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1 Introduction 

A specific electromagnetic radiation produced by fast electrons moving in medium was 
observed by P.A. Cherenkov in 1934 [1]. Tamm and Frank [2] considered the motion of a 
point charge in medium with a constant electric permittivity. They showed that the charge 
should radiate when its velocity exceeds the light velocity in medium. For frequency
independent electric permittivity the electromagnetic strengths have J-type singularities. 
on the surface of the so-called Cherenkov (or Mach) cone [3-6]. As a result, of the integrals 
involving the product of electromagnetic strengths become divergent. In particular, this 
is true for the total flux of electromagnetic field (EMF). To avoid this difficulty, Tamm 
and Frank (see, e.g., Frank's book [7]) made the Fourier transformation of EMF and 
integrated the energy flux up to some maximal frequency w0 • 

The goal of this treatment is to consider consequences arising from the uniform motion 
of a charge in a nonmagnetic medium described by the frequency-dependent one-pole 
electric permittivity 

wl 
t(w)=1+ w5-w2" (1.1) 

This expression is a suitable extrapolation between the static case w = 0, t(w) = Eo = 
1 + wl/w'J and the high-frequency limit w = oo, t(w) = L In the usual interpretation 
W£ and w0 are the plasma frequency wl = 47rNee2/m ( Ne is the number of electrons 
per unit volume, m is the electron mass) and some resonance frequency, resp. Quantum
mechanically, it can be associated with the energy excitation of the lowest atomic level. 
Our subsequent exposition does not depend on this particular interpretation of W£ and 
wo. 

Equation (1.1) is a standard parametrization describing a lot of optical phenomena 
[8]. It is valid when the wavelength of the EMF is much larger than the distance between 
particles of medium on which the light scatters. The typical atomic dimensions are of 
an order of a f'::J hjmca.; a.= e2 jhc, m is the electron mass. This gives).= cfw >>a 
or w << mc2a./h f'::J 5 ·1018sec-1

• The typical atomic frequencies are of the order w0 f'::J 

mc2 /ha2 
f'::J 1016 sec-1

• As w '>) w0 , the physical region extends well beyond w0 ([9]). For 
w > > wo, t( w) f'::J 1, that is, medium oscillators have no enough time to be excited. This 
means that we disregard the excitation of nuclear levels and discrete structure of scatterers. 
According to L. Brillouin ([10], p. 20): "Also, we use the formulas of the dispersion theory 
in a somewhat more general way than can be justified physically. Namely, we extend these 
formulas to infinitesimally small wavelengths, while their derivation is justifled only for 
wavelengths large compared with the distance between dispersing particles".· 

\Ve intend to consider the effects arising from the uniform charge motion in medium 
with t(w) given by (1.1). Partly, this was done by E. Fermi in 1940 [11]. He showed that 
a charged particle moving uniformly in medium with permittivity (1.1) should radiate at 
every velocity. · 

However, the following questions remained unanswered: 
L How the'EMF strengths and energy flux are distributed in space? In particular, what 
is their angular distribution? 
2. How do these distributions depend on the medium properties, on the charge velocity? 
In particular, how do these distributions differ for the charge velocity smaller and greater 
than the light velocity in medium? 
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In this consideration we restrict ourselves to the classical theory of the Vavilov
Cherenkov (VC) radiation with electric permittivity given by (1.1). It is suggested that 
uniform motion of a particle is maintained by some external force the origin of which is 
not of interest for us. 

The plan of our exposition is as follows. 

In section 2, we present, in a manifestly real form, the electromagnetic potentials anJ 
field strengths for a charge moving uniformly in a dielectric with f(w) given by (1.1 ). 
Various analytically solvable particular cases are considered in section 3. It is shown 
there that EMF of the charge moving in the medium with electric permittivity (1.1) 
should exhibit oscillations in a half-space behind the moving charge. It turns out that 
some critical charge velocity Vc exists whicli',depends on the meuium properties and does 
not depend on the frequency (despite the fact that the frequency dispersion is taken into 
account). Below and above Vc, the distributions of EMF radiated by,a moving charge 
differ drastically. In section 4, we evaluate the energy losses as a function qf the. charge 
velocity for f given by (1.1). This dependence shows that a charge moving in medium 
radiates at each velocity. In the same section, we demonstrate how the energy flux is 
distributed over the surface of a cylinder coaxial with the charge trajectory (this is a 
usual procedure in the VC effect theory). It is shown that for the charge velocity greater 
than Vc the main contribution to the energy flux comes from the space region where in the 
absence of w dispersion the Cherenkov cone intersects the cylinder surface. It turns out 
that rapid oscillations of the energy flux should be observed in' this region: For v < vc this 
space region contributes practically nothing to the energy flux. The main contribution to 
the energy losses comes from the space region sufficiently remote from that of mentioned 
above and lying behind a moving charge. These considerations support the results of 
experiments ([12-14]) indicating on the existence of the radiation below the Cherenkov 
threshold. 

2 Mathematical preliminaries 

Consider a point charge e uniformly moving in a non-magnetic medium with a velocity v 
directed along the z axis. Its charge_ and current densities are given by 

p(r, t) = eo(x)o(y)o(z- vt), Jz = vp. 

Their Fourier transforms· are 

p(k,w) =I p(r',t)exp[i(kr-wt)]d3rdt = 2rreo(w-kV), ]z(k,w) = vp(k,w) (2.1}. 

The EMF strengths of the moving charge satisfy the Maxwell equations: 

divD = 4rrp, divE= 0, - 1 :. curiE= --B, 
c 

- 1 :. 411'-
curl/l = -D + -:-] 

c c 
(2.2). 

