


1 Introduction.

A specific clectromagnetic radiation produced by fast electrons moving in medium was
observed by P.A. Cherenkov in 1934 [1]. Tamm and Frank [2] considered the motion of a
point charge in medium with a coristant electric permittivity. They showed that the charge
should radiate when its velocity exceeds the light velocity in medium. For frequency-
independent electric permittivity the electromagnetic strengths have §-type singularities.
on the surface of the so-called Cherenkov (or Mach) cone [3-6]. ‘As a result, of the integrals
involving the product of electromagnetic strengths become divergent. In particular, this
is true for the total flux of electromagnetic field (EMF). To avoid this difficulty, Tamm
and Frank (see, e.g., Frank’s book [7]) made the Fourier transformation of EMF and
integrated the energy flux up to some maximal frequency wy.

The goal of this treatment is to consider consequences arising from the uniform motion
of a charge in a nonmagnetic medium described by the frequency-dependent one-pole

electric permittivity
w?

ew)y=1+ (1.1)
This expression is a suitable extrapolation between the static case w = 0, (w) =6 ="
1 + w} /w? and the high-frequency limit w = oo, €(w w) = 1. In the usual interpretation
wr, and wp are the plasma frequency w? = 47rNee2/m ( N, is the number of electrons
per unit volume, m is the electron mass) and some resonance frequency, resp. Quantum-
mechanically, it can be associated with the energy excitation of the lowest atomic level.
Our subsequent exposition does not depend on this particular interpretation of wy and
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Equation (1.1) is a standard parametrization describing a lot of optical phenomena
(8]. It is valid when the wavelength of the EMF is much larger than the distance between
particles of medium on which the light scatters. The typical atomic dimensions are of
an order of a = h/mca; a = e?/hc, m is the electron mass. This gives A = c/w >> a

Cor w << melafh & 5-10'sec!. The typical atomic frequencies are of the order wy =
me?[ha® = 10"sec™. Asw %> wo, the physical region extends well beyond wg ([9]). For
w >>wp, €(w) 2 1,that is, medium oscillators have no enough time to be excited. This
means that we disregard the excitation of nuclear levels and discrete structure of scatterers.
According to L. Brillouin ([10], p. 20): ”Also, we use the formulas of the dispersion theory
in a somewhat more general way than can be justified physxcally Namely, we extend these
formulas to infinitesimally small wavelengths, while their derivation is Justlﬁed only for
wavelengths large compared with the distance between dlspersmg particles”.

* We intend to consider the effects arising from the uniform charge motion in medium
with ¢(w) given by (1. 1) Partly, this was done by E. Fermi in 1940 [11]. He showed that
a charged particle moving uniformly in medlum with permittivity (1.1) should radiate at
every velocity.

However, the following questxons remained unanswered:
1. How the'EMF strengths and energy ﬁux are distributed in spa.ce" In pa.rtlcula.r, what
is their angular distribution?
2. How do these distributions depend on the medium properties, on the charge velocity?
In particular, how do these distributions differ for the charge velocity smaller and greater
than the light velocity in medium?
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In this consideration we restrict ourselves to the classical theor.y of the Vavilov-
Cherenkov (VC) radiation with electric permittivity given by (1.1). It is suggested that
uniform motion of a particle is maintained by some external force the origin of which is
not of interest for us.

The plan of our exposition is as follows. o -

In section 2, we present, in a manifestly real form, the electromagnetic potentials and
field strengths for a charge moving uniformly in a dielectric with €(w) given by (1.1).
Varjous analytically solvable particular cases are considered in section 3. It is shown
there that EMF . of the charge moving in the medium with electric permittivity (1.1)
should exhibit oscillations in a half-space behind the moving charge. It turns out that
+. some critical charge velocity v, exists which'depends on the medium properties and does
.not depend on the frequency (despite the fact that the frequency dispersion is taken into
account). Below and above v,, the distributions of EMF radiated by a moving charge
. differ drastically.. In section 4, we evaluate the energy losses as a function of the charge
velocity for e given by (1.1). This dependence shows that a charge moving in medium
radiates at each velocity. In the same section, we demonstrate how the energy. flux is
distributed over the surface of a cylinder coaxial with the charge trajectory (this is a
~ usual procedure in the VC effect theory). It is shown that for the charge velocity greater
than v, the main contribution to the energy flux comes from the space region where in the
absence of w dispersion the Cherenkov cone intersects the cylinder surface. It turns out
that rapid oscillations of the energy flux should be observed in this region. For v < v, this
" space region contributes practically nothing to the energy flux. The main contribution to
‘the energy losses comes from the space region sufficiently remote from that of mentioned
above ‘and lying behind a moving charge. These considerations support the results of
experiments ([12-14]) indicating on the existence of the radiation below the Cherenkov
threshold.

2 Mathematical preliminaries
- Consider a point charge e uniformly moving in a non-magnetic medium with a velocity v

_directeid along the z axis. Its charge and current densities are given by -

p(7,t) = ed(2)8(y)d(z — vt), 5, = vp.

Théi; Foqrier éra.néflorms'are )
p(Ryw) = / p(7,t) expli(kF — wt)]d®Fdt — 2med(w— ko), j.(K,w)=vp(kw) (2.1).

