


1 Introduction Ces

_The difficulties in the Nambu-Goto string quantum theory, such
as the nonphysical space-time dimension and the tachyonic state in:
the string spectrum, -are well: known. . The need for an'.adequate
description of the quark. interaction in hadrons initiated theap-
pearance of the rigid-string model. ' This model was suggested. by
A. M. Polyakov and independently by H. Kleinert [1]. - Due to-its
finite thickness, the rigid string is characterized not only by its ten-:
sion but also by its resistance to transverse bending (rigidity). This
is in complete analogy with classical dynamics of rods'and beams.
However the energy of Polyakov-Kleinert rigid string proves:to be
unbounded from below [2] because of the second derivatives in the
string action. Therefore only Euclidean rigid string model.is well
defined. . - SRR Crete A R e b

In the applications to hadronic physics open strings: are to be
considered [3]. Hereian important role is played: by boundary con-
ditions on the string. dynamical variables: (string’ coordinates). ‘For
example, when the boundary terms describing point-like masses on
“the string ends-are added to the Nambu-Goto, the&i.nterquark poten-
tial is: considerably modified.: In the case of .extremely asy'Metric'
quark mass configuration this results in the removal of the tachyonic
state contribution to the string potential [4]- PR

It was specifically supposed that the boundary conditions in the
effective rigid string model following from QCD enable one to suppress
the oscillation modes giving negative contribution to the energy (5]
Unfortunately, this idea:has not been: implemented yet: :

Another 'approach to the:problem:of energy unboundness from’
below was considered in [6], where the rigid string' model with non= -
local action was put forward.. L e B

A consistent way to introduce the boundary conditions into the -
string dynamics is to add the corresponding terms (geometrical in-
variants) to the initial string action [7, 8, 9]. In this case the bound-
ary conditions are consistent with the dynamical equations for sure.
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The first candidate to modify the boundafylcondit‘iOns" in string
models is obviously the Gaussian curvature of string world surface.
This geometrical invariant depends on:the second derivatives of the
metric induced on the string:world. sheet. As the rigid string ac-
tion contains the second derivatives, it is natural to' modify it with
the Gaussian curvature term. According to the Gauss-Bonnet theo-
rem [11] the surface integral of the gaussian curvature can be reduced
to a contour integral along the boundary of the surface. As a'result,
for closed strings this term in the action gives the Eulerian:charac-
teristics of the string world sheet. For open strings- it ‘was’ shown

that, when the action is modified in such a way, the string ends can:

not move with the velocity of light, as they do in:the Nambu-Goto
model with free ends. [12]. T AT
' A general mathematical analysis of the boundary conditions in
- therigid string model was performed in [8]. However, the influence of
these conditions on the concrete physical predictions is not properly
studied. Only particular results were obtained here [9, 10].
“The aim' of the. present noteis to. investigate the effect of the
- Gaussian curvature-in the rigid string action on the interquark po-
tential generated by the string. The layout of the paper is the follow-
‘ing. In Section 2 the linearized equations of motion and boundary
conditions in the rigid string model with.the action modified by the
Gaussian curvature are derived. Further the equation defining the
“eigenfrequencies of the string oscillations is obtained.  Proceeding
from this equation, in Section. 3. the one-loop:interquark :potential
generated by the string is found. By making use-of the numerical
calculations, it is shown that the modification of the string action by:
the topological term considerably changes the. interquark potential
at the distances comparable with the size of hadrons or less. Section
~ 4 s devoted to the discussion of the results.obtained..
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2 Modification of the boundary

conditions by the Gaussian curvature
in the rigid string action
The action of the relativistic string with rigidity is the following [1]-

C

S = ,—NIg/ / d*¢/=g [1 - Q.I}gAwﬂAmﬂ] Lo s (LY

Here M¢Z is the string tension, a is a dirﬁehsionlcs.s parameter (‘ha.r-’
acterizing the string rigidity, @#(&, &) are the strln‘g'(-'(fordmat‘es in:
D-dimensional space-time, p = 0,1,...D—1. The Cuerhne.ar (",oor.(hf
nates fb, &; arc introduced on the string \vorldmshoct..frT."he'l.nbeddmvg
of the string world surface into the enveloping Sp&l(fs‘f"’tlll‘l‘f’ 111(1;1('03 a
metric on this surface g;;(§) = 0;x*0;x,, i,j = 0.1; gf-jgJ =619 =
det gi;. The Laplaccf»Beltfami operator related to the induced metric
S=vmEe\V )

