


1 Introduction
Pion electromagnetic properties were intensively studied within:different theoretical ap-: v
proaches, such as perturbative QCD [1}, the factorization theorems and QCD sum rules [2]-
[7], approaches based on the Bethe-Salpeter equation [8]-[10], the instanton liquid model
[11], relativistic quark models {12, 13], nonlocal quark model with confinement {14],-and”
some others.. The reason for this permanent interest is quite understandable: a variety of
general features of strong interactions clearly manifest themselves in pion physics. First
of all this relates to the mechanisms of chiral symmetry breaking in QCD and general
behaviour, of electromagnetic form factors of hadrons. The charged form factor played the
particularly important role for explanation of the quark counting rules [15]-and factoriza-
tion hypothesis: within:QCD (for review see, e.g..{2]).” The two-photon: decay of neutral
pion and the transition form factor relates to the triangle anomaly and is-important for
testing the models of QCD vacuum. (1, 6}. v

The present paper is devoted to- description -of electromagnetic-properties of pions
within the model of induced nonlocal quark currents developed in“our r)revious pa-
pers (16, 17]. Namely, we calculate the charge and transition form factors and two-photon
decay constant of pion. The model is based on'the assumptlon that the (anti-)self- dual
homogeneous ﬁeld [19 20, 21 22] '
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can be con51dered as a dommatmg gluon conﬁguratlon in the QCD vacuum. . In, other
words 1t. is a.ssumed that the effective potential for QCD has a minimum at nonzero
strength of the background field [20 23]. . \ , ,

Vacuum field (1) leads to spontaneous, v1olatlon of a range of symmetrles such as CP v
colour and O(3). A satlsfactory restoration of these symmetries:at the hadromc scale
assumes an ex1st.ence of domain structures in the vacuum. In a given ¢ domaln ‘the vacuum
field has a specific direction and is either self-dual or anti: self dual but thisis uncorrelated.
with the specific realization of Eq.(1) in another domain. The idea of domains in the QCD
‘vacuum was discussed in application to various homogeneous fields [19,-24,:25,-26]: In.
complete theory the domain walls should.be describable by some approprlate classical
solitonic solutions.of equations of motion. .In the effectlve model,under consideration this-
idee is realized as a prescription that different quark loops (namely, those separated by the
meson lines) in a diagram ,mrlst be averaged over.different configurations of the vacuum

field (1) independently of each other.
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A consideration of both the quark-gluon dynamics’in the external field (1) and its
manifestations in meson properties indicates that this field provides for 4. picture of con-
finement and chiral symmetry breaking which is unexpected but looks quite self—consmt(‘nl
and agrees with meson phenomenology.

Being taken into account nonperturbatively, the vacuum field under consideration
changes analytical properties of the quark and gluon propagators drastically and ‘makes
QCD to be a nonlocal quantum field theory. ‘The propagators of color charged ficlds
in the presence of field (1) are entire analytical functions in the complex momentum
plane [14, 16, 19, 23] which means an absence of quarks and gluons in the observable
spectrum of hadrons. The propagators are modified essentially in the infrared region and
show the usual behaviour-at short distances. - Consideration of the Wilson loop in the
presence of -this field shows that the Wilson criterion is satisfied [27) with an oscillator
potential between heavy quarks. The potential arises effectively due.to an interaction of
the charges with vacuum field but not by virtue of gluon'exchange.

Due to the (anti-)self-duality and homogeneity of the field (1) the operator 7.(0,~18,)
has an infinite set of zero eigenmodes whose contribution to the quark propagator leads
to the.relation between densities of quark and gluon condensates: -
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which is valid to all loop orders in QCD. Equation (2) indicates a non-Goldstone mecha-
‘nism of chiral SUL(NF) x SUr(Nr) symmetry breaking (for details see [23]). This way of
violation of chiral symmetry:is unusual but, as it will be discussed further below, is not
in conflict with the observable meson properties [17].

Manifestations of this quark-gluon dynamics in the spectrum of collective mesonic
excitations were studied in [16, 17] within the model of induced nonlocal quark currents.
Technically, the model is based on the bosonization of one-gluon exchange interaction of
quark currents in the presence of the homogeneous (anti-)self-dual vacuum gluon field (1).

The vacuum field determines basic properties of meson spectrum in the way that is
completely consistent with experimental data.- Namely, due to the zero modes in the
quark propagator the masses of light pseudoscalar and 'vector mesons are strongly spllt

scalar and axial mesons as'a"simple qq systems in the ground state are absent in the

spectrum- (there are no scalar and axial analogies of pions and p-mesons). Zero modes

affect drastically the pion weak decay and determine the correct value of constant fx- An
entireness of quark and gluon propagators results in the Regge character of the spectrum
of orbital ‘and radial excitations of light mesons..” Moreover, scalar and axial ‘mesons

. with appropriate masses (e.g., a; meson) -appear in the hyper-fine structure of orbital

excitations of ‘vector mesons. The mass of heavy'quarkonium:tends to be equal to sum of
the masses of quarks, the heavy-light meson mass approacheé a'mass of a heavy quark, and
the weak decay constantfor pseudoscalar: heavy-light mesons has-asymptotic:behaviour
1/,/fq, whicli is consistent with the Isgur-Wise symmetry. Quantitatively, the masses
and. decay constants of mesons [rom all different regions of the: spectrum are described
within ten percent inaccuracy. These dlfferenl phenomena are. displayed with the m1mma|
sel of parameters: gauge coupling constant strength of the vacuum field- and the quark
masses. : ' : : el et B A R
This paper proceeds a systematic analysis of possible manifestations of the vacuum
field-(1) in.meson propertics.  We intend to give a kind of:unified. description: of ‘a:wide
class of static (masses, decay w1dlhs) and:dynamical (form factors)- characteristics: of
different mesons with the set of parameters, that is minimal for QCD. Using the values
ol-parameters fitted from the meson ';p('ctrum we got the Llectl()magnetlc form factors of

