


1 Introduction

The problem of a complete description of jet-like processes becomes important
because colliders and detectors are now able to work with polarized particles. Be-
sides, jets formed by 2 and 3 particles and described in QED reactions of the type
€€ = (e77)é, e€ — (ec€)é provide a realistic model for hadronic jets and that is,
in particular, a motivation of the present paper. Processes of the type 2 — 4 for
peripheral kinematics, such as

e€ = (e7)(&v),eé = (eda)é, vy — aa, bb

were in details considered in a series of papers [1, 2, 3]. Here we study the double
bremsstrahlung (DB) in one direction. In the unpolarized case this process was
investigated in papers [4, 5] where the expressions for differential and total cross
sections in leading logarithmical approximation were obtained. In this work helicity
amplitudes of the DB are calculated. Electrons are supposed to be ultrarelativistic

« (having energy £ > m) and the terms, which give small (of order m?/E? compared
to those of order unity) contributions to the total cross section are systematically
omitted. The process o

e (1) + ¢ (p2) = €(5}) + (k1) + 2(kr) + e*(p))

of two real photons emission in e~e* collisions is described in Born approximation
by as much as 32 Feynman diagrams (FD). 16 scattering-type FD are relevant in the
kinematics of forward scattering at high energies. Indeed the main (non-decreasing
with energy) contributions to the total cross section arise from FD which have the
spin 1 (photon) state as an intermediate of the crossing channel [1]. Since we are
concerned to the case when hoth photons are emitted along electron (p1) direction,
only 6 FD out of 32 correspond to our problem.

| 2 Determination of the amplitudes

Extracting the factor e* = (47a)? we can represent the matrix element in the form
(for definiteness the Méller scattering process is considered, see Fig.1):
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Figure I: Feynman diagrams for donble bremsstrahlung in e?, ee scattering
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In calculations the well-known Gribov’s decompositior of the metric tensor eﬁfering
the virtual photon Green function is used ST ‘

2 - _ ' ;2~ .
Goor = Gy + ~(BoP), + Poup)) = SPoP), (2)
... m? P m?
P=p1 S P2, 4 —P}zw..is P1.

Here gjpl means the metric tensor with non-zero ‘components in transverse to the
beam axes direction, p and p’ are almost light-like vectors with components p =
£(1,1,0,0), p' =¢(1,—1,0,0) (we work in the center-of-mass (cms) reference frame
where p; +'p;=0). = e RTINS PO
Contributions to the cross section arising from the dropped terms in the above
formula are suppressed by the factor:of m?/s < 1. And subsequently we will
systematically omit all the quantities of such brder. Pl i anlle 1w
Sudakov’s dec‘omposition of the 4-vectors is very convenient in analysis. Let us

write down these expressions for photons momenta:
. P . RTIY : BT I Ee e e S N
ki = aigp’ + 2129+ ki 2y k= aP’+ﬁP+k+7 “(3)
Pkl =pkL =0, p=pw 0, Kk =saf -k, §=2pp2 >m?

The on-shell conditions for incotrnihg'Aéhd éﬂtgoing pa.rtiélesvgi\?é:
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where k, ky, &, are the two-dimensional euclidean vectors perpendicular to the beam
(p1) axes. The quantities ), and A =1—z, — z, can bekintérpré‘téd as the energy

fractions of the emitted photons;and the‘svcb'a.‘tterf;d electron: .
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the kinematical invariants take the following form:

and supposed.to be z; ~ ’A,_~;1'. After excluding.”nonphysf{gal?’ components o,
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o= (Pr=k)?+m?=a = x—i(j"f,zf +k),

ko) 4 m? = 0y = (i 4 ),
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(p’1+k2)2—m2 = a2=$__A_(m2:c§+7‘g )

4R = = (el ) o
—(Py+ k) +mP=d= —[.’El.’tg 1—-A)m? + :52(1 - 'cg)L2 +z (1 —z)kd
’ +2$1$2k1]€2]
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(m—kP-m?=d = Y [:tl:tg(l;.— AyYm® + z2(1 = z3)(ky + ki)

-hftl(l — 1)(k2 + kz2)? + 23122(Ky + Kz1) (K2 + l_ficz)] .
In kinematics of a jet rhoving close to p, direction euclidean 2-vectors k;, k have

typlcal magnitude of a few electron masses.
- Using the on-shell condition for the specta.tor (positron in Bhabha and electron

in Moller sca.ttermg) )
ek =t s Bt tmia=o

we put the momentum transfer squa.red (the 4—momentum of virtual photon k) in
the form: .