*Let us add to the action (1) a topological term, proportional to
the integral Gaussian: (intrinsic) (:urvature of thc string world surfra(':o:‘

By the Gauss-Bonnet theorem this term can'be t,ra1;$f0r1110(1 into tll(‘
in't.egral along a closed contour 8§ bounding the string world surfacv

/dilé [—g K = — %kg—ds "*_,,,(‘OIIS{‘Q (4)
o T ode L

where k, is the geodesic curvature. For a curve lying on a surface and

sed by izati ; N2 = + peodesic
defined by natural parametrization r(s), (dr/ds)*.= 1. the B ()(k ic
curvature, k,, is given by-the formula [11]
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where k;; is a tang}ent}la_lncornponent,of the (:llrvaturc_vd(:tor

kf’_5 d2i~ R |

Now we choose the coordlnate set on- tho qtrlng m)rld surfd( ¢ in
a way that the trajectories of the: string ends were defined by a con-
dition & = const. then the goodesu curvature of these trajectories
can be expressed through the Lompononts of: tho metric tensor g;;

S = _ 1 g00d00 = 2900901 + go1900 o
o 2 \ /__‘g goo)m ’, (:)

“Further we shall use the nonpararnetrlc (Gaussian) dehnmon of
the string world sheet

(&) = (50751,272, :-v-‘I/)—x) = (fz:, u(ée)), (8)

i=0,1, &=t & =7, 0<r<R.

In this parametrization the geodesic curvature is given by

k, = — iua ]
NEOVIERE R Vi t@—w(1-a)p?" (9)
where 1 = 9u/t, & = du/or.

-~ In what follows we shall treat u and 4 as small quantities

\/v—g = 1 —u? + 12 ~ 1 — %u2 +'%ﬁ2,
1 1, 1 o
— ~ 1 2 _ - 2
= + 2u 2u (10)

Tdklng into account (10) the string action in harmonl(‘ approxnnatlon
ac qulros tho form

S= —Mg/dr/dt [1+%(1’12—1'12)+
. 0 b

. . ty
4
(1)
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where O = 0%/0t* — 6%/ c')r is the two dlmensmnal d’Alambert oper-
ator. The actlon (11) glves rlse to- the hnear equatlons of motlon

D(M0+aD)u—0 ;‘ R (12)‘
and the boundary COIldlthIlS o | ot

9 M2u + Bii+a0u) =0, 7 =0,R, . 13
Or-\: 0 , , L e O
ﬂﬁ—"anu = ‘0, r=0,R. t (14)

TETEY S : Caes oty 4 { Gk
Due to the second der1vat1ves in ‘the rigid strlng action the number of.

obtained boundary condltlons is twice compared w1th the Narnbu—

Goto case.

The: solutions of the boundary value problem (12 14) can be
sought in the form )
ll(T‘ t) ~ Cezwt+zkr : E | SRR (13)

Sy

Substltutlng (15) into the equations of motlon (12) .one obtains the
dispersive equation =

(w2 - k2)[M02 - a(w2— k‘2)]= 0"::; :', sorEgr (16)

with four branches of solutions
kl = w,: Ped kg

Sy
k=0, ki=-0, Q=y .
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Now the general solution to the strmg coordlnates (15) can be rewrit-

ten as

x-\ L

u(t r)—ue""tZCe | o ‘(18)/'

where ug is a constant vector, and C’ are amphtudes determlned by

initial condltlons



The solutions of Eq. (12) should satlsfy the boundary conditions
(13) and (14). The substitution of (18) into (13) and (14) results in
a system of linear homogeneous equatlons for the amphtudes C

qC1 — qCy — BwQCs + ﬁwQC,; =0,
u.uRCl sz02 IBwQezQRCS + IB(}JQC_IQRC/[ _ 0
ﬁw201 + ﬁw2C2 - qC3 — qCy =0, ‘

| ,Bw2eszCI+le e szC _ qesz03 szc4 =0, (19)

where q = M} — Buw?. The equatlon for the eigenfrequences is ob-
‘ tamed by setting the determmant of the system (19) equal to zero

f(w) = sln(wR)sln(QR)[(MO ﬁw2)4 Blw 692]
— 2(ME - BwH)?BAQ[1 — cos(wR) cos(RR)] = 0. (20)

This equation is rather comphcated Nevertheless it contains infor-
mation that enables one to make concrete physical predictions in the
framework of the string model in hand.