pions to within 15% inaccuracy. - : : . . N
Our niain goal is to study t]lo role of quark zero modes, mducod by an mt(‘ractlon of
quark spin with the vacnum field)in the two-photon decay:and transition formfactor of
7% The main result is an observation that.the vacuum. ficld (1) can be. responsible. for
both of them. Via zero modes the vacuum field affects in a crucial Inanner the f()]m fa( t()r
and decay constant. In particular, we show that the spin-field interaction gener. alos tll(‘
triangle anomaly in the pion docay Lo two pllotom and leads to quantltatl\’olv satisfactory
description of the transition form factor and decay “width, noud

"The main effect of the vacuum field under consideration in the charge form factor is an
increasing of the contribution of triangle diagram to thé form Y’fac't‘or‘ét."‘i‘n‘()(lorat.olv large
transfer momentum Q. T}m effect is due to lh(‘ presence of the l)acl\ground field both in
the quark propagators and uoulocal meson- qudrk vertices, which causes a specific interplay
of translation d.l]d color gange mvarlancc in the quark. loops. Namely. the translation
z — x + a causes a shift in the field Bu,,zy — Bz, + B,,,,a,,. wln(h can bo L()mp(‘nsat(‘(l

by an appropriate gauge ‘transformation. ‘Therefore, onlv gauge lll\d,rld,l vllllll(‘s lmn

6ut’to be translation invariant. This results in noncom(-r\almn of a1 1(‘rg\' monwnlmn in
the scparate vertlces of Feynman diagrams, but the conser vation is still lwld for'a \\Ilolv
diagram if it is gauge invariant. This peculiarity (hang(-s an_asymptotic behaviour of
some Feynman diagrams at large nmmcnlmn transfer. "This is particularly re l(-\.mt to llw
triangle diagram for the charge form factor. Usnally the asymptotic 1)(‘|ld,\'|()lll ~ (I/Q

of this diagram is.a dircet consequence of the behaviour of a meson-qnark vertex and
quark propagator at short distances [b] The presence of the vac num field changes the
I

asymptotics cardinally, and it l)(r(.om(‘s ~ 1/(Q*)} \vh(‘l(‘ 1y, is the quark mass .uul



" B is the strength of the.vacuum field. This:improves the form factor at intermediate and
‘moderately large (2. However, the absolute -asymptotics of the form factor within the
.model under consideration comes from the so-called bubble -diagramns. These diagrams
can be treated:as describing the: hard rescatlering of quarks inside a pion via virtual
gluon exchange. This mechanism is in agreement with the general analysis within quark
counting rules and perturbative QCD [2, 15].
;- In the next.section we review shortly the model and introduce the electromagnetic
interactions into its structure. Section 11 is devoted to calculation of transition form
factor, where we analyze.the role of quark zero modes. Charged form factor of pion is
~ calculated and the manifestations of the vacuum field in asymptotics of Feynman diagrams
‘at-large- momentum transfer is discussed in sect. IV. The details of calculations can be

found in [18]

2 The Model of Induced Nonlocal Quark Currents

2.1 Basm Appr0x1mat10ns and Notatlon

The functional integral for hucll(lcan QCD in the presence.of th( vacuum field (1) can be
.wntten in the form [23] i '
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G =G, V=75, Vi=0,-
Tl he vacuum field B, (gB B)is characterlzed by angle { and two sphorlcal angles (cp, )
‘doﬁmng 1hc directions in_the color and Euclidean spaces respectively. The measure of

‘rntrcgratl()rl dog is defined as

. . R SN 2T 2 . :
1
: dog = —/d05in0/d<p/d{,. : 4
= [ oz [ o] B
4“}1( rre’ the s,ymbol >, denotes averaging over the self- and anti-self- ‘dual conﬁguratlons

The fanctional space G'contains the quantum gauge fields G% vamshmg at the space-

tine infinity. The fermionic functional integral spans the Grassmann’ algebra F of square

integrable quark fields. An anti-hermitean representation for Euclidean 7—matrices is
adopted. : T . : '
The functlonal mtegral (3) contalns the 1ntrmsxc dlmensmnful qua.ntlty B, Wthh is a.
gauge ‘and renormalization invariant strength of the vacuum’ ﬁeld ‘which by assumptlon :
minimizés the QCD effective potential (e.g., see [20”19 21J). Th1s ﬁeld strength (or
gluon condensate) provrdes the natural reference scale for runmng qua.rk masses m, (/,t) '
and gauge couphng constant a,(p)- Therefore the strength of the va.cuum ‘field B, ‘the”
quark masses and coupling constant at the scale u =B ca can be con51dered as'the phys1cal‘
(intrinsic) parameters of QCD in representation (3). The strength ‘B can be related to thev'
fundamental scale Aqcp [20, 23] 'Values of the pa.ra.meters have to be extra.cted from the
analysis of hadron spectrum. To be able to do this one needs to rewrite representa.tlon (3)
in terms of composite hadron fields, describing collective colorless exc1tat10ns in the QCD
vacuum. For meson fields this program has been rea.llzed in papers [16,:17], where the ..
model of bosonization, referred below as the model of induced nonlocal quark currents,
has been developed, and the masses and weak decay constants of mesons from the different
regions of meson spectrum have been calculated. The va.lues of para.meters are summa.rlzed
in Table 1. ‘ ) 4
A derivation of the model goes through the followmg steps Integratrng pver\ gluon

fields G one can rewr1te Eq. (3) in the fprrn

Y
P A R

Z=N|[ daB/HDq,Dq,
Tp F .

exp{/d4zq,(z) (zV m,) q,(:z: +ZL }. \ | (5)

Y n=2

== / dy. / d* ynJui(yl Ju..(yn GZi Z:(yl, ,yn | B),.