‘ :'Ijhe EMF stﬁéngths of the moving charge satisfy the Maxwell equationks:;

“divD = 4mp, divB = 0, curlfi ="

ol

B, arlfi =-D4+ 23 (2.2).
c c

As the medium is non-magnetic, B = ff. The ée_cond and third Maxwell equations are
satisfied if we put ‘

= Vo — -4

t

H=vVxA

X
o=

The electric field E of a moving charge induces the polarization—ﬁ(f‘, t) which being added
with E gives electric induction D = E + 47 B. Usually, it is believed (see, e.g.,[15]) that
the w components of P and £

B, = / B ), B, = / e~ F(7, t)dt

are related by the formula

T N B 23)
S Sy

In the (k,w) space the‘electromagnetic potentials are given by ([16])

2o Ar p(kw) P g pEw) 04
‘D(lﬁw):Tm, Az(k,w)—‘l’fﬂkz_;,_:e, B=vfe (24)

Here €(w) is the electric permittivity of medium. Its frequency dependence is chosen in
a standard form (1.1). In the usual interpretation wy and wg are tl'le plasma frequency
w} = 4w N.e*/m ( N, is the number of electrons per unit volume, m is the e:lectron.rnass)
and some resonance frequency, resp. Quantum-mechantcally, it can be associated with the
energy excitation of the lowest atomic level. Qur subsequer}t ?Xposmon. does not depend
on this particular interpretation of wy, and wp. The static limit of e(w) is
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€0 = ¢(w =0) + - |

¢(w) has poles at w = Fwy. Being positive for w? < wd it jumps from +o00 to ~co wh.en
one crosses the point w? = w?; (w) has zero at w? = w? ="w? +w}? and tends to unity
for w = co. In Eq. (1.1), ¢(w) is negative for w@ < w? < w2 +w} gFlg. 1). For the free
electromagnetic wave this leads to its space damping in this w region even for real e(w)
(see, e.g., [10,15]). )
It is seen that o

2

-1 =1 — ——%&
) =1

2, .2 .
has zero at w? = wj and a pole at w? = w] = wj +wi. ) .
For the EMF ra?diated by a moving charge the conditions for EMF datmpm.g ars modi-
fied . It turns out that the damping takes place for 1 — % > 0. Otherwise (1 = B?e < 0),
there is no damping. ) . : o
We now define domains where 1 — 8%¢ > 0 and 1 — 8% < 0. , v . ,
For 3 < 3, one has: 1—8% > 0 for w? < w? and w? > W and 1-0% < O‘for;wC <w? <wi
Fig. 2). . o ‘ -
g?orﬂ > 3, one gets: 1 — B% > 0 for w? > w? and 1 — % < 0 for' 0 < wh < Wk
) : e 22
(Fig. 3) . Here B, = /" = 1/\/T ¥ wbfuy w. = woVT=%, = Fy/fia? 7* =
1-8971 2=(01-=8)" L TR
gn what follows, 3., despite its formal appearance and 1ndepen‘dyen'cek‘(.)f w, w_gl! pla.y an
important role for the analysis of the EMF induced by a charge moving in me.dlum w1?h a
frequency-dependent permittivity. In the static limit (w - 0) it coincides with the light
velocity in medium. ) .



Strictly speaking, Eq. (1.1) is valid for media with €5.= 1 (e.g., for gases). In what
follows we apply Eq. (1.1) to the medium with 8. = 0.75, n = ﬁ =1/8. = 1.333. The
optical properties of this medium are close to those of water for which n = 1.334. For this
value of the refractive index n one should use the Clausius-Mossotti (or Lorentz-l.orenz)
formula ([8-10]):

wi

1+ 2a(w)/3 w? , o
¢ = = a(w)/3 =1+ w")z — a(w) = P—L—L‘JZ’ UJOZ = “-’0 — wz/?) (2.()).

The conditions for EMF damping and its absence now are 1 — 8%’ > 0 and 1 — 8% < 0,
resp. For w? < wL/3 one always has 1 — 82¢/ > 0, which means the absence of radiation
by a umformly moving charge .
Let now w? > wL/3 Then, for 8 < 8., (B* =1 —wL/(wo + ZwL/3)onc has :
1~ 8% >0 for w? < wf? (m’2 =w = Fy%W}) a.nd for w? > wf
1—ﬁ26',<0forw?<w <wd .
On the other hand, for 8 > ,8;:
1-—p% >0 forw? > wPand 1 —F2% <0 for0 <w? < w.
We see that qualitative behaviour of € and €' is almost the same if we identify 3., wo and
wr, with 3],w} and wr, resp. The sole exception is that for w? < w? /3 there is no solution
corresponding to'l'— 3% < 0. This permits us to limit ourselves to the ¢ representation
in the form (1.1). All the subsequent expressions will be valid for ¢ given by (2.5) if we
change f.,wo and wy, by G.,w) and wy, resp.

In what follows we use the quantity 8. = 1/4/1 + w}/w? which in the static limit
(w = 0) coincides with the light velocity in medium. It is seen that 8. changes from
Be=0for N >> 1 up to B, =1 for N = 0. We refer to these limit cases as to optically
dense and rarefied media, resp.
+ « In'the 7,1 representation ®(F,t) and A'(F,t) are given by

) dw kdk
B(F 1) = — ewlt=zfv)____~ %
(7,1) 7T’U/ c [T %(1 ~ ﬂ26)Jo(kP).

kdk
k2 + (1 - B2)
The usual way to handle with these integrals is to integrate them first over k. This can be
done in a closed form {17]. The remaining integrals over w are difficult to treat analytically.

The correspondmg integrands are usually interpreted as frequency distributions of EMF
associated with the uniform motion of charge in medium.

g € iw(t—z/v
A== / dwet=#1v) Jo(kp). (2.6)

In this approach we prefer to take the above integrals first over w. The advantage of this

approach is that arising integrals can be treated analytically in various particular cases.