As the medium is non-magnetic, B = fi. The seconu and third Maxwell equations are 
satisfied if we put 

ii = v X A, - - I :. E=-V'<I>--A 
c 
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The electric field E of a moving charge induces the polarization P(r, t) which being added 
with E gives electric induction jj = E + 4rr P. Usually, it is believed (see, e.g.,[15]) that 
the w components of P and E 

Pw =I e-iwt P(r, t)dt, Ew =I e-iwt E(r, t)dt 

are related by the formula 
- wz -4rr Pw = 2 2 . Ew. 

w0 -w +tpw 

In the (k,w) space the electromagnetic potentials are given by ([16]) 

<I>(k,w) = 4rr p(k,w) 
( k2 _ w2 > 

~f 

- p(k,w) 
Az(k,w) = 4rr{3--w2-, {3 = vfc 

k2 - -;:>f 

(2.3) 

(2.4) 

Here £(w) is the electric permittivity of medium. Its frequency dependence is chosen in 
a standard form (1.1). In the usual interpretation WL and w0 are the plasma frequency 
wf = 4rr Nee2 fm ( Ne is the number of electrons per unit volume, m is the electron mass) 
and some resonance frequency, resp. Quantum-mechanically, it can be associated with the 
energy excitation of the lowest atomic level. Our subsequent exposition does not depend 
on this particular interpretation of WL and w0 • The static limit of £(w) is 

w2 
fo = f(w = 0) = 1 + ~-

Wo 

f(w) has poles at w = ±w0 • Being positive for w2 < w5 it jumps from +oo to -oo when 
one crosses the point w2 = w'5; f(w) has zero at w2 = w5 = w5 + wz and tends to unity 
for w-+ oo. In Eq. (1.1), f(w) is negative for w5 < w2 < w5 +~I (Fig. 1). For the free 
electromagnetic wave this leads to its space damping in this w region even for real £(w) 
(see, e.g., [10,15]). , 
It is seen that 

wz 
f-1(w) = 1- w1-w2 

has zero at w2 = w5 and a pole at w2 = w5 = w5 + wz. 
For the EMF radiated by a moving charge the conditions for EMF damping are modi

fied . It turns out that the damping takes place for 1- {32£ > 0. Otherwise (1- {32£ < 0), 
there is no damping. • · 
We now define domains where 1 - {32£ > 0 and 1 - {32£ < 0. 
For {3 < f3c one has: 1-{32f. > 0 for w2 < w~ and w2 > w5 and 1-{32

£ < 0 for w~ < w2 < w5 
(Fig. 2). 
For {3 > f3c one gets: 1 - {32£ > 0 for w2 > w5 and 1 - {32£ < 0 for 0 < w2 < w5 

(Fig. 3) . Here f3c = £~ 112 = 1/V1 +wL/w5, We= WoV1-:- (, f = {321 2 /{3;,..;; 72 = 
(1 - {32)-1 /; = (1 - {3;)-1. 
In what follows, f3c, despite its formal appearance arid independence of w,' will play an 
important role for the analysis of the EMF induced by a charge moving in medium with a 
frequency-dependent permittivity. In the static limit (w -+ 0) it coincides with the light 
velocity in medium. , 
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Strictly speaking, Eq. (1.1) is valid for media with £0 .~ 1,(e.g., for ga~es). In what 
follows we apply Eq. (1.1) to the medium with flc = 0.75, n = 0Q = 1/flc = 1.333. The 
optical properties of this medium are close to those of water for which n = 1.334. For this 
value of the refractive index none should use the Clausius-Mossotti (or Lorentz-Lorenz) 
formula ([8-10]): 

l-1+2a(w)/3 _ 1+~ 
- 1- a(w)/3 - w[? -w2' 

w"i 12 2 2 a(w) = - 2--
2

, w0 = w0 - wL/3 
w0 -w 

(2.5). 

The conditions for EMF damping and its absence now are 1 - {32
£

1 > 0 and 1 - {32
£' < 0, 

resp. For w5 < w"i/3 one always has 1.- {3 2 £.
1 > 0, which means the absence of radiation 

by a uniformly moving charge . . 
Let now w5 > w"if3 .. Then, for {J < {J;, ({3;2 = 1 - w"if(w5 + 2w"i/3))one has : 
1 - {3 2

£.
1 > 0 for w2 < w;2 (w;2 = wb2

- fl21 2w"i) and for w2 > wb2
; 

1- {3 2
£.

1 < 0 for w;2 < c..P < wb2
• 

On the other hand, for {J > fJ;: 
1- {3 2

£
1 > 0 for w2 > wb2 and 1- {32

£.
1 < 0 for 0 < w2 < wb2

• 

We see that qualitative behaviour of f. and f.
1 is almost the same if we identify flc, w0 and 

WL with ·{J;, wb and W£, resp. The sole exception is that for w5 :C w"i/3 there is no solutiou 
corresponding to 1 - {3 2

£.
1 < 0. This permits us to limit ourselves to the £ representation 

in the form (1.1). All the subsequent expressions will be valid for f.
1 given by (2.5) if we 

change flc,wo and W£ by {J~,wb and W£, resp. 

In what follows we use the quantity flc = 1/ J1 + w"ifw5 which in the static limit 
(w -t 0) coincides with the light velocity in medium. It is seen that flc changes from 
flc = 0 for N > > 1 up to flc = 1 for N = 0. We refer to these limit cases as to optically 
dense and rarefied media, resp. 

In·the r,t representation if>(r,t) and A(r,t) are given by 

if>(f', t) = ~ f dw eiw(t-zf•) kdk Jo(k ). 
'II"V f. k2 + ~(1 - (J2f.) p 

A (r t) = _:_ J dweiw(t-zf•) kdk .], (kp). 
z ' 'lrC k2 + ~(1 - (J2f.) 0 

(2.6) 

The usual way to handle with these integrals is to integrate them first over k. This can be 
done in a closed form [17]. The remaining integrals over ware difficult to treat analytically. 
The corresponding integrands are usually interpreted as frequency distributions of EMF 
associated with the uniform motion of charge in medium. . 
In this approach, we prefer to take the above integrals first over w. The advantage of this 
approach is that arising integrals can be treated analytically in various particular cases. 