3w = Zq;(z 7ut q;(r) LR o

L U N T St o
The functions Gj}i» are the exact n-point gluon Green s functions i in the external ﬁeld i
B:. ' O ‘ E
The model of induced nonloca] quark currents is ba.sed on the assumptlon tha.t the four-
quark mteractlon Lyin Eq (5) plays the maln role m the forma.tlon of mesonic qq collective
modes, but the rest of terms L (n > 2) can be omitted in the first a.pproxlma.tlon Thus,

we consxder Eq. (5) with the quark-quark interaction truncated up to the term L,

Zp

Z=N dop /H Dq,Dq, e}(p’:{"/"(14:1,‘@](:1:)~ (1@ —m,) q,(:z:) + Lz}
F

i



-7 // d4zd4yh(z) ':(zy|B)h() o

Gluon two p01nt functlon G“"( z,y | B) is approxrmated by the gluon propagator in the

external field (1), so that the vacuum ﬁeld is taken into account exactly but the radiative,

correctlons are neglected in the model. The subsequent steps are stralghtforward and
consrst in a standard Flertz transformatlon decomposmon of L; into an infinite series of
current current 1nteract10n terms ‘and bosonization of the eﬂ'ectlve four-quark interactions.

For detalls we refer to papers [16 17]

The startlng point for 1ncorporatmg the electromagnetic interactions into the model

und‘er, conslderatlon is the repre‘sentatlon [17]
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where ' :
a=0,1,.,N;, J=S,PV,A £=0,1,.., r}=0,1,...,y
sp=ss=0, sy=ss=1, ‘

2 2 (f + 1)
Goen = C"g “2nl(e 4 n)l

The currents 87/ are nonlocal, carry a complete set of quantum numbers (isospin «,
spin- par1ty in the ground state J, orbital £ and total angular j momenta and a radial

number n) and has the follow1ng form

B1.ept2 ’
M = g for J = V,‘A,' £=0 (j — 1),
(l{—ll)zpﬂl-‘l “He [611/.‘1\7:}’,2’; l-‘l] ’ ] ={ — 1

Ilenl "7:;”';“ ‘ fOI' J = S, P, f 2 0 (] = f),

IlenJ — bJtn’ bJen . : __

LIy l+1 zt— ‘70 bbb 1 it e uz ju-,a S TS R 1Y) » ] = f, (10)
NN L bJien bJen

I 1 Pos..ne [‘7 e t+1 aﬂxjp,pm #1] y J=Lt+1

Symbol Paps...u, denotes a cyclic permutation of the indices (ap;...pz¢). The currents Jbr
in Eq.'(10) read :

I wl@) = 4@ V@) ar(a),

s o e2 -
. [Vb.lln (z)]”, - beflri' Fo. Vf/f\' (-7‘.)‘ T(‘?.' . (lfo' (z))s ,
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Fo(ds)y=s" / dit*ret, (11)
0

Vu'—éfv ~€pV, V=3 ~iB, = 9 +iB, & = m,/(m,+m,)
Ts=1, Tp=iny, [y =9% Ti=%"

6t

Cs=Cp=1/9, Cv=Ca=1/18 .  (9)

The polynomials T,{f)u,(:r,) are the irreducible tcnsors;of O(4). The doubled brackets in
Lq. (11) mean that the covariant derivatives commule inside these brackets. For the sake
of simplicity th(‘ scale A2= 3B is introduced and a-particular direction n® = §28.0of the

vacuum field in the. color space is fixed, so that:.
BBy = —v*A%,,, v =diag(1/3,1/3,2/3). . . . (12)-

Further details concerning above representations can be found in papers [16. 17].
Form-factors Fy¢(s) appeared as a result’ of decomposition of bilocal quark currents
over the orthogonal complete set of polynomials for which gluon propagator plays the
role of a weight function. They are entire analytical functions in the (‘ompl(‘x s-plane.
which is a'mdnif( station of the gluon confinement: 'Now an mt(‘rd(non b(l\\(‘( 0 quarks is

[

expressed in terms of the nonlocal’ quark (‘urr( nts. which are elementa .—u'\ currents of tll(
system in the sense of classification over quanl um numbers. i :
2.2 Electromagnetic Interactions o
Interaction of quarks with clectromagnetic field A, can be introduced into répresentation
(7) with Lz written in the f()rm of Eq. (b) by means of the minimal subslltullon (see

also [12]) v : oo : T

V-V —iesA(z), . T
V-—-»V +ze;A(.r) ' ' 7 (13)
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both in the free quark Lagranglan and V(’lil((‘s V,.J(,,J ll( re (’f = ¢Qy, and Q.is the charge

matrix.’ y ’ i oy

luquatlon (7 takes the form (N = {aJl’n]})

i

ZIA] = /dUB/[)quCX}){/d .rq;(a:)[l'y,, V,, ,——lnf-i-(f'),, /1“ )]q;( r)
+22A2GN/d* (e )= T(& | OSe [OF ). ()
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One can check that under the gaugc transformation

u’,a(z)

q!(z)7

—iega(r)
.