- These integration methods complement each other. The possibility to get rid of any trace
of the w dependence points out on a slightly artificial character of the w representation (as
far as we do not concern the quantum aspects of radiation). In fact, Maxwell equations
(2.2) describing EMF of the uniformly moving charge can be handled without any appeal
‘to w representatxon To prove this, we rewrite Eq. (2.3) in the 7, ¢ representation:

/ t——t)Et)dt'

where oo

G(t—t) = lim o /

dw (1"
Gt

A direct caleulation shows that (G({ — ') =0 for I > L and

Gy -t)y= 3Z}%:zsin[..u(l — )] for t' < t.

Substituting P into the Maxwell equations (2.2) one obtains the system ol integro-

differential equations which depend only on the charge velocity and medium parameters.
We represent denominators entering in (2.6) in the form

2 2 2,2
, W 2 - v w u,o =
: — 3% =
W 50 =00 = o

v? . I 1 1 1 1
:————(.’,,;2—“;) [ — - (- -
| — 2 0 2+.u" pA '1 w—w wtw wy w —iwy w e
Here ] , RN
wl =l +wl, w? = wl -0+ (07~ Fyuget)

W= 0+ (O - A le]) 0= ;{wéw“w‘( ket )]

Substituting these expressions into (2.6) and performing the w integration we get for the
clectromagnetic potentials and ficld strengths

. A=A 4 AD),

2 . iyt ; _
AW / kdkdo(kp) 1, AP = S kb (hp) 1 (2.7)
W=— . S=—
. 0

2
o= cvy /kdk Jo(kp) Iy — i sm[w (t = z/M)O(t — z/v)Ko(pws/v).

iy = =24 _ grey? / K2dkJy(kp)Fa. Dy = 1],
dp J
. a9 2ew I JRYs IV (e S0
Is, = o = ¢y 11/L dieJy(kp)l's — sinwy(t — 2/0)O(f = z/v) (pws /).
{
£, = _%23— ‘i(’?‘; /Lko(, (kp)[2(B* - “’0) o b ()(t-~/1 coswn (f — = /v)~
—(8* - Lﬂ)—i—‘:}z Mi;- - sign(z — vt)exp (~wall — z/v})]—

2 27,2
wy twy'wi Wi
.

2¢

:‘;%’ cos wa(l - z[v)O(t = z/v)Ko(pwsfv).

u’(l +:H 7 wl ()

"o — zfe)cose(f — =fv)—

D, = —2¢ / Iulk.lu(kp)
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wj +wg — By

~wolt — - st —zfv).
e exp(~wslt — z/v]) - sign(t fv)

—e / kdkJo(kp)

Here we put Fq= F“) F,(,z),

1 ws + wi
F(l) ————;—O(t — z/v)sinw (t — z/v), Ff(f) 2 "0

exp (—~wsa|l — z /v
, witwiw o P (el ==/,

(wi —w3)?
(@i + wi)(wi - i)
(wg +wi)?
L wy(wf + wi)(w] + wh 3)

. N 2 3
Fy=FM+ FP, F) = - ot - z/v)w—lsmw,(t — z/v),

F(z) = exp (—wat — 2/v}). (2.8)

The separationof Fy4 and Fy into two parts is justified physically. We sce that F“) F(')

and Ff,z), ‘ F(Z) describe correspondmgly the radiation field and EMF carried by a uni-
formly moving charge. They originate from the w poles lying in non-damping and (ldmp—
ing regions, resp.
When evaluating electromagnetic potentials and field strengths we have taken into account
that ¢(w) given by (1.1) is a limiting expression (as p — 0) of
. wz
(w)y=1+ w———_g T2 Tipw
having a pole in the upper w half-plane (for the Fourier transform chosen in the form
_ (2.4)). This in turn results in an infinitely small positive imaginary part in w; and in
factor 2 in the first terms in F4 and Fs;. The position of poles of ¢(w) in the upper
complex w half-plane is needed to satisfy the causality condition. Sometimes in physical
literature [15] it is stated that the causality condition is fulfilled if the poles of ¢(w) lie
in the lower w half-plane. This is due to a different definition of the Fourier transforms
corresponding to different signs of w of the exponentials occurring in (2.6).

It is seen that ®, E,, and E, are singular on the motion axis behind the moving
charge. These singularities are due to the modified Bessel functions K outside the integrals
in (2.7). For a fixed observation point z on the cylinder surface these singularities as
functions of time oscillate with the frequency ws = wo/f.. For the fixed observation time
t these singularities as functions of the observation point z oscillate with the frequency
wo/ﬁcv As electric induction D is not singular on the motion axis, the electric polarization

=(D - E)/47r has the same singularity as E. As to the magnetic field H, it tends to
zero on the motion axis:

ew£w§ . a
Hy — —C_,;—G)(t — z/v)sinfwo(t — z/v)]pRo(pwof/c) for p— 0.

3. Particular cases

Consider the limiting cases. In most cases we consider of the magnetic vector potential
(and, rarely, of the electric potential). The behaviour of EMF strengths is restored by the
differentiation of potentials. -

1) Let v — 0. Then,
wy = wo, wo—vyk, A,—0,and

1

¢ — '1_+—2—/—_/ko0(159)€)(13( ﬂ’fkclt —z[v]) = P m (31)

i.e., we obtain the field of a charge to be at rest in the medlum It turns out that only
the second term in F contributes to ®.