_ . 1 . ’ : : d . "
2 2 2 2 2 L 6
k*=saff — k" = 1+a(k +ma) o= (6)
- From the above it is clearly seen the physical meaning of the "nonphysical” Su-
dakov’s parameter a.: Namely, it relates to the invariant mass squared of a jet

generated by the scattered electron and two a.ccompa.med photons
4 (pl—k)2 (p1+k1+k2) ~m *k — 8 = 8;. - ’ (7)
Let us 1ntroduce hehc1ty states of fermlons and photons in jet kmematlcs [4]:
o emidr —8e-ivp2
a \/ : o 1 € . - -1 — 8
# = ( G )w’ v _(ﬁewlz)’ Y ( derr ) (&)
- » g /
o c=2A==%1, 0K, ex =exm, Zu’\(p)ﬁ'\(p :p+m,’
" where o denotes helicity states of fermions.
Gauge freedom in choosing photon- pola.rlza.tlon vectors permits to pick up them

in such a way that they won’t have the Sudakov’s pro_]ectlon on p

1o ) |
eZ(k) = olp’ + el » e'i = ﬁ(éz +iney) =& , (9)
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Using Lorentz condition c(k)k = 0 we find:

ek 2 . o
sae(ki) = e EMJ\{ + 57;‘.—1\,-)- \i = ki + ikyy,. (10)
We further exploit the freedom in. choosing the general phase factor I)\ putting
1 =0. Then (2,8, 9) give for the matrix element
; ') l 10!
Mo\t arey = it P57 - 0 Oy - pl - €t (ki )e2 (k)
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Let us concentrate on M"’"’, and choose. g, = +1 bearing in mind that the case
l

oy = ~1 can be obtained by app]ymg the parity conservation relation Vl""“ =

M . One will see that only 7 non-zero helicity dmphtudes exist. In the aho\e

formula the quantity ) Oy, €7 €™ can be represented by PD «depicted in Fig.1
and the corresponding amplitudes read:

M=4+Pu)@ Q=M+ M+ My 0 (12)
1 T R
M, = ‘—dull’(Pl — 1»1 — ks +m)eg(p1 - /»1 + 777)6‘1111‘

My = i 62(])1 —kl —k+ m) (pl - kl + m)(lul
a1a2

M; = %Zu'leg(pl =k =k +m)ei(pi — k + m)puy,
where the permutation operator P]g is ldehned as
Pl?f(]‘l’ Tl)’]lyl‘2azla 772) f(k27 12’1]21 1‘17113711)

We note at this point that the quantlty @ Qymptr is gauge invariant regarding
virtual photon gauge transformations. This means that it tends to:zero when'the
limit k1 — 0 is taken. Only (1 +'P12)ulQm,nul is gauge invariant regarding all
three photons gauge tlansf01matlons The latter proper ty can l)(’ cou(mved from
the gauge condition : i

1) Ii:

k“ﬁ;O,,ul (ap +kl) ulO u=0= p“ulQ,,u, :v-———ulQ,,u, o (]3) ‘
We now convince that the plopel ty (13) (Q ~ kl) can be mfoued flom (1 )) (‘\ph(-;'

itly.. Rearrange for this aim M; in (13), usiug the Dirac (quatlou dropping h('h(ll\ «
state indices, and cast it down to the following form:. s s
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s(l —ay) P 1.,., . .
M,y = —Wu'leg(pl — k1 + m)eju, — -[;-I-u',egp'elul + (14)
) 2
1
@ ajexkp’(pr — ky + m)egu,,
: s, B s _, , ‘
'-/M3 = @1{162(}71 — Rl + m)e,ul - mylezkelul —
I _
@u'leg(p'l + kz + m)etkp'u,.

We see from the above that the last terms in the formulae for My, My, M3 are
explicitly proportional to &, hecause

- :  Pk=pk,. : (15)
'TVh'e sum of the ﬁrst three term{s also proportional to k) since (sée (5))

oot ! 1 3
ayd ayal, agd’

Al,k;_—)O =0 ’ (16)

Let us consider the sum of the second terms in the expressions for M, M3 in (14).
Using the relations (5)) one gets: ‘

P _slap ki) sk pR

G dd " adtar o
From (15, 16, 17) one can convinced that the gauge condition
M+ My + Mslk 50 =0

is obviously fulfilled. For further consideration it will be convenient to present }~ M;
as a sum of terms explicitly proportional to k, (hereinafter we drop hats):
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exk1p'(p1 — k1 + m)e;, — ;1’_d’62(pll + &k, + m)elklp'}ul. (18)
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Here and in what follows we omit the terms in rhs, containing in the numerator m?,
but, of course, keep those proportional to m. Subsequent calculations involve deter-
mipation of sundry bilinear spinor combinations, which are given in the appéndix.
There, using helicity states of fermion and photons, all the necessary ingredients
entering (18) explicitly defined. Performing calculations we arrive to the result
which we represent in the form:: I ' e

2(1 —z,). 2, 20—z
Mt = sVAY(1 + Plz){Al (_(_zﬁxm © ‘—‘xf) X II)IXXI
T1T2 I Il(ala2)

3 Checking the reﬁsu}lté;;_‘\‘

+2X(P2$1 + X1$2)} ;