·These integration methods complement each other. The possibility to get rid of any trace 
of thew dependence points out on a slightly artificial character of thew representation (as 
far as we do not concern the quantum aspects of radiation). In fact, Maxwell equations 
(2.2) describing EMF of the uniformly moving charge can be handled without any appeal 
tow representation.' To prove this, we rewrite Eq. (2.3) in the r, t representation: 

P(t) = 8~21 G(t- e)E(t')dt', 
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where 
+x; dw i...o.~(-t-t') 

I. 2 I e · (;(I - 1') = Jill ..,;/, ,2 _ w2 + irr . .o 
p-tO+ """o r-

-oo 

:\ din·ct cakulat ion shows that (;(i - I') = 0 for t' > t and 

(;(I- I')= ~ sin[w(l- I')] for I'< I. 
~0 

Substituting f> into the :\laxwell equations (2.2) one obtains the system of intcgro-
diffen•utial equations which depeud only on the charg<' velocity aud medium parameters. 

\Ve rqm•sc'11t denominators enteriug in (2.G.) in the form 

2 2 2 v2 w - Wo 
w 2 )]-1 2) 

[k
2 
+ 1•2 (1 - {J ' = 1 -iF (w2 - ""·f)(c..-·2 + "-'2 

1•2 
2 2 

I I I I I I I 
= --

2
(w -wu)-

2
--

2
[-, -(----. --)--.-(--.----.-)]. 

J - /j W1 + W 2 2wl '-'-' - W1 C.: + W1 21w2 W - lW2 ..,; + 1..,;2 

lien• 
w~ = w~ + wf.. w; = wG- n + (fl 2

- .d
2
1

2wG:..·i.) 1
1

2
• 

w; = -w~ + n + (H2
- fJ 2

,
2wf,wfY12. n = ~[wt + 32

,
2 Wc2 + .. .:flJ. 

Substituting these expressions iuto (2.G) aud performing t.la• w iniPgral ion \\'<'get for I lw 
ekct.romagnct ic pote-ntials and field strengths 

:lz = :1V) + A~2l, 

2 2 00 

A~l) = c:v I lkdkJo(kp)f/~ll, 
c 

0 

('1'2 ,2 I"' '2) :1~2 1 =---?-- kdk.fu(kp)l·\ 
0 

~ 
00 

2cw2 

<!> = cv12 I kdk.J0 (kp)Fq.- --1
' sin[w3 (1- .:/P)]8(1- :;jl')l\'0 (p ... ·3 f!'). 

1'U...'3 
0 

(}.4. . . I"" . 
11¢ =-a= c(l 2q

2 A: 2 dk.J 1 (kp)F,~. 
p 0 

/Jp = ll<t./.3. 

(2.1) 

' ()<!> I"" 2 ' 2cwf . . l>p = -T = c12v k dk.l 1(kp)/•q,- -
2
-' smw:1(1- .:/I•)C-)(1- z/l')/\ 1(f'"-':l/d. 

( p {} ,, 

, (}<t> 8A, loo . 2 wf ~ w5 wf - w~ [;. = --;--) ----;> = q 2 kdk.l0 (kp)[2(.d --2 --2 )-2 --2 (-)(1- .:/1·) cos"-'1 (I- z/1')-
( z cut 

0 
w 1 - w3 w 1 + w2 

2 w~ + w~ '"~ + w; . -(/1 - - 2--2 )-2 --2 ··"fin(.:- T>t) exp ( -w2jl- .:j1·j)]-
w2 +w3 w2 +w1 

')cw2 

-~ COSW:I(I- :;ju)8(t- .:/T•)/\'u(f'"-':1/r), 

" 
I
"" w2 _ c...:2 + /F)2W2 

/J,=-21' 1.-dk./0 (1.-p) 1 ~ 
2 

1'(-)(/-:;fl')cosu..·1(1-:;/l')-
o wl +w2 
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f
oo w2 + w2 _ {P/2W2 

-e kdkJ0 (kp) 2 ~ 
2 

L exp(-w2it- zfvl) · sign(t- z/v). 
o w, +w2 

Here we put: FA== F~'} + F~2>, 

2 w2 2 
F('}==_w,- 0 -0(t-zfv)sinw1(t-zjv), 

A . wf +wiw, 
F

{2} _ 1 w? +w2 
A -- 0 ( w

2
wl +w~ exp -w2ll- zjvl), 

F. - F<'l + F!2} F('l -4>- 4> 4>, 4> -
(w~- w5)2 2 

·w; + w~)(w[ _ wj) G(t- zfv) w, sinw1 (l- zjv), 

FJ2l == (w5 + wi)2 
. w2(wr + wi)(w5 + wn exp ( -w21t- zfvl). (2.8) 

The separation of FA and Fq, into two parts is justified physically. We sec that f1'), F~ 1 ) 
and F~2>, FJ2l describe correspondingly the radiation field and EMF carried by a uni
formly moving charge. They originate from thew poles lying in non-damping an\! damp
ing regions, resp. 
When evaluating electromagnetic potentials and field strengths we have take11 into account 
that ((w} given by (1.1) is a limiting expression (asp-+ 0) of 

w[ 
((w) == 1 + wJ -w2 +zpw 

having a pole in the upper w half-plane (for the Fourier transform chosen in the form 
(2.4)). This in turn results in an infinitely small positive imaginary part in w1 and in 
factor 2 in the first terms in FA and Fq,. The position of poles of ((w) in the upper 
complex w half-plane is needed to satisfy the causality condition. Sometimes in physical 
literature [15] it is stated that the causality condition is fulfilled if the poles of ((w) lie 
in the lower w half-plane. This is due to a different definition of the Fourier transforms 
corresponding to different signs of w of the exponentials occurring in (2.6). 

It is seen that <I>, Ep, and Ez are singular on the motion axis behind the moving 
charge. These singularities are due to the modified Bessel functions I< outside the integrals 
in (2.7). For a fixed observation point z on the cylinder surface these singularities as 
functions of time oscillate with the frequency w3 == w0 J fie· For the fixed observation time 
t these singularities as functions of the observation point z oscillate with the frequency 
wo/ ficv. As electric induction D is not singular on the motion axis, the electric polarization 
P == (D- E)/4-rr has the same singularity as E. As to the magnetic field II, it tends to 
zero on the motion axis: 

ew[wo 
f/4>-+ ~G(t- zfv) sin[wo(t- zfv)]pi<o(pwofc) for p-+ 0. 