2) Let wy, —+ 0. This corresponds to the zero electron density, on which the moving
charge exhibits scattering. Then,
e—1, fB.—o1, w—0, w —vkv,

ef
=it + P2

A, = eﬂ'y/kog(kp) exp (—kvy|z — vt|) [(

[~ 07 + P
i.e., we obtain the field of a charge moving in vacuum. Again, only second.terms in Fy
and F4 contribute to ® and A,, resp.

D - (3.2)

3) Let wy, — oo. This corresponds to an optically dense medium. Then,
2 Whiaa 2 2,202 2 2 2, W2 2
W= “2EE, Wl = Py (wp +EC) - wg + K,
w} . w}

oWy, . : . woke(t —z/v)
Ty 4 Fhe o(t z/v)sm—————-—L R

FY — exp(—Ayywi + kzc?lt — z/v)),
ﬁ'y,/wL + k2c2

AW can be evaluated in a closed form:

Y~

A — % exp(—wrR/e), R=[(z—vt) + B0 41 (83)
while the analytic form of A is a.va.ilable'only for p > > wgc(t - z/v)/wL:

o(t — z/v) smh[wo(t - z/v)]Kg(wLp/c) (34)

AW _, 20 g
£ c

(it is seen that AW decreases exponentially when p grows and increases exponentially
with rising ¢ — z/v) and on the motion axis: ;

AW = E20 (12 v)exp(—wo(t—2/v)) Ei(wo(t—z/v))—exp(wo(t—2/v)) B —uwn(t=z/v))]-
Here ‘Ei(z) is an integral exponent. For small and large values of wo(t — z/v) this gives:

AN~ —QG—L:-EG)(t - z/v) sin(wo(t — 2/v))[C + In(wo(t — 2/v))] for wo(t —2/v) << 1,



2e
W 2 t— 1
A} E—2/v) for wy(t—2z/v)>>1,
C is the Euler constant. Thus, damped oscillations of EMF should be observed on the
motion axis behind the charge.

k4) Let wo — oo, i.e., the resonance level lies very high. Then,

2 2 _ 2,2 2 2 2,212 .2
wl—)wo—ﬂ'y’wL, wy = Bkt

(1) . wzﬂ272 2 t
Fa' - @2 — Wifty? + fiyTkEc? \/ O(t ~ z/v)sin[y/wg — wify?(t —

ﬂ’ 20 2
T 1
F‘,(‘ ) e ﬂ»Yk exp(—ﬂ’ykclt — Z/‘UI, )
A 5 QG_WLLG__’Z_@(t — z/v)sinfwo(t — z/v)]IXo(pw0 ) (3:5)
AD ef (3.6)

[(z — vt)? + p? /4?12 -

We see that a compete VP consists of VP A{®) describing the charge motion in vacuum
and oscillating perturbation A{Y on the axis of the charge motion.

75) Let wo — 0, i.e., the resonance level lies very low. Then,

k2c? wiw?

2 2 2 2,212 2 2 LY

Wi = W wy = By (ke +wi) —
1 okgcg wi’ 2 7( . L)

2,2 27
k2c? + wi

2w? 1 wokc(t — z/v)
(1) o, 2% Ll ST A
F N Fiyick (2 3 1) O(t — z/v)sin| et o]
‘ 1
F(Z) =3 E’;W P[ ﬂ7\/k262+wL(t_z/U)]1
. €
AP ~ Eﬂ exp(—ywrR/c), R=[(vt—2z)+B2y2p" /v"]/2 (3.7)

We succeed to evaluate A{!) in a closed form in two cases. For wop/c << 1 one gets

1 — coswo(t — z/v)

AN = 2¢0(t — z/v) iy S
- v

(3.8)

On the other hand, for wo(t — z/v) << 1

ewow[,

| A(l) —5—0(t — z/v)pc(t — z/v)K:1(pwr/c).

) There are VP osc111atxons in the half-space behind the moving charge decreasing expo-
nentially with the rise of p.

6) Let wy — oo, wy — 00, but wy fwp and. therefore, B.-are finite. Then, one gets

’ ‘ 1
wl oW —‘?)-l-zzwg#. w%:zzwgl_z.
2ec3yE 8(p) . €3
A, — i ——=si 1 = €wp(t — =/v - .
P o Vel s e R
3 - g

2e¢8%y% &
q’"wu(l—aﬂ/'* sl e =) + [c =2 + p2(1 = FiQ)|1 2

for 3 < d.. Here x = 3qkefwy, ¢ = 342 /3242. For 3 > 3. one has:

2.2 -

. Wir {
u.‘ll:?u_] “’2““’0((_1)+I“’0———~_1‘
ecd?*y*c 8(p) - 2¢3
Az ——— ] —V(— i —zfv . o .
T e R P )y U
2¢3

P37
q)_,il.éfo exp[—ve — lwg(t — z/v)] +

wo(&—1)3/2 [(z = v0)? = p2(32 — 1)]/2
The origin of the first and second terms in A, and @ is due to the second and first terms
in 174 and Fy, resp.
Thus, one obtains VP of a charge moving in medium with a constant electric permittivity
¢ = ¢o and the singular VI> an the motion axis.