: QI(I) —’ ’1] z) = e
qf(z) = Gp(£)=qs(x)e
Au(z) = Al(z) = AL(z) + Dua(z) -7

the currents Ty are transformed with the electric charge (e; — €5) corresponding to a

meson composed of ¢5 and q,:

In(z | A) = Iy(z | A) = e“”'“”"’"’IM(I | A),
N(I | 4) — IN(I | A) Ii(z | A)e "'(”“"”"(’) o (18)

The current current 1nteractlon IN( )IA/(z) is invariant under U( ) transformations (17).
By means of the standard bosonization procedure [16, 17] applied to Eq. (14) the

functlonal integral Z[A] can be represented in terms of the composite meson fields ®y

Z[A] = N/ E[de exp {5 //(14;d4y¢M(z) [(0- M})6(z~y),

_1,»:" e i hi/Hf,(z- y)] (I)A/(y) + Iinl [(I) l A]} , X Co . . (19)

T = — / d'zhydp(z) [Ca(z | A) - Ty(z | 0)]

1 .
\ ——/d411 /d"zgh/‘/h/‘ﬂq’/‘/‘(l‘])[l‘/\//\/l(l'],l'g I A)— 6A/A/IIIA/(11 —Ig)]yq)/\/l(l'g)
h
-3 = /d"z, /d zmthpMk Tk FM N (:1:1, Zm | A),
gl m=3 : . .

Ty idm = /doaTr{V/v,(xl | A)S(z1,z2 | A).. VM..(Im | A) (Im,xl A} (20)

At zero electromagnetic field the effective meson action in Eq. (19) coincides with the
action derived in [17]. Meson masses My -are calculated by'solving the equations

P : A? + G2 ATy (= M%) = 0, '

te

. where ﬁy( )is a dlagonal part of the Fourler transform of the two pomt functlon Tarwr
at'zero electromagnetlc field. '

The meson- quark coupllng constants are defined by the relatlons
b D

AR 1/H/V( )|,,2:‘_MN' ' ' (21)

7The integral over. directions of the field and the sum over self- and anti-self-dual con-

figurations has been transferred to the exponent in Eq. (19) and included into the vertices

I', Eq. (20). This assumes that the vacuum field conﬁguratlons in the different (sepa— ‘
rated by meson hnes) quark loops are considered as 1ndependent from each other. Such
a prescription should reflect effectively the domain structures in the vacuum.

To get various meson-photon amplltudes one has to decompose the vertex functlonals
Ia,..n,. into a series over the electromagnetic field A, as is shown schematically in Fig. 1.

This is achieved by a decomposition of the quark propagators, -
Si(eulA) = Syl . ' -
+ Ze"/d4zl.../d4anf‘(z,21)'“1A,,l(z1)...ry‘f"A{,,?(’z,.).‘S'f’(znA,‘y),(22)
n=1 , : ’ SR 3 .
and vertices o it '
Vi (z|A) V/v(z

+ / & / &z, ,&"L, ( zn)Am(zl) A (23)
n=1 . o

1l

A regular procedure for calculation of the vertices V( ) s described in [18] i
The lowest vertex for charged pion, the case of partlcular 1mportance for)further

calculations, comes from the current Jr+, Egs. (11) and (15),

A‘Z‘H - Ju)i%ﬁuu (DA£$)> (JE) d(IE)l’YsFou A(x) ( )
| Higse / d4y3(5)At(y)fu(z,y)u(z) fo@, o
TR NT ST

where

xexp {4;2 [v (@0 @) - q)q]} )

The first term in’ Eq. (24) is the nonlocal quark current in ‘the absence of field A but

the second -term describes an interaction of photon with a quark 1ns1de plOIl Wthh is

‘characterized by the form factor I",(:z:,y) [12].

The quark propagator in the homogeneous (antl )self-dual gluon’ ﬁeld Sf(:r,y) is a‘
solution to equation :
(i7Vu — my)Sf(z,y) = —6(z —'y), 7
Si(z,y) = e2I“B‘"’"“Hf(z =YD e e
.o\l
Hy(2) = (9 + mg) (~V* + m? = 0agBap)  8(2)- (26)



Fourier transform of the translation iryl;/a.r“ia'nt ﬁart H; reads [17, 23]

© m2

7 sf1—3s E/{T - . - o
Hs(p) = 20A2 /dse oA (1 T s) © [Pavre £ 1575%a faBP8
4 1+ s% i s
+my (P:i: + P; '7orfcxﬁ7ﬁ )] ) (27)
/\8
fu.u = ;\;B;w,

where Py = (I+45)/2 and the upper (lower) 31gn corresponds to (anti-)self-dual config-
uration. ;
Propagator (27) is an entire analytical function in the complex momentum plane,
- which is treated as quark confinement. The term G'Q,ﬁéag in Eq. (26) is particularly
important. It describes an interaction of a quark spin with the vacuum field and is
responsible for the quark zero modes. Contribution of zero modes to the propagator is
seen in Eq. (27) as a singilarity of the integrand at s = 1 which is integrable unless my = 0.
 Below we show that the spin-field interaction is of crucial importance for the transition
form factor of neutral pion.. The presence of the vacuum field in'the phase factor in quark
propagator and in cova.rlant derivatives in the vertices turns out to be important for the

charge form factor.

3- Decay 7 — vy and y*7° — v Transition Form
Factor

A vertex relevant to the interaction of neutral pion and two photons with momenta p, k1

and kz, correspondingly, has the follomng general structure
Ty (P kr, k) = i80(ky + ko — p)e* P KRS T (52, K2, ), (28)

where T (p?, k#,k2) is a scalar function. It should be remembered that we have started
- with the Euclidean formulation of QCD, and ki, k; and p are Euclidean momenta.
For v*7% — « transition the final photon 7 is on the mass shell k} = 0, whereas

=‘Q2' > 0 for the virtual photon 4. The transition form factor F,. (@) is then defined
as
F'nr(QZ) = T‘n’(_Mza szo)' (29)

The twe-photon decay coupling constant

= T, (—M?,0,0) ' (30)
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and the decay width

P —4) 2 T g (31)
correspoud to kinematics with on-shell pliotons and pions’ k¥'= k% =0 and p? = - V2.