3 Particular cases 

Consider the limiting cases. In most cases we consider of the magnetic vector potential 
(and, rarely, of the electric potential). The behaviour of EMF strengths is restored by the 
differentiation of potentials. 
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1) Let v -+ 0. Then, 
w1 -+ wo, w2 -+ V/k, Az -+ 0, and 

oo e 1 
<I>-+ e; / 2 jdkJ0 (kp)exp(-/hkcit- zfvi) == -;[z2 +p2pt2· 

1 + WL W 0 O 0 . 

(3.1) 

i.e., we obtain the field of a charge to be at rest in the medium. It turns out that only 
the second term in F¢ contributes to <I>. 

2) Let WL -+ 0. This corresponds to the zero electron density, on which the moving 
charge exhibits scattering. Then, 
(-+ 1, f3c-+ 1, w, -+ 0, w2-+ 1kv, 

oo efi 
Az-+efi1j dklo(kp)exp(-kliz-vti)==" ·'". "' ""'"' 

0 

e 
(3.2) 

<I>-+ [(z- vt)2 + P2h 21'12 ' 

i.e., we obtain the field of a charge moving in vacuum. Again, only second terms in Fq, 
and FA contribute to <I> and A., resp. 

3) Let WL -+ oo. This corresponds to an optically dense medium. Then, 

2 w5 2 2 
W1 -+ 2k C, 

WL 

w2 
w~ -+ f3212(wi, + k2c2)- w~ + --fk2c2, 

. WL 

(I) 2Wo"--L . woke(~-:- zfv) 
FA -+ a2 2( 2 k2 2)k e(t- zfv)sm , 

p / WL + C C WL 

F~2) -+ ,j e exp( -f31Jwl + k2c2it- zfvi), 
fil w[ + k2c2 . 

A~2) can be evaluated in a closed form: 

efi . 
A~2)-+ R exp( -"!WLR/c), R = [(z- vt)2 + fi;I;P2 /i2ji/2. (3.3) 

while the analytic form of A~1) is available only for p 2: woc(t- zfv)/wL: 

A(1)-+ 
2ewoe(t- z/v)sinh[w0 (t- zfv)]I<o(wLpfc). 

z c 
(3.4) 

(it is seen that A~1 l decreases exponentially when p grows and increases exponentially 
with rising t- zfv) and on the motion axis: 

A~1) = ewo G(t-zfv)[exp( -w0(t-zfv))E;(wo(t-zfv))-exp(wo(t-zfv))E;( -wo(t-zfv))]. 
c . . . . 

Here E;(x) is an integr~l exponent. For small and large values of w0 (t- zfv) this gives: 

A~1 l::::.:: -2ew0 0(t- zfv) sin(w0(t- zfv))[C + ln(wo(t- zfv))] for Wo(t- zfv) << 1, 
c 
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A~1 ) ~ ( 
2

e I ) for w0 (t- zlv) >> 1, 
c t- z v 

C is the Euler constant. Thus, damped oscillations of EMF should be observed on the 
motion axis behind the charge. 

4) Let w0 -too, i.e., the resonance level lies very high. Then, 

w~ -t w~ - f3212wi, w~ -t !3212 k2 c2' 

!tl w'if3
2
7

2 
2 " _ · I 2 2 2 2 _ 

FA -t 2 2[32 2 [32 2k2 2 J e(t- zfv)sm[ywo- wL{J I (t- k/v), 
Wo- WL 1 + 1 C w5- f3212wz 

F12
} -t {J~kc exp( -f37kclt- zlvl, 

2ewzf327 2 
• , pwo 

A~1l -t 0(t- zlv)sm[w0 (t- zlv)]R 0 (-{3 ), 
CWo IC 

(3.5) 

ef3 
A~2) -t [(z- vt)Z + p2 h2)1/2'. (:l.G) 

We see that a compete VP consists of VP Ai2> describing the charge motion in vacuum 
and oscillating perturbation Ai1> on the axis of the charge motion. 

5) Let w0 -t 0, i.e., the resonance level lies very low. Then, 

Pc2 

2 
2 

- 2' w1 -t Wo k2c2 + WL 
wzw5 

w~ -t f3212(ec2 + wl)- ••c2 + wL' 

(t) 2w5w£ 1 . w0kc(t- zfv) 
FA ~ (32 2 k(k2 2 2)3/2e(t- zlv)sm[ J -' 

I c c + wL k2c2 + wLJ 

F12
) ~ {3

1 1 
exp [-f31Vk2c2 + wL(t- zlv)], 

I Jk2c2 +w£ 

A~2> ~ ~ exp( -"!wLRic), R = [(vt- z)2 + {3;,;p2 h 2F12. (3.7) 

We succeed to evaluate Ai') in a closed form in two cases. For w0 plc << 1 one gets 

A~')~ 2e0(1- zlv) 1- coswo(t- zlv) 
c(t- zlv) ' 

(3.8) 

On the other hand, for wo(t- zfv) << 1 

A(t) ~ ew5wLe(t- zlv)pc(t- zlv)I<,(pwL/c). • ~ c3 

There.are VP oscillations in the half-space behind the moving charge decreasing expo
nentially with the rise of p. 
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G) Ld wn -t oo. "'L -t oo, but WLiwo and. therefore, f3c-are finite. Then, one gets' 

2 2( I -) 2 .2 ;: 
"'• -tWo -' + x "'o---· 1- { 

2 2 2 I w2 = x w0 --_. 
1- ( 

e3 
:lcciV/i J(p) sin[v'I=iwo(l- =II•)] + [(z- vt)2 + p~(l- J2£o)]I/2' Az -t " _,_,_ p 

cB 
2ecfl312( J(p) sin[JI - .iwo(l -. =lv)] + [(=- vt)2 + p;(1- ;J2i:o)]l/2 <fJ -t - ... p 

- j2 2 I P,2 For a> /1c one has: for (J <de. lkrc :r = .lJh·cfwu, '=' I 'c c· . 

