'_,v_,v.(xhx21 A)- 5_,v_,v.!I_,v(x1- x2)]ci>.,v•(x2) 

-2:.:: ~J d4 x1··· j d4 xmft h_,v.4>_,v.(xk)I'.,v, ... Nm(xh···•Xm I A), 
J m=3 .· , . k=l · 

I'.,v, ... Nm = j daaTr{V_,v,(x1 I A)S(x1,x2l A) .. :VNm(xm I A)S(xm,X1 I A)}. (20) 

At zero electromagnetic field the effective meson action in Eq. (19) coincides with the 

action derived in [17]. Meson masses M_,v are calculated by' solving the equations 

i! A2 + G~IT_,v(-M~) = 0, 

where IT_,v(p2)' is a diagonal part of the Fourier transform of the two-point function r NN• 

afzero' eiectromagnetic field. 

The meson~quark coupling constants are defined by the relations: 
j : i . ' ; . ' ', . ' . . 

; 2 . -I 2 : . 
· h_,v = 1/II_,v(p )ip2=-M1· (21) 

· :nw integral over directions of the fidd and the sum over self- and a'nti-self-dual con­

figurations has been transferred to the exponent in Eq. (19) and included into the vertices 

8 

r, Eq. (20). This assumes that the vacuum_field configurationsin the different (sepa-. 

rated by meson line~) ~~~rk i~ops. ~re considered'as fnde~ei:id~nt from ~~ch ~ther. s~~h 
a prescription should reflect effectively the domain structur~s in the vacuum. 

To get various meson-photon amplitudes one has to deco'inpose the vertex functionals 

I'N, ... Nm into a series over the electromagnetic field A, as is shown schematically in Fig. 1. 

This is achieved by a decomposition of the quark propagators, 

SJ(x,yiA) SJ(x,y) 

+ fen J d4 z1··· j d4 znSJ(x, zi)/,.,A,., (zi) ... ,,.nAI'~(zn)SJ(zn.,_y), (22) 
n~ . • 

and vertices 

V_,v(xiA) = V_,v(x) 

+ fen j d4 z1··· j d4 znV,t;L::,.Jx, ZJ, ••• ,zn)A,.; (zi)~ .. A,.n(zn)· -·(23) 
n=l ' , ; , ·,~ , . : 

A regular procedure for calculation of the vertices v_&~~, ... ,.~ is described in [18]. 
The lowest vertex for charged pion, the case of particular importance for 1further 

calculations, comes from the current.:!"+' Eqs. (11) and (15),: · ... 

where 

- . · D (x) - . \7 (x) - -·. ' -( ..... 2 ) . ' ' .( .... 2 ) .; . ,·. 

.:l"+(x) = d(x)zisFoo ---;\2 u(x) = d(x)z,sFoo ---;\2 u(x) · 

+i15eJ d4yd(x)A,.(y)f~<(x,y)u(x) + O(e2
), 

rl'(x,y) 

]f' 

1 1 

J d
4
q eiq(x-y) j J dtdf3-; _[2i V,. (x)- ql'] 

(27r )4 . .· . 4A · : 
0 0 

{ 
t. [ .... 2 . .. .... ] } 

X exp 
4

A2 \7 '(x) + f3(2i \7 (x)- q)q . . 

(24) 

(25) 

The first term in Eq. (24) is the npnlocal quark current in :the absence of field A~ but 

the second term describes an interaction of photon with a quark inside'pion which is 

characterized by the form factor rl'(x,y) [12]. . . 
The quark p~opagator in tlie horriogeneous (anti-)self-duaJ gluon field SJ(x, y) is a 

solution to equation 

(ill' \7,.- mf )Sj(x, y) = -5(x -'y), 

SJ(x,y) = e}x,.B,.vYv H,(x- y),. ' ' '' 

( 
2 2 • ) -l 

H1(z)=(i,~<V'~<+m1 ) _-\7 +m1 -aaf3Baf3 c(z). (26) 
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Fourier transform of the translation invariant part H1 reads [17, 23] 

- 1 /1 

& (1-s)~ . 
HJ(P) = 2vA2 dse-2vA ~ .1 + s lPa'Ya ± is'Ynafrx{JP{J 

0 

( 
1 + s 2 

i s )] 
+mJ p± + PT 1- s2 - z'Y<>fa{J'/'{31- s2 ) (27) 

_xs 
!p.v = vA2 Bp.V) 

where P± =(I± 'Ys)/2 and the upper (lower) sign corresponds to (anti-)self-dual con fig-

uration. 