As follows from the effective action in Eq. (20), the one Ioop approx1mal|0n of the
vertex (28) is described by the triangle dlagra.m shown in ‘Fig. 2. Other one loop dxagrams
with photon lines altdclw(l to the meson- qnark vertex are 1dent1cal|y oqual to zero due to
the parity conservation. ’ o

As has been mentioned above, the interaction of quark s:}‘)in\v\inl'l the }Alom(;;\;;(:neoim v
vacuum field generates an infinite number of zcro modes of Dirac operator and leads to
a nonzero quark condensate d(lmly, \vhldl mdlcat(s a brcakdown of chiral symmetry by
the vacuum gluon field [23].. A coutribution of zero'inodes to the polarization diagrains of
light mesons is respousible, for mass splitting between vector and pseudoscalar mnesons and,
smallness of pion mass [17].: The main goal of this section is to show that the zero modes
gencrate the triangle anomaly and play the decisive role .in the two-photon decay of =
and transition form factor F.,. ‘To demonstrate this qualitatively it sulh((s to (01151d(1
the triangle diagram: (Fig. 2) in the limit of. \anlslmlg quark-masses g = iy = 0

The quark propagator in the external (auti- )s(‘lf dual ficld (1):has lll(‘ f()llo\\mg stani
dard representation in terms of the matrix elemnents of ‘the projection op(mtms P. onto
the subspaces corresponding to different eigen numbers A, of Dirac operator.in the exter:
nal field [29, 23) G e

oo
Sz y) = Z Z’_Lr__l/l

m+1/\” i on
:n=0¢ . -

T

One can separate the contribntion of the zero eigemmnodes and; normal modes to the

propagator - Co
S(x, y)_.S(-z: 1/)+SO(:1: y) v o N
S'(z,y) —;-ZVI A( ,v) Py + A(z 1/) zV e+ ()(m) . (32)
V=0.~iB, V=9 +iB,
So(z,y) = Po(z, y)/m.

Here A(a,y) is the scalar massless: propagator n th(' bd(l\glmmd field (1), and Py =

{1 £95)/2. The projector onto the ze ro modé subspau |00k.s asto:

n?l3? . . L o ’ . [
P() = —7:2—— (L 1/)1;_—.1:;:, g ’ (-L‘)
. 0 L Lo
L= (1 X5} N = St o =y 0/
1



b = B;/B, B; = _ég,-,-kyjk, i k=123 ‘ ,

1 o, )
f(z.y) =exp {—-2-\/ n”}(:r -+ mzulf,“,y,,} s (34)
/mzpo( IPoz12) = Palzu).

The pro_]ector Polz,y) contains the proJoctron matrl(cs P (solf dual field) or Py (anti-sell-
dual field)and £_ (n > 0) or X, (n < 0). The matrix ¥4 (¥_} can be seen as the projector
onto the quark state with the spin oricntated along (agamst) the cliromomagnetic field

B;. Now consider the n-point quark loop ~ ~

TrI1(5’0(11,12)+S'($1,12))F2(90(12,13 +S(Iz,13 i (SO(IH,T1)+S(1" 11) (35)

’

k where Fk are some Dirac matrices. (,hrral structure of zero mode part Py, Eq.‘ (33), and
normal mode pvart §’, Eq. (32), suggests-that the loops with all vector vertices are regular
" in the massless limit (for details see [23]), while diagrams with one pseudoscalar and n—1
vector vertices are: singular and behaves as 1/m,. The second kind is just the case of
Fig. 2.:
Thus the triangle diagram for: the amplitude (28) is proportional to 1/m, as'm, — 0.
However, the amplitude contains also'the pion-quark-coupling constant k, defined by the
' ‘pion ’polarization function according to Liq: (21). The polarization function is simply a
..two-point quark loop of the form (35) with pscudoscalar vertices. In the massless limit
" it diverges as 1/m? and, hence, coupling constant h, o m,. Thus the massless limit of
the form factor, that is a product of coupling constant h, and the quark loop, is nonzero:
limm,—o Fyr # 0. This anomaly is determined completely by a contribution of quark zero
’ modes to triangle diagram and coupling constant. R
 Let us consider this important peculiarity in more details. Using the proper time
representation of the quark propagator (27) and meson- quark vertex (11), evaluating the
* trace of Dirac matrices, calculatmg the loop momentum lntegrals and averaging over
dlffcrent configurations of the vacuum field, we represent the form factor F,,(Q?) as an
integral over proper times t and s;, 5,, 83, corresponding to the vertex and propagators,

-respectively (see Fig. 2):

. m2 [4v
Tr, didsydspdss | (2250 (L2 (1 "‘”3)]
A2\/22. 1752523 1+s, 1+ s, 1+ s3

Q*(s,0)], (36)

o (QP) =

X

;s,t)exp [Mzd)(.s t) —

1ri

1=1,2,3
(s, t) = (25153 +vt(s1 + 53— s2(1 + s153)))/4vx,

. Table 1:,Parameters of the model (A4= 3B?).

my (MeV) mg (MeV) " m, (MeV) m, (MeV) m, (MeV)
198.3 198.3 413 - -1650 4840

A (MeV) g
319.5 - 9.96

o(s,t) = sa(s3 +vt(1+ s183))/20x, , ,

X = 20t(1 + 5155 + 5153 + s283) + (s1+ Sy+ s34+ $15253). e
Here and below we use the shorthand notation for dimensionless ratios:. Q2 = Q?/A2,
my = my/A, My = M,/A.
the diagonal matrix v written in Eq. (12). The details of calculation of F.,,',(Qz) and an