7) Let the dimensionless quantity ¢ = 3242 B292 >> 1. Then,
y f‘yf

2.2 . : 1

; WwoT, ; - ; ) -
wlz = 1 _(;_1"2_7 wzl = ‘(l + 'T.f) - 1 + Izv Te = ,Hx?'yrk(‘/"“"()-
Fp =14 g3

5 ,
) = O(t — z/v)sinfwe(t — = /v) i

‘/l—;—rf]

wofz (1 + 22)3/2

1P = exp(— Va1 + s2wlt — =/v]) (3.9).
wo\/_\/l + 22 .
Correspondingly, ‘ B R
A = /1(') + A(Z) where
2ew . qwoll = ../z )r|
A = 0 z / si o
: #/v) (1+ﬂ 372 "(ﬂvc) ! ViEE k
(2) _ o8 _wolly R Y B P (1/2) :
AP = Foxp(= ), R [z et 4 00,

We did not succeed in evaluating A in a closed form. 1nstead, we consider particular
cases when the condition € >> 1 can be realized. .



Let’ﬁ be finite and 3. — 0. This corresponds to an optically dense medium. Then, A®
is exponentially small whereas

2eB.7.
(82922 (t — z[v)? — p?)1/2

is confined to an infinitely narrow cone lying behind the moving charge. This equation is
obtained by neglecting z? in the square roots in (3.9).

Let 8 =1, (. — 1 under the condition € >> 1 (that is, 8 is much closer to unity than
). This inequality is possible because of the v factors in the definition of €. Then,

A(l) —

Ot — 2/v)O[Bcc(t — z/v) - p). (3.10)

1 — cosfwo(t — z/v)]
ct—z )

AWM = 260(t — z/v) (3.11)
for small values of p. It is seen that VP exhibits oscillations in a half-space bt‘hmd the
moving charge.

More accurately, condition under which Eq. (3.11) is valid looks as pwq/f.7.c << 1. This
means that for 3, fixed in the interval 0 < B.<1, A(‘) oscillates for p << 3.y.¢/wy.
8) Let € << 1..Then,

é é

wf = wg(l - ﬁ—;), wg = ngz(l + l_ﬁ)’ T = ﬂ'ykc/wg,
m_ 2. 1 . ¢ 1
AT me(t — z[v)sinfwo(t — z/v)(1 - 5@)],

1
F = ;(;exp(——woﬂt - z[v]).

A coincides with the VP of a charge moving in vacuum:

ev
G o0 + o277

AP =

As to A, it can be taken in an analytic form for (¢t — z[v)weE << 1:

AD = ‘Zj‘;‘;ﬂ"e( — z/v) sin[wo(t — 2/v)] K1 (pwo/ Bre). (3.12)

The condition € << 1 can be realized in two ways. First, 8, can be finite but 8 << 1. In
this case A{" is confined to a narrow beam behind the moving charge:

i 2e)(t — z/v)sinfwo(t — z/v)] exp(—%% . (3.13)
On the other hand, the condition € << 1 can be fulfilled when g is close to 1, but 3, is
much closer to it. Then,

Aﬁl) (Wpu;(fj 7 )1/2

A = Z229(t — z/v) sinfwo(t — z/v)]. (3.14)

ey €
c

Thus, A is small (due to the ¢ factor), but not exponentially small. This means that
one should observe oscillations in the half-space behind the moving charge. Physically,

10

Bc =1, B =1, € << 1 corresponds to the motion in an optically rarefied medium (e.g.,
gas) with a charge velocity slightly smaller than the light velocity in medium.

We observe the a noticeable distinction between the cases § ~ 1, . ~ 1 corresponding
to € >> 1 and & << 1. In both cases A{") oscillates in the half-space behind the moving
charge, but the amplitude of oscillations is considerably lesser for 3 < . (due to the €
factor in (3.14)).

More precisely, conditions under which Eq. (3.14) is valid is pwo/Byc << 1..This means -
that for 8 fixed, VP oscillations should take place for small values of p.

9) Let the charge velocity exactly coincide with the light velocity in medium: g =
B., &é=1. Then,

2 2 2 2
wy T wy T 2
i L A Sl SR RO A

Let 8 = 3. =~ 1. This corresponds to a fast charged particle moving in a rarefied medium.
Then,

(1) 46“)0 — z/v)sin wo(t — 2/v)][Ko wop — Ko(v/222 )
AV =50 / )sinfwo(t — z/v)][K (\/ﬁﬂ )— K (\/_ﬂ7c)],
AP = I[;exp(—ng/v), R =[(z—vt)? + p*/y}"/%

Thus, A{? differs from zero in a neighbourhood of the current charge position, whereas
AN descrlbes the oscillations in the half-plane behind the moving charge.. As v is very
large, AD) as a function of p diminishes rather slowly: it decreases essentially when the
radius p & v2ey/wo.

4 Numerical Results

In this section we, present the results of numerical calculations. We intend to consider

the EMF distribution on the surface of a cylinder of the radius p (Fig. 4). This is 4 usual

procedure in the consideration of VC effect (see, e.g., [7]).

For frequency-independent electric permittivity (e = €) there is no radiation for 8 < g, =
1/2 For 8 > f., the energy flux is infinite on the surface of the Cherenkov-Mach cone.

ﬂ2

value in the place z = —z, where C, is mtersected by the above cone.’ Inside the Mach

cone the electromagnetic strengths fall as =2 at large distances and, therefore, do not

contribute to the radial flux.