Propagator (27) is an entire analytical function in the complex momentum plane, 

which is treated as quark confinement. The term U 0 f]Ba{J in Eq. (26) is particularly 

important. It describes an interaction of a quark spin with the vacuum field and is 

responsible for the quark zero modes. Contribution of zero modes to the propagator is 

seen in Eq. (27) as a singilarity of the integrand at s = 1 which ~s integrable unless m 1 = 0. 

Below we show that the spin-field interaction is of crucial importance for the transition 

form factor of neutral pion. The presence of the vacuum field in· the phase factor in quark 

propagator and in cova~iant derivatives in the vertkes turns out to be important for the 

charge form factor. 

3 Decay 1r
0 --+ 'Y'Y and 'Y*7r0 --+ 'Y Transition Form 

Factor 

A vertex relevant to the interaction of ne~tral pion and two photons. with momenta p, k1 

and k2, correspondingly, has the following general structure 

T;:v(p, k1, k2) = i8(4)(k1 + k2 - p)Ep.va{J k~ kgT,(p2 , k;, ki), (28) 

~here T,(p2
, kf, k~) is a scalar function. It should be remembered that we have started 

~ith,the Euclidean formulation of QCD, and k~, k2 and pare Euclidean momenta. 

For '/'*7r
0 

-> 'Y transition the final photon 'Y is on the mass shell ki = 0, whereas 

k'"f = Q2
. > 0 for the virtual photon '/'*. The transition form factor F

7
,( Q2 ) is then defined 

as 

F7 ,(Q2
) = T,(-M;,Q 2 ,0). (29) 

The two-photon decay coupling constant 

9"-r-r = T,(-M;,0,0) (30) 

/. 
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and the decay width .. 
I'( ()-+ ~·)' _:_: ~ .2 \1. 3' 2' ··, \ 

7r 1 y - 4 Q ' • ,9,-,-,: (31) 

corn•spoiHI to kinematics with on-shdl plio tons and pion:· kf '= ki \= 0 and p2 = - Jf;. 
As follows from the effective action in Eq. (20), the one loop approximation of the 

vertex (28) is described by the triangle diagrain shmvn in Fig. 2. Other one loop,dia'gra~s 
with photon lines attached to tlw meson~q,;ark vertex arc identically equal to ~~ro d1ie to 

t.lw parity conservation. 

As has been mentioned above, t lw interactioit of quark spin \~itlt the honH;g~neo~s 
vacuum field generates an infinite number of zcr? ~nodes of Dirac operator and lea<!s ,to 

a uonzero quark condensate deusity, which i]tdicatcs a breakdown of chiral symmetry by 

tlw vacuum gluon.field [23] .. A contribution of zero' modes to the polarization diagrams of 

light mesons is responsible for mass splitting between VPctor and psPudoscalar: mesons and. 

smallness of pion mass [17]. The main goal of this section is to show that tlw zPro modes 

generate the triangle• anomaly and play Uw dPcisivc role in t.Jw two-photon decay of ;;-0 

and transition form factor }·~,. To demonstrate this qualitatively it suffices to mnsider 

the triangle diagram (Fig. 2) in the limit of·vanishing quark mass(;s md =·h;u .-'-> 0. 

The quark propagator in the external (anti- )self-dual field (I) has the following stan: 

dard representation in terms of the matrix clements of' the projection opNators. Pn outo 

the subspaces corresponding to different eigen numbers,\, of Dirac operat.or in the c·xter' 

ual field [29, 2:J] 
oo Pn(:r,y) 

8(:1:; 1J) = L m + i-X!,. 
n:;::;:O :, · 

One can separate the contribution of the zero eigennH><IPs and uormal modes to the 

propagator 

S(x,y) = S'(:r,y) + S0 (x,y), -
S'(x,y) =:=iVx ll(x,y)P± + ll(x,y) iVy /'T + O(m), (:!2) 

- - - -.\1=8 -ill, \1=8 +iB, 

So(x,y) = Po(:;-,y)fm. 