2,Q% s,1) can be found in [18] . :
The singularities (1 — s;)=1 of the integrand in Eq: (36) at's; — 1 appear from the‘

The symbol Tr, means summation over the elements of

explicit form of functions &;(M,

zero mode contribution to the quark propagator (see the second line in Eq. (27)).- These
singularities lead to the 1/m,-dependence of the integral in Eq (36) in the limit'm, <1

@)=ty ap

" Here / does not depend on m,. In the massless lrmrt pron polarrzatron functron H ( Mz)i

looks as [17]

116A%, [ [M2Y M2

~Aq2 kel 2 . bk o O T v
o) = gt oo {52} oo { e | 1),
hence the effective coupling constant h;,. in Eq. (37) behavés as: = -

h,,:l/ I W(=M2) ~ o (39).:

and Fy,(Q?) does not vanish as m, — 0 but approaches a constant vaIue The same ‘is

valid for decay width (31). : o V
Numerical results for the formfactor and decay width are represented in F ig- 4 and

Table 2. The model pararneters are given in Table 1. ‘ o C
1t should be remembered that we simply use the values of pararneters fixed from the

description of the meson spectrum [17]. The solid curve in Fig.'4 corresponds to Eq (36)

The radius for 7‘7r — transrtron defined as '
Pl

" Foyr (0)°

is equal to-.57 fm, that have to be cornpared with r7P = .65 & . 03 [31]..

Just to illustrate the crucral role of the quark Z€ero modes we show the form factor

<T

calculated with zero mode contribution eliminated from the quark propagator (the long

13:



Table 2: The two-photon decay constant g,y (Gev™') and decay
width T'(x® — 77) (ev); g5, I'* are the values calculated: without
taking into account the spin-field interaction :

gomy | Gy | 922 BU [ T [ T [T [31]
0.235 | 0.108 0.276 6.3 11.34 8.74

dashed line). Zero modes drastically affect also the two-photon decay constant g, dnd
decay width T'(x° — 77), as is seen from Table 2
Above consideration supports the. picture of chiral symmetry breaking due to the
fermion .zero modes induced by the homogeneous (anti-)self-dual vacuum gluon ‘field,
which has been developed in our previous papers [17] and [23]. We can conclude that
“within the model of induced nonlocal currents the experimental data for y*x° — 7y tran-
sition form factor and two photon decay constant can be explained by the same reason as

a smallness of pion mass, splitting of the masses of vector and pseudoscalar light mesons,

‘and weak decay constants of plOIlS and kaons A general physmal reason is an interaction

of a quark spin with the vacuum homogeneous gluon field. This spm -field interaction
appears to be a dominating effect in the above discussed phenomena.
It is appropriate to~ment‘ion,here, that, possibly, there is another, completely inde-

p‘endent of our considerations, manifestation of an interaction of the quark spin with a

long-range gluon field in the QCD vacuum.  As is repofted in paper [32] the experimen-:

tally observed sign of the jet handedness correlation can be naturally understood if the jet

fragmentation occurs in the background of vacuum gluon field that is (almost) homoge-

neous within some characteristic region. The spin-field interaction plays here the leading,

quahtatively important, role. RN

The asymptotic behaviour of the Feynman diagrams in the limit of large momentum
transfer is an additional point where the homogeneous vacuum field could be seen as a
relevant effect. We will pay more attention to this in the next section, where the charge
form factor of pion is considered. However, just for,comparison, it is advantageous to
calculate the asymptotlc form of the transition form factor. -

A behaviour of the triangle diagram for the transition form factor in the limit Q? > A?

can be easily estimated. Equation (36) can be rewritten in the form

w(Q /Az) / /dtdsld32d53¢(Q252/A2 M./A, mu/A,t,Sl,s,j)

14-

X exp [—-\—z\p(.s.l) .
P81, 82,83, 1) = s'2(s'», +vl(1 + *‘wx‘ )‘/‘,1_\,(51 su55.1).

which just underlines tllat the inte gldn(l $ depends on Q? an(l sy in th(‘ Conlbmat]on Q%s,.
where the variable s, corre sponds to the quark propagator situated in Fi ig. 2 between two
clectromagnetic vertices. Here we have roslored the dimensional notation for the masses
and momentum . Funciion x is given'in Eq. (36). For any fixed values of £..s;. 5.
the function ¢ is increasing in s; and gets the lowest value at the point s; = 0. This
corresponds to the ultraviolet regime in the space of integration variables. that is usual
for large momentum asymptotics [2]. An integral over s, can be evaluated l)\ the Ldpld((

method and, for Q? > A2, we arrive at relatjon

QM (QYA? )—(/\+()A/Q ~0’Gw+0(\ /Q

1 o
Cz'l‘r,,/ /dldsldsg/dsQ(I)(sz,M /A, mu/\ /. 57.83)
0 0 .

x exp [—s2(s3 + vl.(l + -."133))/37’," (1.0, 83:¢ )] .
This result has to be compared w1!h the Bmdsl\v‘lmpdgv hmlt [l]
Qz]' AQ% — = 166(-(‘\

We sec that the asymptotic regime in the form factor is realized in the usual way consistent

with the analysis within lactorization hypothesis and Q(‘,l)eum rule approaches [6].

4 The pion charge form factor -

According to the effective action (20), the one- loop dmphtud( for Hl( p]o(‘('

is described by the triangle and bubble diagrams’ shown in Iigs. Jd dnd il) (orr(‘s‘pon(lmgl\ )

It has the following structure 4

A#(ky, kay q) = 6D (K, —k2+q) (ke +k,)“]'1(Al,A‘ q )+1,,,I (A l.z,q )] . (10)

where ky and k; are the pion momenta and ¢ is a momentum of virtual photon 77
As is known, within the minimal substitution scheme of int rodu(ll()n of (l((ll(mmgn( tic

interactions the vertex A% given by a sum of ‘triangle and l)ul)l)l( dmgldms sdllsh(s llub_‘k
Ward- ldl\dlmshl identity [12, 13].