In what follows the results of numerical calculations will be presented in drmensionless
variables. In pa.rtlcula,r, lengths ‘will be expressed in units c/wo, time in units wo , elec-
tromagnetic strengths in units ewg/c2 the Poynting vector P = (c/41r)(E x H i in- units

e2wl/c3, etc. We evaluate the ra.dla.l energy flux per unit length through the surface of a
cylmder C, (Fig. 4) coaxial w1th the z axis for the total time of motion: Tt is given by

On the surface of C, it equals zero for z > ~z, z. = ‘/2- — 1-and acquires aninfinite

o DU
2mp C,a = c
W,=2mp [ S,dt= / Sudz, S, = B xBy=—Lhd. (1)
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Substituting ,here E, and’ H, we get for energy losses per unit length

e? 1
W,=5 [ wde(l- 7 (42)
B2e>1
Or, explicitly 17,
e2 wy 1 e wo - . ‘
W,,:;jcudw(l—ﬁ)z CRT Sl t zln(l—ﬁ)] (1.3)
for B < 8. and ’ E
e? wo 1 ezwg | .
-a -7 =T In(~? 4.4
W, =5 0/ wdeo(1 = ) = 2= i + g M02) (4.4)

\

for 8 > ,Hc Similar expressions were obtained by E. Fermi [11]. he validity of Eq.(4. 2)
is also confirmed by the results obtained by Sternheimer [18] (whose equations pass into
(4.2) in the limit p — 0) and in the recent review by Ginzburg [19].

For 8 — 0 the energy losses W, tenid to 0, while for § — 1 (it is Just this limit that was

considered by Tamm and Frank [2]) they tend to the finite value ——L In(1 + —"-)

In'Fig. 5, we present the dimensionless quantity ¥ = W,,/(ezw[,/cz) as a function of the
particle velocity 8. The numbers on curves mean 3;. Vertical lines with arrows divide a
‘curve into two parts corresponding to the energy losses with velocities 8 < B, and 8 > .
and lying to the left and right of vertical lines, resp. We see that the charge uniformly
moving in medium radiates at every velocity.
How is this flux distributed over the surface of C,? For the definiteness we take 3. = 0.75
to which corresponds the refractive index n = 1/, = 1.333. This is close to the refractive
_index of the water (n = 1. 334). The value of p is chosen to be p = 10 (in units of ¢/wa).
In Fig. 6 it is shown how the quantity o, = 218, is distributed over the C, surface for
: ,H = 0.3.'It is seen that the radiation EMF (corresponding to the AW term in A,) differs
from zero only at large distances from the moving charge. The isolated oscillation in the
neighbourhood of z = 0 corresponds to the EMF carried by the moving charge with itsell.
" We refer to this part of EMF as to the non-radiation one. The integral of it taken over
s either z or t.is equal to zero. Thus, it does not contribute to the total energy losses given
> by (4.1).-Being originated from the A% term in A, (see Eq.(2.7)), it approximately equals

R I e

| | 5 (L= B/AF
- As we have mentioned, this corresponds to the radial energy flux carried by the uniformly

- ‘moving charge with the velocity # < . in medium with a constant € = €. Due to its
antisymmetry w. r.t. z — vt the integral of it taken over either z or t is equal to zero.

‘s . If the distribution of the radiation flux on the surface of the sphere S ( instead on
the cylinder surface C,, as we have done up to now) were considered, the radial radiation
flux S,.would be confined to the narrow cone adjusted to the negative z semi-axis (IFig.

R As it follows from Fig. 6, the solution angle 8, of this cone equals approximately 3
degrees for 3. = 0.75 and 3 = 0.3.

(4.5)
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When 8 grows. the relative contribution of the radiation term also increases. This
is clearly demonstrated in Figs. 8 and 9 where the distributions of o, are presented for
3 = 0.5 and g = 0.99, resp. The energy flux distributions presented in Vigs. 6. 8 and 9
consist in fact of many oscillations. Thisis shown in Fig. 10 where the magnified image of
o, for 3 = 0.99 is presented. It turns out that the first maximum of the radiation intensity

is located in the same place z. = —py/3%/32 — | where in the absence of dispersion the
singular Chereukov-Mach cone intersects the C, surface.
In Fig. 11 there is shown the distribution of the encrgy flux on the C, surface for 3. = 0.1
and 8 = 0.99. In this case ¢ >> | and the radiation, similarly to the << 1 case shown
in Iig. 6, is confined to the narrow cone behind the moving charge but with a miich
larger amplitude. This completely agrees with a qualitative consideration of the previous
section. o

To detect the S, component of §, one should have a detector imbedded into a thin
collimator and directed towards the charge motion axis. The collimator should be imn-
penetrable for the 4 quanta with directions different from the radial one. It follows from
Figs. 6-11 that in a particular detector (2 = ‘const), rapid oscillations of -the radiation
intensity as a function of time should be observed (as all the physical quantitics and.’in
particular. S, depend on ¢ and z via the conibination z = vt)." It should be asked why
so far nobody observed these oscillations? From the ,H = 0.99, 3. = 0.75 case presented
in [ig. 10 it follows that diffraction picture differs essentially from zero on the interval
—150 < z — vt < 0, where z is expressed in units ¢/wo. The typical wp value taken from
the IFrank book [7] is wp = 6 - ]0'5.9(’0_‘. This gives ¢fwo & 5 - 107 cam. We sce that
the above interval is of the order 150 5 - 10~%em = 1073em. The rapidly moving charge
(v = ¢) overcomes this distance for tl](‘ time 1073¢™! - see & 3 - 107 Msee. It follows from
Iig. 10 that there are many oscillations in this time inter val. Because of this. they hardly
can be resolved experimentally. s
Now we turn to experiments recently discussed in [12-14]. ln them, fol the ('l((tron mov-
ing in a gas with a fixed encrgy the radiation intensity was measured as a function of the
gas pressure P. The latter is related to the gas density Ny by the well-known thermody-
namic relation: PV = kN,T, where V is the gas volume, 7' is its temperature and k is
the Boltzmann constant. The quantities N.,w? and B used in section 2 are related to N,
as follows: '

2.
2 27000 g2 “o
Ne=N,-7, i, =A4rNee /m pi= ——2+w
Here Z is the atomic number of a g,ds Leb the gas pressure, at which g, = i be. equal

to pe. In the experiments quoted above a sharp reduction of the radiation mlvnsity was
observed for the gas pressure p & p./100. “To this gas pressure there corresponds € << |
despite the fact that 8 = fB; =1 (this is possible because of th( vy I'A(lms in th( - definition
of €).