II ere ll(x, y) is the scalar massless propagator in ll](' background liPid (I), and /'± 
1 . ··' 

(I ± 'Yc.)/2. The projector outo i.he ;.:ere) n;ode subspace loc;ks as, 

n2JJ2 
Po= --2-f(:r,y)/'TL.T, 

7r 

L.± = ~ (I ± L.ibi), L.i= ~EijkO"ji,·, ".ik = hi, lk]/2i, 

11 
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bi = BJIB, H; = -~c:iikJJih i,j,k= 1,2,3 

f(x,y) = exp {-~v/n213(x- y) 2 + inx,JJ1,vYv}, 

J d1 zPa(.1:, :::)P0 (z,y) = P0 (x,y). 

(:!·1) 

The projector P0 (x, y) contains the projection matrices P_ (self-dual field) or 1\ (anti-self­

dual field) and I;_ (n > 0) or I:+ (n < 0). The matrix L:+ (L:_) can be seen as the projector 

ont~ the quark state with the spin orientated along (against) the chromomagnet.ic field 

Bj· :'-'o,w consider the n-point quark loop .J 

Trl\ (Sa(x., x2)+8'(x1, x2))f2(So(x2, x3)+S'(x2, x3)) ... r n(S'a(xn, .ri)+S'(x,., a: I)), (:l5) 

where rk are some Dirac matrices. Chiral structure of ;~,ero mode part Po, Eq. (3:!), and 

normal mode part .5'', Eq. (32), suggests that the loops with all vector vertices are regular 

in the massless limit (for details see (23]), while diagrams with one pseudoscalar and n -1 

vector vertices are singular and behaves as 1 /mu. The se'tond kind is just the case of 

Fig .. 2.: 

Thus the triangle diagram for the amplitude (28) is proportional to 1/mu as m.u -+ 0. 

However, the amplitude contains also the pion-quark coupling constant h" defined by the 

pion polarization funCtion according to Eq; (21 ). The polarization function is simply a 

. Jwo-point quark loop of the form (:35) with pseudoscalar vertices. In the massless limit 

it diverges as 1/m~ and, hence, coupling constant h" ex mu. Thus the rnassless limit of 

the form factor, that is a product of coupling constant h" and the quark loop, is nonzero: 

limmu-o F.," =/= 0. This anomaly is determined completely by a contribution of quark zero 

modes to triangle diagram and coupling constant. 

Let us consider this important peculiarity in more details. Using the proper time 

representation of the quark propagator (27) and meson-quark vertex (11 ), evaluating the 

trace of Dirac matrices, calculating the loop momentum integrals and averaging over 

different configurations of the vacuum field, we represent the form factor F'-,.c(Q2 ) as an 

integral over proper times t and s 1 , s 2 , 5 3 , corresponding to the vertex and propagators, 

. respectively (see Fig. 2): 

. . I I [ ) ( ] m~/4v 2 1 h" , 1 - 5J 1 - 5 2 1 - s3 
F-,.c(Q) = -A~frvf···fdtds1 d52d53 (-. -) (-) 

2v 21r2 1 + 5J 1 + s2 1 + 53 
0 0 

x L 
1 
::2 <f>;(M;,Q2;s,t)cxp [M;¢(s,t)- Q\Q(5,t)], (3£i) 

t=l,2,3 l 

¢(s, t) = (25J53 +vt(.>1 + .s.1 - s2(1 + ·"I·'>3)))/4vx, 

12 
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Table 1: Parameters of the model (A~.= 3B2). 

mu (MeV) md (MeV) m, (MeV) me (MeV) mb (MeV) A (MeV) 
198.3 198.3 413 1650 4840 319.5 

cp(5,t) = s2(53 + vt(1 + s1s3))j2vx, 

y = 2vt(1 + s1s2 + SJ53 + s253) + (s! + s2 +s3 + s1s253). 

Here and below we use the shorthand notation for dimensionless r<l;tios: Q2 = Q2 j A 2 , 

mu = mu/A, M" = Af.c/A. The symbol Trv means summation over the elements of 

the diagonal matrix v written in Eq. (12). The details of calculation of F-,;,.(Q 2) and an 

explicit form of functions cf>;(M;, Q 2; 5, t) can be found in [18) . 

The singularities (1 - 5;)-1 of the integrand in Eq. (36) at•s; -+ 1 appear from the 

zero mode contribution to the quark propagator (see the second line in Eq. (27)). These 

singularities lead to the 1/mu-dependence of the integral in Eq. (36) in the limit·m, << 1: 

F-,.c(Q2) = ~I(Q2). 
m, (37) 

Here I does not depend on m,. In the massless limit pion polarization function ll.c(:-M;j' 
looks as [17) , . . .. 