1132(al2d') BT £ 5
M7 = sVAY(1 + Pia) b A (—2—x‘5<‘ " ﬁ_'x-q*) C 20K
++ N AN Gn X T R o(ad)
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- , 2 . ot o ’
MIT(x1, 215 X2, 72) = S\/&l){Al*xm + XX (19)
T1To azd, B
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' ’ R i VA-:al2dl'7 ala’2 i
M= Mﬂt:(X“?‘;X?r“)+M1?:(X2a‘1'32;X1,$1), SRR )

MEE = M (60,255 x5, 22) + ME= (o, 255 X 2),

o : oo AN E e\ nix| o
Mi%(thl;Xzsfz) = 2msvVAyp {_Al (z—:m + KIQ) +»a—i2}, .

L - o 8 . T3 T2 X
M, 215 X2, 22) = 2m5\/&l’ {—Alxlel - zq'zd'}’z Mif = 0,

P = elqﬁiﬂ, 1[:2 — _ﬁ, g=x+x1+ Xz pi=ri+ iriy, ) 2 ,‘_—;‘,v1,2-f (2‘0)

Note that in (19) the explicit Bose symmetry between two photons present:

ML (15 X2, 22) = MR (2051, 91),
MiI(thl‘;X%-TT) ?,Mii(Xmm;Xl,{'?l)-
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Useful check of the results obtained is the limiting case' when one of the photons
becomes soft. For definiteness let us suppose that the second photon does. Then
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—m(D ~ D')z19p* 8y 16,5y +¢[(D D’)X‘ D' *]5,, _15,,;,,} (21)

= D'x]babira

D':mzzz-}-fvz - D =m? -i‘*

We see that the amplltude factonzes in this limit. The sum of squares of the modules
in the first multlpller agree with the known accompanied radiation factor

;(tpl 3 pl) ’ 22)
pk: Pk

whereas for the second multiplier that sum looks

4z3(1 — :::1)

D [k2DD(1+(1—1:1))—2m2(1—1:1)(D D)] (23)

which agree with the summed over spin states matrix element squared of a single
bremsstrahlung process [2].

Another verrﬁcatlon comes frorn the 1dent1ty that must have to be satrsﬁed

2{IMELT 4 MG £ LM + VS 4 M + LA 5 ) =
Eoe : Tr(Pl +m)0u1uz(pl +m)0u1u2 (24)

We convinced in its validity by direct computatrons

4" Conclusions

This work is a sequel of a series of papers where the helicity analysis of the processes
Y > eeufi, eéee [3], e& (e’y)(e’y) [6], ee — eépji, eeee [4] in Born approximation
in the kinematics of a jet moving forward was performed This specific kinematical
.- condition provides the main contribution to the total cross section at high energies.
. We hope that the results obtained can be useful at the colliding beam facilities

for the purposes of monitoring and calibration of polarized beams. Be51des they
--may provide an essential background in the developed physical programs aiming to
Ineasure asymmetries of different types. ,
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Apypend.ix »

Here we give the explicit expressions of the bilinear spinor structures entering matn\

clement. We use standard 1ep1esentat|on of the D)rac matrlces

p =< M_o': _1 3 Y= 0 -1 s = e 0 :

(25)

1n what follows i} and u; stand for the Dirac bispinors 17";'(])’1), u’t(p) ( afterwards

indices o}, 0, are dropped). We take throughout the paper
oy = 1, (sal,:tl - (s:tv 61]2,:{:1 = 62:{:7 51)1,:{:1 = 61:!: .
Then the relevant bilinear combinations read (see (8.9, 10,20)):

S\/K6+'lj’,

wrezep'u; = —2sVAGL6 041,

‘FL;CQL1L1. = =V OA(SQ_ [’» 5+ + 777

Y
Py

6_} UARI S/ 8

6+] l‘.'l',

' 1-A
'l_L; 82_]_81Lk1_Lplul = 2\/Z62..61+ [k’6+ + TIITJ_] \1'@/",

ﬁ'leueuul = '—2\/K(52+61_ [—k’6_+ m

wep'y, = sV2A8,_8_y,
tekipy = “15\/‘-7‘_A5+52+X11/’»
wyp'klesefiuy = 25\/,Z62+61_6_,\f1/)',
i p'esrer kyiuy = 25V A8 618 1¥",

1-A
ﬁ'leukleuu, = 7\/_(52 61_ [k 5+ + 771"'—6 } d‘

dp'kieriny = —isv, 208, 6,-x",
ﬂ'lp'eukleuul = ...S\/_(s 62-51 \“’ll"

il

diperkienkiin = 25VAS 62 b1 xx1¥,
ﬁ'leucllkl'p'ul —25\/_6_62_.61_*_\1/’
ﬁ'lrueuc“_klp'ul ’ = .28\/_(5:.}.62_6'1_*_/)2’61['. -
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