To clarifly the nature of this ph(‘nmn(’non we turn_to Eqs. (4. i) and (1.1} which for
a fixed B define encrgy losses per unit l('ngth as a luuction of, 7. llu typical curves
arc shown in I%ig. 12. The numbers on curves mean charge veloci m 1t follows that for
8 = 0.99 the radiation inte nslty dnmmsh( 5 appm‘(unal('ly 60 times when 4. (hdn;,(‘x from -
0.9 to 0.999. The corresponding _distributions of the energy flux on the surface of C,
arc shown in Figs. 13 and 14, Tt is séen that the intensity at maxima is almost I()()()
times lesser for 3. = 0.999 thall for /3 =09 The intensity distribution is very sharp for
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8. = 0.9 and rather broad for 8, = 0.999. The physical reason for the sharp reduction of
intensity is in the increase for 8. > (3 of the region where the electromagnetic waves are
damped. This agrees with qualitative estimates of section 3.

So far, we have evaluated S,, the radial component of the Poynting vector. The
integral 2mp [ S,dz taken over C, is the same for any p. It is equal to vW,, where v is

the charge velocity while the quantity W, independent of p is defined by Eqs. (1.2)-(4.4).
The Poynting vector P has another component, S;. Both of themn define the direction in
which the radiatiion propagates. The distributions of o, = 275, on the surface of C, are
shown in Figs. 15-17 for the charge velocities 8 = 0.3, 0.5 and, 0.99, resp. The isolated
peak in the neighbourhood of z = 0 plane corresponds to EMF carried by the moving
charge with itsef. Being originated from the second term in A, it approximately equals

to (for B < ;)

@ o PP 1
T 2a07A [(z - vt)2 + 2/

It is seen that the qualitative behaviour of S, is almost the same as S,, however, the
maxima of S, are approximately twice of those of 5,. This means that the radiation is
emitted more in the forward direction than in the transverse one. To observe S, one
should orient the collimator with a detector inside it along the 2 axis. The collimator
should be impenetrable for the ¥ quanta with directions non-parallel to the z axis. Again,
the oscillations of intensity as a function of time should be detected during the charge
motion. ) .

To determine the major direction of the radiation, one should find surfaces on which the
Poynting vector is maximal ([17]). Due to the axial symmetry thesc surfaces look like
lines in p, z variables. We shall refer to these lines as to trajectories. The behaviour of
these trajectories is quite different depending on whether 8 > f; or 3 < f.. For 3 > f.
the trajectories are not closed. When z — o0, p also tends to oo. For # < f. the
trajectories are closed. In the WKB approach, on a particular of the mentioned surfaces,
the inclination of the Poynting vector towards the motion axis is given by ([17])

377:=(1—ﬂ:)—’7ﬂn:/3/ﬁc- '

S. 1 .
V52452 pfe(z)

Here z is a parameter, ¢(z) = 1 +[B243(1 —2%)]7}, S, = —cE,Hy/4m and S, = cE,Hy/47.
For 3 > f3., z changes from z = 1 for which p is zero, z is finite and §p = 7/2 up toz =0

for which both p and z aré infinite while cos 8p has the same value 8./ as in the absence
of dispersion. ’

coslp =

For 8 < . a particular trajectory intersects the motion axis two times: at £ =1 where z
is finite and 0p = 7/2 and at £ = /1 —  where z is finite and greater in absolute value
than for z = 1, while 0p = 0 there. At the point of the trajectory where p is maximal
th;e inclination of the Poynting vector towards the motion axis acquires the intermediate
value ”
: 1 1 -~
cosfp = [—3[1 ]2

B2 — VA -39

Consider now the cnergy flux per unit time through the entire z = const plane. 1t is given

14
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by
c
W, = / S.pdpdd = = / E,Hypdp

Substituting here E, and Hy from (2.7) and using the well-known orthogonality relation
between the Bessel functions (J pdpJm(kp)Jm(k'p) = 18(k — k'),
0

one obtains

W, = %e"’va'y2 /kzdkFA(k,Z — vt){VFy(k,z —vt)=

2 w 1 -
~ i T oy oot = 2/ A,

where F4 and Fj are given by Eqs. (2.8). It is not evident that W, is positive definite. In
Fig. 18 we present W, as a function of z for §; = 0.75 and 8 = 0.99. It is seen that W, is
almost constant in a very broad range of z except for the neighbourhood of the z = const
plane passing through the current charge position. The positivity of W, = 2n [ S.pdp
means that the energy flow of radiation follows for the moving charge and does not mean
that S, is also positive. This is illustrated in Fig. 19 where o, = 275, as a function of p
is presented for a particular z = const plane (z = —800). It is seen that S, contains both
positive and negative parts. This may be understood within the polarization formalism
(17]. In it, the moving charge induces the time-dependent polarization of the medium.
This in turn leads to the appearance of the radiation characterized by the Poynting vector
§ = ﬁ(ﬁ X ﬁ) The positivity of S, means that the part of the induced radiation flux
follows for the moving charge. This fact has no relation to the well-known difficulty taking
place for the radiation of the accelerated charge moving in vacuum where the solutions
of the Maxwell equations corresponding to the energy flux directed inwards the moving
charge are regarded as unphysical. ‘