- .( 2 ) 1 16A
2 

T 2 [ .. {·M;} { M; ··}] 2 

11" -M" = m~ 7r2M; rv~ exp g;- - exp 8v(1.+ 2v) . , (38) 

hence the effective coupling constant h" in Eq. (37) behaves as 

h" = 1/Jfi~(-M:;)-:- m,, (39) 

and F-,.c(Q2) does not vanish as m~-+ 0 but approaches a constant value: The same.is 

valid for decay width (31). 

Numerical results for the form fa:ctor and decay width are represented in Fig. ·4 and 

Table 2. The model parameters are given in Table 1. ·'· 

It should be remembered that we" simply use the values of parameters fix~d fr~~ the. 

description of the meson spectrum [17). The solid curve i~ Fig.'4 corresponds to Eq. · (36) . 
The radius for ''(7r0 -+ 'Y transiti~p. defined as 

2 . F~"(O) 
< r..," >= -6 F-,.c(O)' 

is equal to .57 fm, that have to be compared with r~~ = .65 ± :03 [31): 

Just to illustrate the crucial role of the quark zero modes we show the form factor 

calculated with zero mode contribution eliminated from the quark propagator (the long 
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Table 2: The two-phot~n decay constant g;"'"' ( Gev-1
) and decay 

width r(7r0
: 'i""t) (ev); g;"'"''r• are the values calculated with~ut 

taking into account the spin-field interaction 

dash~d line). Zero modes drastically affect also the two-photon decay constant g""'"' and 

deca¥ width r(7r0 --> "'t"'f), as is seen from Table 2. . 
Above consideration supports the picture of chiral symmetry breaking due to the 

fermion. zero modes induced by the homogeneous (anti-)self-dual vacuum gluon ·field, 

which has been developed in our previous papers [17] and [23]. We can conclude that 

within the model of induced nonlocal currents the experimental data for "'(*11"
0 --> ·y tran­

sition form factor and two photon decay constant can be explained by the same reason as 

a ~mallness of pion mass, splitting of the masses of vector and pseudoscalar light mesons. 

and weak decay constants of pions and kaons. A general physical reason is an interaction 

of, a quark spin with the va~uum homog~neous gluon field. This s~in-field interaction 

appears to be a dominating effect in the above discussed phenomena. 

)t is appropriate to·mention here, that, possibly, there is another, completely inde­

pe~dent of our. considerations, manifestation of an interaction of the quark spin with a 

long-range gluon field in the QCD vacuum. As is reported in paper [32] the experimen­

tally observed sign of the jet handedness correlation can be naturally understood if the jet 

fragmentation occurs in the background of vacuum gluon field that is (almost) homoge­

neous within some characteristic region. The spin-field intera~tion plays here the leading,_ 

qualitatively important, role. 

The asymptotic behaviour of the Feynman diagrams in the limit of large momentum 
' ' ' 

transfer is an additional point where the homogeneous vacuum field could be seen as a 

relevant effect. We will pay more attenti~n to this in the next section, where the charge 
j ~ ' 

form. factor of pion is considered. However, just for,comparison, it is advantageous to 

calculate the ~symptotic form of the transition form factor. 

A b~haviour of the triangle diagram for the transition form factor in the limit Q2 » A2 

can be easily estimated. Equation (36) can be rewritten in the form 

1 I 

F-y,(Q2/A2
) =*f .... J dtds 1ds 2ds3 <P(Q2s2/A2 ,M,JA,mu/A;t,st,s3) 

0 0 

14 
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. [' Q2 ] xexp -.\ 2 :p(s.l). 

:p( -'t. ·'2· ·':1· I) = ·'2( -'3 + ui( I + ·'I-'3) )/21'\'( SJ .. -'2, ·'3· 1). 

which just uuderlines that the integrand <P depends on Q2 ~nd -'~in the combinatibn Q2s 2. 

wlwr<' the variable ., 2 corresponds to the quark propagator situated in Fig. 2 between two 

elect romagnd.ic vertices. ller<> we· have res~ored the din1cnsional notation for I he masses 

and mommtum Q. Function \ is given in Eq. (:l6). For any fixed values of t. .s 1 .. ,:1• 

the function cp is increasing in .,2 and gets the lowest value at the _point s 2 = 0. This 