"The pion charge form factor F(Q?) is de fined by tIl( re ldh(m v

F(Q%) = PA(QF) + F2QP). e
I",,A = I«',A(—M,f, —M,f, Q?), I? = I","(—,llﬁ.—;\l;f. Q).
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The details of calculation of contributions of triangle F2(Q?) and bubble F°(Q?) diagrams
to the form factor can be found in [18] . I‘hc result cxpressedin the form of the proper
time integrals reads:

1 —s 1 — s m?‘//lv
FAQY) = ”T/ /ltdtddd K s) 2 J
A ) ai1diz05,d82a83 1+ 5 1+, T4 5,

x [Q%®, (M2, Q2 s f)+m2<1>2(M2 Q% s )+M,fd>3(M,f,Q2; 5,1)
+04(M7, Q% s,1)] exp [M24(s,1) — Q%o(s, )], (41)
= (25152 + 251834 v(t; + 12)(51 + S2 + 53+ .9,5253))/4vx,
X = 20(ty + 12)(1+ 5152+ 153 + 358) + (1 + 402383) (51 + 52 + 55 + 815283,
= [s253 + vt182(1 + 5153) +vtasa(1 + 8152) + v2ata(1 + 5152 + 5153 + 5353)]/ 20,

for triangle diagram, and

1—3 m2 [4v
/ /dt d12d31d32dﬁ [(1 +31) (l Ts )]
2
x l:__rn‘z‘—q)O(MZ Qzﬁ s ‘t)+(D°(M2 Qzﬁ s t)
(l*S?)(l—-S%) 1 L3} v‘,, 2\7r7 [ Eat el )

x exp [M24°(s,t) — Q*0°(B, s, 1)]
= [23182 + ‘U(tl + t2)(31 + 32)]/40')‘(0»

F°(Q)—

vt 8, . . & ‘
- 2'02X°‘[Sl + Utl(l + 3132) + ‘Utz(l — ,6)[1 + 5152 + 2vt1(31 + 32)]],
Xo = 2v(t1 + tz)(l + S]Sg)ﬂ- (1 + flv2t1t2)(sl + 32), o g ) (42)

for bubble diagram. We ha.ve used the shorthand dlmensmnless notation for momentum
Q and ;masses. Functions ®; and ®; are written in [18]. S ,

For the parameter values given in Table 1 the charge form factor defined by Egs. (41)
and (42) is plotted in Fig. 5 by the solid line. The electromagnetic radius takes the value:

F!'(0
7 (r3) = _G—F—'!%’ e =.524 fm.

V‘One sees that agreement w1th experlmental data for the form fa.ctor and ra.dlus P =
.656 fm is ‘quite satlsfactory
An improvement of the radius and form fa.ctor at small Q? can come from the dlagra.m

with intermediate p-meson. It is known [12 14] that its contribution to F, (Q?) can be

important in the region Q% < 5Gev?’. An estimation of the diagram with p-meson within

16

the model under con51derat10n also mdlcates a dlmmlshmg of the form fa.ctor, wh1ch is
maximal (a.bout 6%) in the reglon of Q2 = 2Gev o . »

Numerlca.lly the contrlbutlon of the bubble dla.gra.ms is very sma.ll It is ma.x1mal a.t _
Q* ~ 2Gev? and is of order 10-2. Thus w1th1n the model under con51dera.t10n the trlangle
diagram gives the main contribution to the form fa.ctor for the va.lues of Q2 shown in
Fig. 5. One sees that the calculated form factor (the sohd lme) smoothly a.pproa.ches
the experrmental fit (dashed line) at large Q2.: This- behaviour seems unexpected Asis
known from the studies, based on the effective meson- quark quantum field' models [12,
13, 14, 8], the triangle diagram should decay stronger than “IV/Q""—, the asymptotics of the
experimental fit. In our case, a naive estimation based;on the ultraviolet behaviour of the
quark propagator (27) and vertex (11) gives (Q2)~2. However, the hernegeneOus vacuum
gluon field changes the asymptotics of the tnangle diagram cardinally: . :

To- demonstrate this let us con51der the functlon FA in the llrmt Q2 >> A2 Qtis

convenient to rewrite Eq. (41) as

Asa h? ﬂl——s 1 sy |™4/%
F7r (Q ) = Tru/ /dtldt2d31d32d33 1 T 32 1 T 3

: ><<I>A(Q2 M"f m? s.,t)exp{—Q—Q(Q2 )} (43)
(-G [N e ) O )
+MPB5(M2, Q% s t)+<1’4( 2,Q%s,0)].
Function @ has.the form - - o |
0= 2 m2 1+sl__ 1—sy . ..m2 1438 (44)

2Q2 e At sid; 120212

where A; and A; are functions of tl;‘t’g‘, s, and s; and do not ‘depend on sy. Function’p

is given in Eq. (41), and
1/) = [31§2S3 + vt132(31 + 33) + ‘Ut23'3(31f+, 32) + Uziltz(sl + Sz' + 33‘+ 31'3233)]/2‘UX‘»;?:H£

comes from the hyperbolie fﬁnttidns";vhich‘ have appeared in the integrand due to aver-
aging of the quark loop over directions of the vacuum field. For details we refer to [18].
We simply joined the exponentially increasing pa.rt ‘of ‘these’ hyperbollc functlons w1th
the exponent in Eq. (41). It should be stressed that the orlgm of such an exponen-
tially increasing with Q2 — oo terms in the integrand is the | presence of phase fa.ctor
exp(iz,Bu,yy) in the quark propagator (27) and covariant der1va.t1ves V= 3 —iBin the

vertices (11). From the physwal point of v1ew this srmply Means that'in the presence of
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’ext‘.efné.l’ field the translation invariance holdé for the gauge invafianf quantities but not
for the vertices and propagators separately. Asi is stressed in (18], this is the reason why
the energy -momentum is not conserved in the separate vertlces but the conser\atlon law
is stlll valid {6t a whole diagram, if it is gauge invariant.