5 Conclusion

1. 1t is shown that a point charge moving uniformly in a dielectric medium with a standard
choice (1.1) of electric permittivity should radiate at each velocity. The distributions of
the radiated electromagnetic field differ drastically for a charge velocity v below and above
some critical value v, which depends on the medium properties and does not depend on
the frequency (despite the fact that w dispersion is taken into account). For v < v, the
radiation flux is concentrated behind the moving charge on a sufficiently remote distance
from the charge. : . i

2. The electromagnetic field radiated by a charge uniformly moving in a dielectric
medium with €(w) given by (1.1) consists of many oscillations which should be observed
experimentally. ‘ R .

3. The results of recent experiments [12-14] dealing with the Vavilov-Cherenkov ra-
diation and indicating on the existence of the radiation below the Cherenkov threshold
seems to be supported by the the present investigation.
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Fig. 1: For the free electromagnetlc wave propagating in medium, the damping region
where ¢ < 0 corresponds to Wi < w? < wh
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"Fig. 2: For the electromagnetxc field radiated by a charge uniformly moving in medium

with velocity v < v., the damping reglon where 1 — f% >. 0 lies within the intervals
’0<u<wcandw0<w<oo :
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IFig. 3: For the clectromagnetic field radiated by a charge untformly moving in medium
with velocity v > w,, the damping region where | — 3% > 0 extends from w = wy to w = oc.
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Fig. 4: Schematic presentation of the Cherenkov cone for a constant clectric per-
mittivity. The radiation field has a é-type singularity on the sutface of cone. the field
inside the cone does not contribute to the radiation. ‘On the surface of the exlinder €7,
the electromagnetic field is zero for = > —z.3 0, is proportional to the radial ene lg,\ flux
through the cylinder surface (o, = 27S,).

17



ot

F(®)

1E-3
0.0

Fig. 7: The distribution of the radial energy flux on the surface of the sphere S, for
B =0.3 and S, = 0.75 is confined to the narrow cone with a the solution angle 0, = 3°.

Fig. 5: The radial energy losses per unit length (in units €’w2/c?) as a function of
3 = v/c. The number of a particular curve mean the critical velocity ..

—
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-3 . . Fig. 8: The same as in Fig. 6, but for 8 = 0.5. The contribution of the non-radiation
—-1000-800 -600 —400 —-200 0O 200 term relative to the radiation one is much smaller than for 8 = 0.3.

Y/

Fig. 6: The distribution of the radial energy flux on the surface of C, for 8 = 0.3
and 3. = 0.75. The isolated oscillation in the neighbourhood z = 0 corresponds to the
non-radiation field carried by a charge with itself. The radiation and non-radiation terms
arc of the same order.
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Fig. 9: The same as in Fig. 6, but for § = 0.99. The contribution of the non-radiation
term relative to the radiation one is negligible.

Fig. 10: Fine structure of 8 = (.99 case. It seen that a seemingly continuous distrib~
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ution of Fig. 9 consists of many peaks.
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Fig. 11: "The distribution of the radial flux on the surface of C, for 4 = 0.99 and

A. = 0.1. Asin Fig. 6, the radiation is confined to the narrow cone behind the moving
charge. hut with a much greater amplitude.
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Fig. 12: The radial energy losses as a function of the critical velocity characterizing

medium properties. Values of 3, cldse to | and 0 correspond to optically rarefied and
dense media. Numbers of curves mean charge velocity 3.
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Fig. 13: The distribution of the radial energy flux on the surface of (. for the charge
velocity. (4 = 0.99) slightly smaller than charge velocity in,vacuum and for the critical
velocity 3. = 0.9 slightly smaller than 3. The intensity of radiation is concentrated ncar
the z :%‘_plane. .
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Fig. 14: The same as in Fig. 13, but for the critical velocity 8. = 0.999 only slightly
greater than 3 = 0.99. The distribution of the radiation intensity is very broad and by
three orders smaller than in Fig. 13.

22

e

-1000-800 -600 —400 200 O 200
7 .
Fig. 15: The distribution of the energy flux ", along the motion axis on the surface
of C, for B = 0.3 and B. = 0.75. The isolated peak in the neighbourhood of z = 0
corresponds to the non-radiation field carried by a charge with itself. The radiation and
non-radiation terms are of the same order. :
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Fig. 16: The same as in Fig. 15, but for 3 = 0.5. The contribution of the non-radiation
term relative to the radiation one is much smaller than for 8 = 0.3.

23



20 . .

16l B=0.75

p=10

LR g=0.99
S8

><N

b 4

.

—4 "

~1000-800 —600 —400 —200 0 200

.
f] .

Fig. 17: The same as in Fig. 15, but for B = 0.99. The contribution of the non-
radiation term relative to the radiation one is negligible.
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Fig. 18: The total integral energy flux W, through the plane normal to the motion
axis as a function of this plane position fop B =0.99 and 8. = 0.75.
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Iig. 19: The distribution of the encrgy flux in a particular {(z = —800) plance normal

to the motion axis as a function of the radial distance p. Positive and negative signs ol G
correspond to the energy flow directed towards the moving charge and ontwards it. resp.
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