~·f == w~x2 
(-I 

2 2- 22( 
..:2 = "-'u(<- I)+ .r Wu---, 

'-I 

2cd 
r:ciJ212( J(p) exp(-Jf=lwo(l- =11•)] + [(;;- vl)2- p2(;:J2iu- I )]I/2. Az -t wn(f- I )3/2 fl 

rc{J317 ( J(p) - 2c3 
<fJ -t - exp[-Jf=iwo(l- =lv)] + [( )2 2 , 2- )]I/2 

p :::-vi - p (,, '"- I 

The origin of the first and second terms in Az and <fJ is due to the second and first terms 
in FA and F~, resp. 
Thus, one obtains VP of a charge moving in medium with a const.aitt elect ric permittivity 
< = (0 and the singular VP on the motion axis. 

7) Let the dimensionl<•ss quantity ( =· (1 21 2 I 11;1; > > I. Then. 

2 2 
WaXc 

wi = 1 + x~' 
I 

2) - • wi = <:(I + xc - 1 + x~ .1>c = i1clckcl..:o. 

FA = 1·11) + F(2) 

.(1) 2 A ' 

FA = Woi.rc(! + x;)3/2 H(t- =lr) sin[wo(l- =1 1•)~]. ~ 
F(2) - l I v . T •';: 

A - wo-Jf. Jt + :r~ exp(-0Jl + :r;wolt- =11>1) 

(;orresponditlgly, 
A. = A~')+ ,-1~2 ), wlwre 

2 oo d.r pwox . wo(l- ::/l').r] 
cwo I Jj J, (--)sm[ · A~') = -c-e(t- z v ( 1 + .r2)3/2 o l1c/cC Jl + :r2 

0 

;\~2) = c{J exp( _ w0 ll1) 
- fl /1clcC ' 

ll ~ [(z- vt)2 + p2 1·/](1/2)_ 

(:!.9). 

\Ve did not. sucn·<·d in evaluating A~') in a closed form. lnsl<·ad, \\'!' consid<·r particular 
cases whPn the mndition C.>> 1 can be realized. 
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Let {3 be finite and f3c ~ 0. This corresponds to an optically dense mcdittfll. Th<-11, .·1~2 ) 
is exponentially small whereas 

A(l) = 2ef3clc 
z W1i1c2(t- zfv)2- p2)1/2G(t- z/v)8[f3clcC(t- z/v)- p]. (:l.IO) 

is confined to an infinitely narrow cone lying behind the moving charge. This equatio11 is 
obtained by neglecting x~ in the square roots in (3.9). 
Let {3 ~ I, f3c ~ 1 under the condition i. >> I (that is, {3 is much closer to u11ity tha11 
flc)· This inequality is possible because of the 1 factors in the definition of i. Then, 

A~')= 2eG(t _ z/v) I -,.cos[w0 (t- zfv)]_ 
ct- z 

(:3.11) 

for small values of p. It is seen that VP exhibits oscillations in a half-space behind the 
moving charge. 
~ore accurately, condition under which Eq. (3.11) is valid looks as pw0 fflclcC <<I. This 
means that for flc fixed in the interval 0 < f3c < 1, A~1 l oscillates for p < < /iclc<'/w0 . 

8) Let if<< 1. Then, 

2 2 iE 2 22 i. - 1 W1 = w0 (!---2 ), w2 = W0 X (J + --
2

), X= fl1kc w0 , 
1+x I+x 

(I) 2£ l . ( 1 
FA = ( 2)28(t-z/v)sm[w0(t-z/v)(l----2)], 

w0 l+x 21+x 

F12l = -
1
- exp( -w0 xlt- zfvl). 

WaX 

A~2 l coincides with the VP of a charge moving in vacuum: 

A(2) = ev 
' [(z- vt)2 + p2/i2]'/2" 

As to A~1 l, it can be taken in an analytic form for (t- zjv)w0 f. << 1 : 

A~1 l = e~~~fl;e(t- z/v)sin[w0 (t- zjv)]K,(pwo/fl·tc). 
C Pc lc 

(:!.12) 

The condition f.<< 1 can be realized in two ways. First, flc can be finite but {3 << 1. In 
this case A~') is confined to a narrow beam behind the moving charge: 

3f.l3 3 1 pwo) 
All)= (7rPWoJJ I )lf2 __ 8(t _ z/v)sin[w0 (t- z/v)]exp(-a- · 

z e n ""t. f3;··y'; p/C 
(:U3) 

On the other hand, the condition { << 1 can be fulfilled when {3 is close to 1, but f3c is 
much closer to it. Then, 

A(l) = ewoi.G(t- z/v)sin[u..·o(t- z/v)]. 
z c (3.14) 

Thus, A~1 l is small (due to the {factor), but not exponentially small. This means that 
one should observe oscillations in the half-space behind the moving charge. Physically, 
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f3c ~ 1, {3 ~ 1, i. << 1 corresponds to the motion in an optically rarefied medium (e.g., 
gas) with a charge velocity slightly smaller than the light velocity in medium. 
We observe the a noticeable distinction between the cases {3 ~ 1, flc ~ 1 corresponding 
to i. >> I and i. << 1. In both cases Ai'l oscillates in the half-space behind the moving 
charge, but the amplitude of oscillations. is considerably lesser for {3 < flc (due to the if 
factor in (3.14)). 
More precisely, conditions under which Eq. (3.14) is valid is pwo/fllc << 1. .This me,ans · 
that for {3 fixed, VP oscillations shoulq take place for small values of p. 

9) Let the charge velocity exactly coincide with the light velocity in medium: {3 = 
flc, i. = 1. Then, 

w~ x2 
wJ = -2 + x(1 + x 2 

/4)'12, 
wi x2 
wJ = 2+x(1+x2/4)'/2. 

Let {3 = flc ~ 1. This corresponds to a fast charged particle moving in a rarefied medium. 
Then, 

(I) 4 ewo . wop rnWoP 
Az = --8(t- z/v)sm[wo(t- z/v)][K0(~)- Ko(v2-)], 

3 c v 2fllc fl1c 

A~2) = e: exp( -woR/v), R = [(z- vt)2 + p2 h2]1/2. 

Thus, Ai2l differs from zero in a neighbourhood of the current charge position, whereas 
APl describes the oscillations in the half-plane behind the moving charge. As 1 is very 
large, Ai'l as a function of p diminishes rather slowly: it decreases essentially when the 
radius p ~ y'iqfwo. 