COIT<'sponds to t.lw ultraviolet regim<' in the space of integration variables. that is usual 

for larg<' mouu·ntum asyrnptotic-s [2]. An iutegral over .,2 can be e\·aluatc·d by tlw Laplace 

m<'1 hod and, for Q2 » .\ 2 , W<' arrive· at rPlatJou 

Q2 /·~r.(Q 2 j1V) = CA + O(A 2/q2
) ~ 0.2Gev + 0(,\ 2/q2). 

l 1 'X: ' 

C = Tr, J ... J dtd.-1 d.-3 J d.,2<P(s2, .\/,f,\. m,JA: I. -'1· ·'J) 
0 0 () 

X exp(-,,2(·':1 + vi(J + St·':I))/21'X(·'I·Q,.-3,1)). 

This result has to be compared wi_th the Brodsky-Lq>age limit [1] 

Q2 /·~,(Q 2 )--> 2F, = .l86Ge,·. 

We see that the asymptotic regime in the .form factor is realized iu tlw usual way cousist cut 

with the analysis within factori;r,ation hypothesis and QCD sum rule approaches [6]. 

4 The pion charge form factor 

According to the effective act. ion (20), the one-loop amplitudP fi'il· tl;e processes r.±1· .--> ;:-± 

is described by the triaitgle and bubble diagrams showtt in Figs. :laan;l :!b mn:cspondiugly. 

It has t.he following struct.ure 

A''(kt, k2, q) "== o<4l(kt - k2 + ~) [(kt + k2)'' 1•; (kf, k;. q2) + q1, 1·2(k{. ~;;.' r?l] . (·10) 

where kt and k2 are the pion momenta and q is a momentum of \"irt ual photon ,-. 

As is known, within the minimal St;bstitution sclwnw of int roduct.ion or ~-!eel ro~nagnet ir 

int.crad.ions the vertex A'' given by a Slllll of triangle and bubble diagrams satisfip~, I J!'' .. 
Ward-Takahashi identity [12, l:l]. 

The pimi charge form fad.or F,((J2 ) is ddined by t.h'e relati(m 

F,(Q2) = F,:':-.(q2) + F:(q2). 

Ff' = F1~( -111;, -M;, q2
), F: = Ft( -M;,. -:\1;,. CJ2

). 
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The details of calculation of contributions of triangle Ff( Q2) and bubble F;( Q2) diagrams 

to the form factor can be found in [18] . The result expressed in the form of the proper 
time integrals reads: 

F;'(Q2) h2 /

1 

/

1 

[(]-s 1 )(1-s2 )(1-s-1 )]"'~/4v -"2-Trv ... dt1dt2d.s1ds2ds3 -- -- --·-· 
4r. 1 +-~I 1 + s2 I +-'a 

0 0 .. 

x [Q
2

<P 1 (M;, Q2: s, t) + m~<P2(AJ;, Q2; .~, t) + M;<P:l(.J\!1;, Q2; .s, t) 

+<l>4(M;,Q2;.s,t)j cxp [M;¢>(s,t)- Q\,(s,t)], (41) 

·' 
¢> = (2s1s2 + 2s1s3 + v(t1 + t2)(s1 + s2 + .s3 + sl.s2s3))/4vx, 

•. ' 2 
X= 2v(t1 + t2)(1 + s1s2 + s1.s3 + s2s3) + (1 + 4v t1t2)(s1 + s2 + s3 + s1s2s3 ), 

:p = (s2s3 + vt1s2(1 + s1s3) + vt2s3(1 + s1s2) + v2t1t2(1 + s1s2 + s1s:1 + s2s3)]j2vx, 

for triangle diagram, and 

0 2 h; !I /
1 [(1- s'1 ) (1- s 2 )]m~/4v F,(Q ) = -

2 
Trv ... dt1dt2ds 1ds2df3 -- --

4r. · 1 + SJ' 1 + 82 
0 0 

x [ (1 - .si~l1 - sD <P~( M;, Q2; (3, s, t) + <P~(M;, Q2; (3, .s, t)] 

X exp [ M;¢>0 (.s, t)- Q\,0 ((3, s, t)j . 

t/>
0 

= [2s1s2 + v(ti + t2)(.s1 + .s2)]/4vxo, 
o . v~f3 . . 