3 - String potential

Making use of the string eigenfrequences we are able to calculate the

first quantum correction to the energy of the string ground state, -

i.e.. the Casimir energy of the system. Considering this energy as a

function of the string length R we arrive at the interquark potential

generated by the string. The interquark potential V' (R) introduced
in this way is defined by the formula [12]

epl-V(R)T] = [[Dulexp(~S"ul}, T—0, (21

where
R TR T R ) L ’ Lo /T ’
’ T 2 1 " -
S :Mo/dt/dr[1+§u<1—A—4—A)( A)u]——ﬁ/dtuﬁ*
0 0 0 ~ 0
' (22)

- 02/01‘2 + 0*/0r* is the two,

dimensional Laplace operator, T isthe temperature. The functional

is the Euclidean: string action.” A

integration is carried out over the string coordinates obeving the pe-
riodicity condition u(¢,r) = u(t + 1/7,r). The Euclidean equations
of motion and boundary conditions are obtained from (12) (13). dlld
(14) by means of substitution #. — it. It is casy to demonstrate that
the Euclidean cigenfrequences are defined by the sanie equation (20).

After functional integration in (21) we derive the expression for
the string potential

: | D — 2 - . a ; REIESE R o
2 B
V(R); = .Moliﬁ-i—’; 57 rl?rln',[( by ) (= A)] T, —» 0. (23)
The boundary term (4) in tho action -is. taken into. account when
calculating the cigenfrequences of the operdtor (1 - QA/\Ig)( A)
which determine the functional trace in (23).., R L
In the limit 7 — 0 we have [3]

V(R) MOR+9—— wn, '(‘?4)

where w, are the roots of the equation (20) Thc first torlu in the
formula (24) is the classical string cnergy proportional ‘to its: longtlr
(confining potential). The second term is the Casimir cnergy 111'!;
the string model under consideration.” The string potcntldl g,lwn by

Eq. (24). obv1()uslv requires renormalization’ because the suni of the

eigenfrequencies diverges. The renormalized string potoutml dt ldrg,(‘
distances should coincide w1th 1ts cldssu‘al leu(‘ T

VTC"(R)ln—-oo = M2R R (20)

where M? is the renormalized string tension [13] Stdrtlng, \\1thk.
Eq. (24) and taking into acc ount the necessity to r(‘g,uldu/(' (111 th(
divergent (\prossu)ns ‘one arrlvos at’ tho followmg fornmla f(n th(
r(‘nornmh/(‘d strulg, potontldl ‘ :

V”"(R) = M&R + (D — 2)E"”(R A)|A_m



= MR+ (D—2){E[*(R.A) — Ef*(R - . M)},
- F (D =2)Ec (R— >, A)| |
= M’R+(D~-2)E"", - -(26)

where A is the regularization parameter, M? is the renormalized
value of the string tension

D

;W'%+7?Ewﬁqumw (27)
The renormalized Casimir energy is defined by
.2n(R [Er(J R. A) E(r/(ﬂ(R—) OOA)”@—,'x ‘ (28)

where M should be substituted by M? according to (27). The sum
(24) can be represented in terms of the coutour integral by making
use of the Cauchy theorem (argument principle) [14]

%;%zﬁﬁwmm% (29)
- S

Whert ‘the function f(w) is given by (20), and the contour C en-
(loses th(' zeros of f(w) situated in the right half—plano of complex
varmbl(‘ w. Thc frcqucncy cquation (20) is real, therefore according
to the. Rl(‘IIldIlIl -Schwarz theorem [14] its complex roots are lying
Vrnm( trl( dlly with respect to the real axis. Consequently under
the SllIIlIIld.tl()Il their imaginary parts are mutually cancelled and the
Casimir cnergy proves to be real.