4 Numerical Results 

In this section we, present the results of numerical calculations. We intend to consider 
the EMF distribution on the surface of a cylinder of the radius p (Fig. 4). This is a usual 
procedure in the consideration of VC effect (see, e.g., [7]). 
For frequency-independent electric permittivity ( t = to) there is no radiation for {3 < flc = 
t~112 . For {3 > flc, the energy flux is infinite on the surface of the Cherenkov-Mach cone. 

On the surface of CP it equals zero for z > -zc, Zc = J~ -1 and acquires an infinite 

value in the place z = -zc where Cp is intersected by the above cone. Inside the Mach 
cone the electromagnetic strengths fall as r-2 at large distances and, therefore, do not 
contribute to the radial flux. 

In what follows the results of numerical calculations will be presented in dimensionless 
variables. In particular, lengths will be expressed in units cfw0 , time in imits w(/, elec
tromagnetic strength~ in units ew5/c2, the Poynting vector P = (c/47r)(E x fi in units 
e2wU 2, etc. We evaluate the radial' ene~gy flux per unit length through the surf~ce of a 
cylinder CP (Fig. 4) coaxial with the z axis for the total time of motion. It is given by 

+oo 2 +oo 

Wp = 21rp f Spdt = :P f Spdz, 
c - - c Sp =-(EX H)p = --EzH.p. 

47r 47r 
(4.1) 

-oo 
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Substituting here E. and H¢ we get for energy losses per unit length 

e
2 j 1 WP = '2 wdw(l - ({32 ). 

f32<>1 

(4.2) 

Or, explicitly [17], 

e2 wo 1 e2w2 1 
Wp = 2 j wdw(1 - -(32) = -2 2f32o 2 [1 + (32 ln(1 - {32)] 

C ( C c lc 
(4.3) 

w, 

for f3 < f3c and 

e2 wo 1 e2w5 1 1 z 
lVp = -jwdw(1- -(32) = -2 2 [-(32 2 + f32f32 21n('yJ] 

c2 ( c I c lc 
0 

(4.4) 

for f3 > f3c· Similar expressions were obtained by E. Fermi [11]. he validity of Eq.(4.2) 
is also confirmed by the results obtained by Sternheimer [18] (whose equations pass into 
(4.2) in the limit p-+ 0) and in the recent review by Ginzburg [19]. 
For f3 -+ 0 the energy losses WP tend to 0, while for f3 -+ 1 (i.t is just this limit that was 

e2w2 w2 

considered by Tamm and Frank [2]) they tend to the finite value ~ ln(1 + ~ ). 
In Fig. 5, we present the dimensionless quantity F = Wpf(e2w5fc2

) as a function of the 
particle velocity {3. The numbers on curves mean f3c· Vertical lines with arrows divide a 
curve into two parts corresponding to the energy losses with velocities f3 < 11Jc and /1 > f3c 
and lying to the left and right of vertical lines, resp. We see that the charge uniformly 
moving in medium radiates at every velocity. 
How is this flux distributed over the surface of CP? For the definiteness we take f3c = 0.75 
to which corresponds the refractive index n = 1/ f3c = 1.333. This is close to the refractive 
index of the water (n = 1.334). The value of pis chosen to be p = 10 (in units of c/wo)
In Fig. 6 it is shown how the quantity aP = 21rSP is distributed over the CP surface for 
~ = 0.3. ·It is seen that the radiation EMF (corresponding to the A~1 ) term in A.) differs 
from zero only at large distances from the moving charge. The isolated oscillation in the 
neighbourhood of z = 0 corresponds to the EMF carried by the moving charge with itself. 
We refer to this part of EMF as to the non-radiation one. The integral of it taken over 

:either z or tis equal to zero. Thus, it does not contribute to the total energy losses given 
by ( 4.1 ). Being originated from the A~2) term in A, (see Eq.(2. 7) ), it approximately equals 

a<2J __ cf3e2 
_ 2 2 2 p(z- vt) 

P - 2(o (1 f3 /f3c) [z2 + p2(1- f3Z/f3;)P (4.5) 

As we have mentioned, this corresponds to the radial energy flux carried by the uniformly 
moving charge with the velocity f3 < f3c in medium with a constant ( = (0 • Due to its 
antisymmetry w.r.t. z- vt the integral of it taken over either z or t is equal to zero. 

If the distribution of the radiation flux on the surface of the sphere S ( instead on 
the cylinder surface Cp, as we have done up to now) were considered, the radial radiation 
flux Sp. would be confined to the narrow cone adjusted to the negative z semi-axis (Fig. 
7). As it follows from Fig. 6, the solution angle Oc of this cone equals approximately 3 
degrees for f3c = 0.75 and f3 = 0.3. 
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\Vhen /; grows. the relative contribution of the radiation term also increases. This 
is clearly demonstrated in Figs. 8 and 9 where the distributions of a P an• presented for 
iJ = 0.5 and t3 = 0.99, resp. The energy flux distributions presented in Figs. 6. 8 allll 9 
consist in fact of many oscillations. This is shown in Fig. 10 where the magnified image of 
aP for ;1 = O.~J!J is presented. It turns out that the first maximum of the radiation intensity 

is located in the sam<' place Zc = -pJiP/.3;- I where in the absence of dispersion til(' 
singular Clwrenkov-:\lach cone intersects the Cp surface. 
In Fig. II t hen• is shown t h<' distribution oft he energy flux on the CP surface for 3c = 0.1 
and 3 = 0.99. In this case ( >> l and t)te radiation, similarly to the ( << l cas<' shown 
in Fig. 6, is confined to the narrow cone behind the moving charge but with a m;tch 
larger amplilu<k. This completely agrees with a qualitative consideration oft he pre\·ious 
section. 