'P = -
2

- (.si + vt1(1 + s1s2) + vt2(1- (3)[1 + s1s2 + 2vt1(s1 + s2)]], vxo 

X
0 

= 2v(ti + t2)(1 + s1s2) + (1 + 4v2tit2)(si + s2), (42) 

for bubble diagram. We have used the shorthand dimensionless notation for momentum 

Q and .masses. Functions <I>; and <Pf are written in (18]. 

F~~ the parameter values given in Table 1 the charge form factor defined by Eqs. (41) 

and ( 42) is plotted in Fig. 5 by the solid line. The electromagnetic radius takes the value: 

( 
2 F'(O) 

r,.) = -6·····"·-F,..(O)' r,. = .524 fm. 

One sees that agreement with experime~tal data for the form factor and radius r~xp = 
.6!56 fm is' quite satisfactory .. · . 

An improvement of the radius and form factor at small Q2 can come from the diagram 

with intennediate p·meson .. It is known [12·, 14] that its contribution to F,(Q2) can be 

important in the region Q2 < 5Gev2
. An estimation of the diagram with p-meson within 
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the model under consideration also indicates a diminishing of.theform factor, .whichis 
maximal (~bout6%)in~h~ region o(Q2 ~ 2Gev:i. .. . ' . . , .· ..... 

' • > ,:; ''< ·I< '' ';!' ,, 

Numerically the contribution of the bubble diagrams is yery small. It is maximal at 

Q2 ~ 2Gev2 and is of order 10-:i. Th~s ~ithin the modelund~~ c~nside~ation the t~i~ngle 
•', ' ., . ' ·''• . ,.· ;· . 

diagram gives the main contribution to the f~rm factor for ,the values of Q2sho~n in 
. . -., L . , ' - ,•,:, ~ < •• , ••• 

Fig. 5. One sees that the calculated form factor (the solid line) smoothly approaches 

the experimental fit (dashed line) at large Q2. · This behaviour seem~. unexpected. As is 

known from the studies, based on the effective mcs~n-quark quantum field models [12, 
I \_,,_, ' 

13, 14, 8], the triangle diagram should decay stronger than 1/Q2 - the asymptotics of the 

experimental fit. In our case, a naive estimation based. on the ultraviolet behaviour of the 

quark propagator (27) and vertex (ll) giv~s (Q2)-2. How~vc~, the ho~og6ncous vacuum 

ghwn field changes the asymptotics of the triangle diagram 'cardinally. 

To demonstrate this let us consider thcfunc'tion Ff in the limit Q2 ~ A2. It is 
convcnicntto'rcwritc Eq. (41) as . . ..... ,., 

Ff'(Q2) 
I I 2 I 

h2 J J [(1 )(1. )]m.4v -"2-Trv ... dt1dt2ds1ds2ds3 :~ -:-' 
83 

4r. ·1 + s 2 1 + s 3 
Q 0 • 

to. 2 2 2 . { . Q
2 

. . 2 ; '} i. x<P (Q ,M,..,mu;s;,t;)cxp --D(Q ;s,t) , . 
. , 2v .. ·,· 

(43) 

<PL; cxp ( -Q2'1/J) [Q2<I>t(M;, Q2; s, t) + m~<P2(M;,Q2 ; s, t). 

+M;<P3(M;, Q2
; s', t) + <P4(M;, Q2

; s, t)j . 

Function n has. the form 

m~ 1 + s 1 1 - St' m~ 1 +.s1 n = 2v(cp- '1/J) + -Q2ln-- =A A +
2

Q2 ln -. -, (44) 
2 1 - St 1 + SJ 2 1 - SJ 

where AI and A2 arc functions of tli t2, s2, and SJ and do not 'depend 'on SJ. Function''~ 
is given in Eq. (41), and 

'ljJ = [s1s2s3 + vt1s2(s1 + s3) + vt2s3(s1:+ s2) + v2t1t2(st + si + s3+ sts2s3)]/2vx ::: · 

comes from the hyperbolic functio~s ~hichhavc appeared in the integrand due to aver­

aging of the quark loop over dircctl~ns or' the vacuum field. For details we refer to (18]. 