One notices that the function  has a minimum at bor = sy

m2
gg st =0, s51=1~ 207 —= (A ¥ Az),
. EZEZ = ————£§23~;¥—— >0,
052 o=y m2(Ay+ Ag)?
A A = T (1 s2)(1 +s3)(1 + 20t,) (1 + 20ty)
LRI 5253+ vt1s2(1 — 53) + viasa(1 — s2) + vy ta(1 — s2)(1 ~ s3)’
Vi1, t2, 52,83, Q% s7.€.[0, 1], leiinms; =1, : : - (45)

‘which allows to infegrate over variable s, using the éaddle-point approximation. The

result is
1

F1‘,A(Q2) = Tr,, / ./ dtldt2d52d33q>A(Q2 1‘42 mu, 31,52,33, tl, t2)
. m2 \ ™/ Bromi(A; + Az)? - m? ( A+ Ag)}
i Dlu expq —2 |1 —=In————= .
‘ 20? 0 o 2

* Since functions ®; contaxned in (I>A (see Eq (41) and {18]) have the following asymptotic

form . ) ’

@z exp (—Q%p) L.:;- ~1/Q*(1 — s3%) = 2/m2(A; + A;) = const,

®3exp (—‘QZII)‘)L;:,- ~ I/in, o, exp (—-Q21/J) ' .~ const,

31=s]

“hence 2 does not depend on Q? in the leading order. .
leim 2 (Q?, M? mu,sl,s2,53,t1,t2) = L (M2, m?; 53,53, t1,83) + O(1/Q2).

'Finally, the asymptotic formula for the trlangle diagram reads

. CA M2 AZ 2 A?
F1|'A(Q2/A )= (Q(2/A£)1+m7/4{11\7 )'

(46)
“é\f‘v’l’lere factor C2 is independent of @ = .
R o L LV (T:)Hma/m‘z'e-mif“""’ '

- 2rm \2A . o

1

ox /r,---,/thdtzdszasa‘Qu(MZ/A?s”mZ/A%s’z,sa,tl,';z)(Al + Ag) At
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llere we have returned to the (Ilm( nsmnful notation for the masses and momentum Q

For the parameter values from Table 1 we obtain the followmg result

2.96

LI = g

This asymptotic formula fits well the solid curve in Fig. 5 for Q2 > 5Gev .
Thus the main effect of the vacuum h(’ld under consideration in the Charge form factor
is an increasing of the contribution of triangle diagram to the form factor at large (22
has been explained, this is clearly duc to the presence of the backgr()und field both in the
quark propagators and nonlocal meson-quark vertices, whicl causes the 5pec1ﬁ( interplay
of translation and color gauge invariance in the quark loops:~A comparison with the Iarg( '
(? behaviour of the #y+ triangle diagram; whichis usual I/Qz (sec the previous s(*cnon)
indicates that a number of nonlocal vertices.in’a loop.is of crucial 1mportan((
The contribution of bubble graph (see Fig. 3) to asymptotic behaviour is casy to d(’n\(‘ ,

if to rewrite Lq (42) in the form

Q% = lu/ /dl dladsyds,df3 ¢°(Q2H Mz nt: s I)(*‘(p{ )2 °( si )Y
which underlines t,hat, the prccxponcntial factor ®° depends on @? in the @'(')ml)inati(m
Q*B, as is seen from functions 7 (sec Iq. (42) and [18])." Here d is a proper time
corresponding .to. the vertex. operator. T, given by, Eq.; (25).. The smallest valu( of the

function ° corresponds to the point 8 = 0 for any Iy, lq, 51, and 890

W (Byly, b2, 51, 82) = ﬂ¢°([1,tl,l2,.§,,52),
Jp° .
= OO,I ,l 3814 8
38 lp=o 99( ‘1al2 ‘?1,“2)
’Utz‘

= s [si+o(ti + )1+ s|s2)+ 2021, 2(+ s+ )] > 0.
1)A )

Therefore the leading term takes th( fnrm
012/ A2 2/A2 A
F,,(Q /A ) co (M} /A ,mu/A )Q2 +0 ((QZ) )

o —'lr,,/ /dl,dlgdsldez/(litb (B A/ [ A% 1y )
X(‘,xl)[“‘ﬂ (0,1.1,/2,.51,52)]»\‘0.3. R renl B o

We conclude that the absolute asymplotics of the charge form factor is defined by the

bubble diagram. The limit Q% > A2 of this diagram is due to the uitraviolet regime
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i F

(B — 0) in the vertex I,, Ih( vertex i s (l(tormmod dne(th by the gluon propagator and'«

the 1/Q? dependence appears as a ‘manifestation of the ultraviolet behavior of the gluon
propagator. 'This is in agreement with the mechanism of hard rescattering and quark

counting rules [15]. Namely, the asymptotic behaviour of the form factor is determined °

0.8
by the ()n(’-gllloll exchange between quarks inside a pion. However, in the expenmentall\
observed region the lnangl(‘ diagram (lommat(‘s in the form factor. )
Pt
NO' 0.6 ‘ :
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