To detect the sp component of ,'1, on!' should have a detector imbedded into a thin 
mllimalor and dir<'cl<•d towards tlw charg<' motion axis. The collimator should lw im
penetrable for the 1 quanta with dirPctions diff<'r<'nl from the radial one. It follows from 
Figs. 6-11 that in a particular detector(::: = con-'t), rapid oscillations of tlw radiation 
intensity as a function of time should he ohserv<'d (as all t.lw physical quanti! iPs and .. in 
particular. SP dep<'tHI on t and ;; via th<· combination ::: - vt). It should lH' ask<·d why 
so far nobody observed th<'se oscillations? From the 11 = 0.99, fJc = 0.75 cas<' presented 
in Fig. 10 it follows that diffraction picture differs essentially from z<•ro on th!' intpn·al 
-150 < ;; - vt < 0, wh<'rc ;; is 'expressed in units c/u.•0 . The t.ypical u.•0 \·ahw taken from 
the Frank book [7] is Wo:::: 6. l0 15 •• cc- 1• This gives cfwo:::: 5. to-" em. \\'••.see that 
the above interval is of the order !50- 5 · !0-6 cm:::: !0-3 cm. The rapidly moving charg<' 
(1> ~c) overcomes this distance for the time 10-3c-1 · -'"":::: 3 · 10- 11

8cc. It follows from 
Fig. 10 that there are many o~cillations in this time interval. Beca.ns<' of I his. I hey hardly 
can be resolved experimentally. . 
Now we turn to experiments recently discussed in [12-14]. In them, for the elect.ronmm·
ing in a gas with a fixed energy the radiation intensity was measun•d as a function of th<' 
gas pressure P. The latter is related to the gas density N9 by the wPII-knmYil I hermody
namic relation: PV = kN

9
T, where V is the gas volume, T is its h•mperal nrc and k is 

the Boltzmann constant. The quantities Nnwf. and {3, used in section 2 are related to .\1 

as follows: 

N, = Nq· h, wf. = ''m N,c2 fm w;3 
2 ~~ .. 

fie= w;3 +wf, 

llere h is the atomic numher of a gas. Let. the gas pn·ssun·, at which i;,. = J. IH' equal 
to l'c· In the experiments quoted above a sharp reduction of th!' radiation inl<-nsit.y \\'as 
observed for the gas pressure p :::: p,f!OO. To this gas prPssure th••n• cotT<'spmuls i < < I 
despite the fact that {i:::: {Jc :::: 1 ( t1tis is possible bi•cause of the 1 factors it.l I lt•· ddinit ion 
of(). 

To clarify the nature of this phenomenon we tum to Eqs. (4.:!) ami (-1..-1) which for 
a fixed {i define energy losses p<;r unit.. length as a function of.JI,. Tlw typical nHT<'s 
are shown in Fig. 12. The numbers on curves mean charge vc!O<·it.y. It follows that fur 
f3 = 0.9!1 the radiation intensity diminishes approximat.dy 60 times wlwn d.- ··hang•·s from 
0.9 to 0.9!19. The corn·sp~ndi;1g distributions of the en••rgy !lux on I hi' surf,,.-,; of ( 'r 
are shown in Figs. 1:1 and It!. It is seen that the intensity at maxima is almost lllOO 
t.illl!'S less!'r ror ;i,. = 0.!!99 t.han for !1c = o.n. Th(' int.r·nsit.y dist.rihut ion is n·r~- sharp fur 
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f3c = 0.9 and rather broad for f3c = 0.999. The physical reason for the sharp reduction of 
intensity is in the increase for f3c > {3 of the region where the electromagnetic waves are 
damped. This agrees with qualitative estimates of section 3. 

So far, we have evaluated Sp, the radial component of the Poynting vector. The 

integral 2rrp I Spdz taken over CP is the same for any p. It is equal to vWP, where v is 

the charge velocity while the quantity Wp independent of pis defined by Eqs. (t!.2)-(·1.-1). 

The Poynting vector P has another component, S,. Both of them define the direction in 
which the radiatiion propagates. The distributions of a, = 2rrS, on the surface of CP arc 
shown in Figs. 15-17 for the charge velocities ,B = 0.3, 0.5 and, 0.99, resp. The isolated 
peak in the neighbourhood of z = 0 plane corresponds to EMF carried by the moving 
charge with itsef. Being originated from the second term in A, it approximately equals 
to (for (J < f3c) 

(2) ~ c(Je2p 1 a, ~ 2 _ (1 (32)-1 2(o!~[(z-vt)2+p2h~P'In- - n ,f3n=fJ/fJc. 

It is seen that the qualitative behaviour of S, is almost the same as Sp, however, the 
maxima of S, are approximately twice of those of Sp. This means that the radiation is 
emitted more in the forward direction than in the transverse one. To observe S, one 
should orient the collimator with a detector inside it along the z axis. The collimator 
should be impenetrable for the 1 quanta with directions non-parallel to the z axis. Again, 
the oscillations of intensity as a function of time should be detected during the charge 
motion. 
To determine the major direction of the radiation, one should find surfaces on which the 
Poynting vector is maximal ([17]). Due to the axial symmetry these surfaces look like 
lines in p, z variables. We shall refer to these lines as to trajectories. The behaviour of 
these trajectories is quite different depending on whether (J > f3c or {3 < f3c· F~r (J > f3c 
the trajectories arc not closed. When z -t oo, p also tends to oo. For (J < f3c the 
trajectories are closed. In the WKB approach, on a particular of the mentioned surfaces, 
the inclination of the Poynting vector towards the motion axis is given by ([17]) 

s, 1 
cosOp = ,js; + s; = fJ,;;I;). 