We simply joined the exponentially increasing part ofthc~e h:Yi>c~bolicfunctioris 'with 

the exponent in Eq. (41). It should be stressed that the origin of such an exponen­

tially increasing with Q2 -+ oo terms in the integrand is the prcscn~c of phase factor 

cxp(ix,.B,.vYv) in the quark propagator (27) and covariant derivatives c,'V =,8 ~ iB in the 
' ' ' • ', 1 \ ' , • ·.' ·, ;. '• '' '> ' :} : '· ' •' • ~-~ \ , \ 

vertices (ll). From the physical point of view, this simply rricans that in the presence of 
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~xternal field the t~anslation invariance holds for the gauge invariant quantities but not 

for the vertices and propagators separat~ly.-'A-s is ~tressed i~ [18] , this is the reason why 

the energy-momentum is not conserved in the separate vertices; but the conservation law 

i~ still ~alid for a whole diagr~m, if it is gauge i~variant. 
One notices that the function n has a minimum at St = sj: 

an I . m~ (A A) .,.- _ . = 0, st = 1 -
2
Q2 t + 2 , 

USJ S}-S1 

{)2f! 2Q2 .· 
<>21 = 2(A . A )2 > 0, 
USt .,=sj mu t + 2 .) 

A · A _ (1 + s2)(1 + s3)(1 + 2vtt)(1 + 2vt2) 
t + 2

- s2s3 + Vlts2(1- s3) + vt2s3(1- s2) + v2ltl2(1 - s2)(1- s3)' 

Vtt,l2,s2 ,s3,Q2 s~E[0,1], lim s~=1, (45) 
Q2-oo 

~hich allows to integrate over variable St using the saddle-point approximation. The 

result is 

t t -

F;'(Q2
) = Trv J ... Jdttdi2ds2ds3~6(Q2,M;,m~;s~,s2,s3,tt,t2 ) 

0 0 

( 
m~ )m~/4" y'21rvm~(At + A2)2 { m~ (

1 
I At+ A2)} x - exp -- - n . 

2Q2 Q2 4v 2 

Since functions ~i contained in ~;c, (see Eq. (41) ~nd [18]) have the following asymptotic 

form 

~2 exp ( -Q
21/;) l.,=•i "' 1/Q

2
(1 - s~2 ) = 2/m~(At + A2) = const, 

~t,3exp (-Q
2
1/;)t=•i rv 1/Q

2
, ~4exp (-Q

21/;) l.,=•i "'const, 

hence ~~ does not depend o? Q2 in the leading order 

lim ~6(Q2 , M;, m~; s;, s2, s3, t~, t2) = ~~(M;, m~; s2, s3, t~, t2) + 0(1/Q2). 
Q2-+oo • 

Finally, the asymptotic formula for the triangle diagram reads 

Ft:.(Q2/A2) = Tr ct:.(M;/A2,m~/A2) 
" 

11 (Q2/A2)t+m"t./4vA2 ' 

~here factor C6 is independent of Ql,_ 

Cb. = h2 . Vv (mu) l+m~/2vA• e-m!/4vA• 
.. "$1r 2A . 

t t 

J jd. d d ·a · · ( 2/ 2. 2/A2 · )(' )I+m•/4~A· X ·:·· . lt t2 S2 S3~as M" A , mu ; s2, s3, lt,,i2 At + A2 • .. 
0 0 
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(46) 

Ilerf' we have returned to the dirnensionfnl notation for the masses and momentum Q. 
For thf' parameter values from Table I ~ve obtain th~~ following result - " 

2.96 
f~(Q2/A2)= (Q2fA2)'-t4~s· (47) 

This asymptotic formula fits well the solidcur~e in Fig. 5 for Q2 > 5Gev2.: 

Tints the main effect of the vacuum Held under consideration in 'the charge-form factor 

is an increasing of the contribution of triangle diagram to the form factor at ~~~-g~ ,92 • As 

has he<'n cxplairwd, this is clearly due to I hf' presence oft he background field botl;. in t hf' 

quark propagators and nonlocal meson-quark vertices, which causes the specific interplay 

of I ranslation and color gauge invariance in the quark loops:· A comparison with I he large 

Q
2 

behaviour of the r.{/ triangle diagrain. which is usuai1/Q2 (see the p'r<'vious sect' ion). 

indicates that a number of nonlocal vertices in a loop. is of crucial imliort a nee. 

The contribution of bubble graph (see Fig. :l) to asymptotic behaviour is easy to dPriw 
if to rewrite Eq. (42) in the form 

I I 

1•';( Q
2

) = Tr,. J ... j dt1 dl2d-'rd.~ 2 d{3 lf! 0
( Q 2 ti, M;. m~; <~;.I;) <'XJl { -(J2 .p0 (3. -';./ i)} . 