Because of the square root, the function (20) is obviously two-:
valued. To select its single-valued branch, we make a cut connecting
the branch points wo = £M/\/a along the real axis. After that the
(ontour can'be chosen as it is shown in Fig. 1. The radius of the
contour A stands for a renormalization paramcter for the divergent
sum 1/ 22 — Wn- Intogrdtlon along the semicircle in A — oo limit
contributes only to the counterterm [13] The integrals along the
cdges of the cut are mutually cancelled, and the integration around

~
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the branch point:w = w, gives the. Réindependent constant.: The

integration along the interval (—iA;iA) produces the Casimir energy

of the rigid string: w1th modified action'; - . C el e
B (M 0,6, 1) = /@muwny.; wm
0. :,
(zy)  —sinh(Ry) s1nh(Rﬂ)[(M2+ﬁy '+ By 692}

-Quw2+ﬁy)ﬁ23Qu—cmhu@ymngQn

where Q = V2 + M?/a. For the renormahzed value of the Ca.surur
encrgy to be obtained, the asymptotics of (30) when R — oo is
nceded : o

~ /dyln{— RQ‘[(MQ'_}. ﬁy2)2 _ﬂzygﬁ]:z}

0 ~

reg(R_) m)

(31)

After the subtruction (28) we are left w1th the renormahzed Casimir

energy
L — / dy ln

< ¥lors M%é»( -y,

N

_2Ry) (1 _ e—zz‘z‘(‘z) |

EZ"(M,a,B,R) =

s apgra0u s o

| T4 4y - Py

This expresswn determines in the one-100p. approx1mat10n the first
qua.ntum correction to the ‘classical linearly rising string potentlal
V(R) ~'M%R. When 8 = 0 the funétion F vanishes, and Eq (32)
reduces to the one-loop Casimir energy of rigid string [3] It is rather
difficult to examine Eq. (32) analytically therefore we turn below to
numerical calculations. The interquark potential V(p)/M, p = MR

FmﬂMz)



for different values of the parernfefers o and B (formulae (26) and
(32) with D= 4) is presented in Fig. 2. The potential generate xd
by the Polyakov-Kleinert rigid string (8 = 0) for o = 1,710, 100
is plotted in Fig. 2a. The values of the parameter @ are chosen
with allowance for the following considerations. In Abelian gauge
‘model with simple Higgs potential (Nlelsen—Olesen vortex model for
relativistic string [15]) it was shown that the ratio o/ (r2M?), where
r, is the gluonic tube radlus approx1mately equals 20. Keeping in
mind that the quantity M ™! gives the hadronicsize in string models,
one can put s ~ (1 / 3)M L After that for the parameter o we Obtdlll
o~ D i .

“Figures 2b ¢,d show the 1mpact of the Gaussian curvature term
in the string action on the interquark potential. With increasing
B the potential curves are shifted to the right with respect to the
interquark potential generated by Polyakov—Kleinert string (8 = 0).
For small 3 it is easy to calculate the value of this shift

fann N
i AD=F [ an e e

sV(R) = -4 M4) / dy ysg(l —(e.—2Ry)( )—zm)
i b ) |

< 0. (33)

~ The potential curves in Figs. 2b,c,d testify:to obvious correla-
_‘tion between the values of the parameters o and 3. To be exact,
for fixed o one can obtain the same alteration of the potential by
settingf;a ~ B. Of course, this correlation appears only at the quali-
“tative level. The curves in Fig. 2 convincingly demonstrate that the
modification of the boundary conditions due to the Gaussian cur-
- vature in the string action leeds to a considerable alteration of the
" interquark potential at the distances < M~!. In this range the of-

fect of the Gaussian curvature term turns out to be comparable with

kthe transmon from the Nambu—Goto model to the rigid string.. At
large distances R — oo all the potential curves: tend to the same
' asymptotlcs ~ M 2R, .

10

Figure 1 Th(‘ integration (()nt()ur use d in- Eq (29) to sum rh(‘ roots
of froquou( y cquation (20) - :
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Figure 2: The interquark potential V(p)/M generate('i by the modi-
“fied rigid string with the Gaussian curvature in the action at different

values of the parameters o and 3. In Fig. 2a the dashed curves rep-
resent the limiting cases o= 0 (the Nambu-Goto string) and a = oo.

All the potential curves with finite values of a lie between them. .In
Fig. 2b, ¢, d the potential for 8 = 0 is plotted by dashed lrnes. With
increasing 3 the potential curves are shifted to the right with respect

to the curve corresponding to 8 = 0.

/
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4 Conclusmn

In view of an 1rnportant role of the modlﬁcatron of the strlng action
in hand it is natural to i inquire oneself about the physmal meaning of
the parameter 3. As this parameter enters only the boundary con-
ditions for string variables, one can treat it as a coupling constant
characterizing the residual quark interaction with gluonic field. This
intcraction has been ignored when the collective string variables were
introduced. Obviously it is essential at small distances where local-
ized gluonic tube (string) does not reproduce adequately the real
phys1cal plcture '
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