Here xis a parameter, ((x) = 1 + [(J;,;(1-x2)]-
1

, SP = -cE,Hq,f4rr and S, = cEpHq,ftlrr. 
For {J > fJc, x changes from x = 1 for which p is zero, z is finite and Op = 7r /2 up to x = 0 
for which both p and z are infinite while cos Op has the same value f3c/ (J as in the absence 
of dispersion. 
For {J < f3c a particular trajectory intersects the motion axis two times: at x = 1 where z 
is finite and Op = rr /2 and at x = v'1 - ( where z is finite and greater in absolute value 
than for x = 1, while Op = 0 there. At the point of the trajectory where pis maximal 
the inclination of the Poynting vector towards the motion axis acquires the intermediate 
value 

1 1 
cos Op = -(1 + ]-112 

fJ fJN;(2- v'4 - 3i') 

Consider .now the energy flux per unit time through the entire z = const plane. It is given 
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by 

W, = f S,pdpd</> = ~ f EpHq,pdp 

Substituting here Ep and Hq, from (2.7) and using the well-known orthogonality relation 

between the Bessel functions (f pdpJm(kp)Jm(k'p) = io(k- k')), 
0 

one obtains 

W, = ~e2v312 J k2dkFA(k,z- vt){r2Fq,(k,z- vt)-' 

2 w0 1 . 
2 2(3 k2 + 2/ 2(32 sm[wo(t- z/v)/(Jc]}, 

v lc c Wo v c 

where FA and Fq, are given by Eqs. (2.8). It is not evident that W, is positive definite. In 
Fig. 18 we present W, as a function of z for f3c = 0.75 and (J = 0.99. It is seen that W, is 
almost constant in a very broad range of z except for the neighbourhood of the z = const 
plane passing through the current charge position. The positivity of W, = 2rr I S,pdp 
means that the energy flow of radiation follows for the moving charge and does not mean 
that S, is also positive. This is illustrated in Fig. 19 where a, = 2rrS, as a function of p 
is presented for a particular z = const plane (z = -800). It is seen that S, contains both 
positive and negative parts. This may be understood within the polarization formalism 
[17]. In it, the moving charge induces the time-dependent polarization of the medium. 
This in turn leads to the appearance of the radiation characterized by the Poynting vector 
S = 1;U~ x H). The positivi!Y of S, means that the part of the induced radiation flux 
follows for the moving charge. This fact has no relation to the well-known difficulty taking 
place for the radiation of the accelerated charge moving in' vacuum where the solutions 
of the Maxwell equations correspon,ding to the energy flux directed inwards the moving 

charge are regarded as unphysical. · 

5 Conclusion 

1. It is shown that a point charge moving uniformly in a dielectric medium with a standard 
choice (1.1) of electric permittivity should radiate at each velocity. The distributions of 
the radiated electromagnetic field differ drastically for a charge velocity v below and above 
some critical value Vc which depends on the medium properties and does not depend on 
the frequency (despite the fact that w dispersion is taken into account). For v < Vc the 
radiation flux is concentrated behip,d the moving charge on a sufficiently remote distance 

from the charge. 
2. The electromagnetic field radiated by a charge uniformly moving in a dielectric 

medium with ((w) given by (1.1) consists of many oscillations which should be observed 

experimentally. , . , 
3. The results of recent experiments (12-14] dealing with the Vavilov-Cherenkov ra

diation and indicating on the existence of the radiation below the Cherenkov threshold 
seems to be supported by the the present investigation. 
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Fig. 1: For the free electromagnetic wave propagating in medium, the damping r<'gion 

where f <: 0 corresponds to wJ < w2 < w~. 
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Fig. 2: For the electromagnetic field radiated by a charge uniformly moving in medium 
with velocity v < ve, the damping region where 1 - j12

E > 0 lies within the intervals 
0 < w < We-and Wo < w < oo. 
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Fig. 4: Schematic pr<'sentation of tlw Chcrenkov mtH' for a constant eke! ric p<·r
mittivity. The radiation field has a .S-typ<' singularity on the surfan• of cone. t lw [i .. ld 
inside the con<' do!'s not contribute to the radiation. On t.lw surface of tlw cylindt·r ( '1, 

the Plectromagnetir field is zero for = > -=.-: a P is proportional t.o t lu• radial •·rwrg_\- flux 
through the cylinder surface (ap = 21rSp)· 
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Fig. 5: The radial energy losses per unit length (in units c2wJ/ c2
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Fig. 6: The distribution of the radial energy flux on the surface of CP for {3 = 0.3 

and fie = 0. 7.5. The isolated oscillation in the neighbourhood z = 0 corresponds to the 
non-radiation field carried by a charge with itself. The radiation and non-radiation terms 
arc of the same order. 
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Fig. 7: The distribution of the radial energy flux on the surface of the sphere Sp for 
{3 = 0.3 and f3c = 0.75 is confined to the narrow cone with a the solution angle Oc f::J 3°. 
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Fig. 8: The same as in Fig. 6, but for {3 = 0.5. The contribution of the non-radiation 

term relative to the radiation one is much smaller than for {3 ~ 0.3. 
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Fig. 9: The same as in Fig. 6, but for f3 = 0.99. The contribution of the non-radiation 

term relative to the radiation one is negligible. 
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Fig. 10: Fine structure of f3 = 0.99 case. It seen that a seemingly continuous distrib
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(3c = 0.1. As in Fig. 6, the radiation is confitH'd to the narrow conC' behind I he mo\·ing 
charge. but with a much grC'atC'r amplitudC'. 
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velocity i3c = 0.9 slightly smaller than {3. The intensity of radiation is concPlltrat<•d near 
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Fig. 14: The same as in Fig. 13, but for the critical velocity f3c = 0.999 only slightly 

greater than (J = 0.99. The distribution of the radiation intensity is very broad and by 
three orders smaller than in Fig. 13. 
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Fig. 15: The distribution of the energy fiuxG"z along the motion axis on the surface 

of CP for f3 = 0.3 and f3c = 0.75. The isolated peak in the neighbourhood of z = 0 
corresponds to the non-radiation field carried by a charge with itself. The radiation and 
non-radiation terms are of the same order. 
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Fig. 16: The same as in Fig. 15, but for {3 = 0.5. The contribution of the non-radiation 

term relative to the radiation one is Timch smaller than for {3 = 0.3. 
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Fig. 17: The same as in Fig. 15, but for f3 = 0.99. The contribution of the non

radiation term relative to the radiation one is negligible. 
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Fig. 18: The total integral energy flux Wz through the plane normal to the motion 
axis as a function of this plane position for f3 = 0.99 and f3c = 0.75. 
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Fig. 1!): Tlw distribution of the energy flux in a particular(;:;= -800) plam· normal 

to t]l(' motion axis as a funct.ion oft he radial distance p. Positive and negative signs of~ 
COIT<'spond to thP energ_v flow diredPd towards the moving charge ·and out wards it. resp. 
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