0 0 

which underlines that. the preexponcntial factor lf! 0 depends on Q 2 in thf' combination 

Q
2 
{3, as is seen from functions IJ!f ( st;e Eq. ( 42) and [18]). lh·re ii is a proper 1 imP 

corresponding .to. the vertex operator 1'1, given by Eq., (25). _The smallest value of tlw 

funct.ion <p
0 corresponds to the point f3 = 0 for any it, / 2 , .~ 1 , and -'2: 

<p
0 (/3, l1, l2, .~I, s2) /3<{; 0

({i, l1, l2, -~I, ·'2), 
iJ<pO I 
(){3 /3=0 

<{;
0
(0, l_r. t2, .~~, ·'2) 

vt2 · [ . 2 . J 
-- -'t + v(lt + t2)(l + ·'r·'2) + 2t• /1/2(.-r + -'2) > 0. 2vxo 

Therefore the leading term takes the fr>rm 

o22 o2222 1 A
2 (( \2)2) F"(Q /A)= C (M,./~ ,_rnu/A )Q2 + 0 q

2 
,' 

I I "" 

co = Tr,. J ... ./ dl rdl 2d.-l d.'2 J djilf!o(ii, ,\t;/ ;\ 2 .m~j.V; /1./2, ·'I· ·'2) 

0 0 0 -

·x exp(-tJ<j;0 (0,tl,/2,-'t,·'2)] ~ 0.:!.' i, 

We conclude that. the absolute asympt.ot.i<~~ of the charg<' form factor is dPiiru·d by I Jr,. 

bubble diagram. ThP·Iirnit Q2 » A2 of this diagram is d1w to the ultra\·iolet reginw 
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(/1---> O) i;, the; vertex' I',,. The; vc~rtC'x is clC'tcrmiiiC>d dircdly by' the gluon propagator,' and. 

tht' 1/Q2 dC'pendc~JICC' appe<irs as a manifc·~iation ~f the ultra\·iolet behavior of the gluon 

propagator. This is in agrPement with the mechanism of hard rcscattering and quark 

counting rules [Iii]. :'liamely, the asymptotic behaviour of the form factor is d~~termincd 

by the one-glu~n exchange between quarks inside a pion. However. in the experimentally 

obserwd region the triangle diagram dominates in the form factor. 
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Eyp)laHOB 51.B., Et\JIIMOB r.B:, He)leJihKO C.H. 
CaMo)lyaJibHOe O)lHOpO)lHoe rJIIOOHHoe none 
II 3JieKTpoMarniiTHIDI CTPYKTypa niioHa 

B paMKax MO)leJIII IIH)lyuiipoBaHHbiX HeJIOK< 
HOH Ha npe)lUOJIO)I(eHJJH 0 TOM, 'ITO Henepryp6a 

. eTCjj O)lHOpO)lHbiM (aHTII)CaMO)lyaiJbHbiM r; 

nepexo)lHblH cpopMcpaKTop F "fft (Q2
), WIIpiiHa J: 

. 2 
cpopMcpaKTop niiOHa F rc (Q ). IloKa3aHo, 'ITO s: 

KYJMHbiM rJIIOOHHblM llOJieM, OTBeTCTBeHHOe 3a 
II cneKTP JierKIIX Me30HOB, IIfpaeT TaK)I(e peu 
• 2 
cpopMcpaKTopa F yrc (Q ) II nmpiiHbl pacna)la r 
TII'IeCKOe llOBe)leHIIe KBapKOBblX neTeJib B npHC~ 

)lAA 60JibWHX Q2
. 

Pa6om BblllOJIHeHa B Jla6opampiiH reopeT 
6osa 01-UHI. 

npenpHHT Q(The)lHHCIIHOfO HHCTHryTa ll!lCpHb 

Burdanov Ja.V., Efimov G.V., Nedelko S.N. · 
Self-Dual Homogeneous Gluon Field 
and Electromagnetic Structure of Pion 

The transition form factor F "fft (Q2), decay 

factor of pion F rc (Q2) are calculated within the 

currents based on the a'>sumption that t~e nor 
characterized by a homogeneous (anti-)self-d 
the interaction of the quark spin with the vact 
for the chiral symmetry breaking and the spect 

the decisive role in forming the form factor F yr. 

An a'>ymptotic behavior of quark loops in the 

field for large Q2 is discussed. 

The investigation has' been performed 
of Theoretical Physics, JINR. 
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