


1 Introduction

This work is devoted to the investigation of Einstein equations from the kinemetric
_invariants point of view. The role of kinemetric quantities in General Relativity
is known, and they are one to'one related with ADM-parameters in’ Hamiltonian
formulation of gravity [1]. Recently the Gaugeless Hamiltonian Reduction procedure
for the gravity was proposed (2, 3]. This method is based on the explicit resolution
of the first-order constraint under a.canonical momentum, which is connected with
the trace of the external curvature. In this context there is a need to investigate
dynamical and geometrical properties of such a kinemetric invariant as a trace of
external curvature. As the basis for our consideration we shall take the trace of the
external curvature of the family of hypersurfaces t = const a.nd spatial averagmg of
dynamical equations. o ‘

In Section 2, usual Einstein equatlons are wrltten in terms of ADM -parameters.
Here we also show that the trace of external curvature cannot be globally converted
to constant by any coordinate transforma.tlons and discuss the existence of global
excitation.

In Section 3, we extract the global dynamics from Einstein equations and repre-
sent the approximations in which this dynamics repeats the Standard Cosmological
Model. We discuss the relation of-this: dynamics and global variable with time-
surface term and Hamiltonian reduction method. :

All denotations and useful formitlas are given in the Appendlx

2 External curvature and ex1stence of global ex-
citation '

2. 1 Elnsteln equations in terms of ADM-parameters B

We c€an express: the Einstein equatlons Rag - gagR = _-ﬂ Lag i terms of ADM-'
parameters Bl : :

ds -—N’dt’-h da:'da:’ d:c —d:c +N‘dt P ,‘(1)'

by direct substitution. It is well known that such a substitution ‘can be easﬂy‘
obtained by using the Gauss relations and Peterson-Kodaci equations of the theory
of hypersurfaces in Rremanman mamfolds [4 5] (see the Appendlx, B) SRR
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b} =0b;— N*V,b, Lo R
® . - .
o b=b—N*Vyb,
b= b, b} = h™*by;, 3R is the scalé.r burv_afure of the innér metric hi. .
For the completeness of the system of the equations (2)-(4) the definition of the
external curvature must.be added: . . .
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we can r‘ewrit‘e‘ tHé:équétioh (4) in the form .
By s 1_ . 8 1 '
Son e S o

: Let us write the Einstein equations in the schematic form:
the constraints NUNURE :

Ko=0, ke=0 (@)

and the dynamic equations
b= f(l)(bah, N, N",‘Taﬁ), ' v : ; - . (8)
h= f(z)(vbrh;vN, Ni). : | (©)

From the structuré of these equations we can see that;'thé’lapéev function N and

the shift vector. N* are not included'in the constraints and there are no.dynamical °

equations for thc?se quantities. They are contained in the right-hand side of Egs.
(8, (9) and provide the invariance under group of diffeomorphism of the coordinate
transformations

o v ' =t(t,z), 2 =2t z).

Fixing of these variables has a clear geometrical and physica]'seﬁse. ’ Ikndee(‘i, from '

t}ie ]ap’)vss func.tion. and shift vector we can construct the space-time unit vector v =
%7;10—7 , whxcl:l is normal to the family of hypersurfaces ¢ = const, and the fixing
o “corresponds to the setting of continuum of the ob i iz

clocks [6] ! g ' eontina e observers with synchronized
. "So we h.ave a dynamical system with diffeomorphic group of invariance (four arbi-
t;arj-/ funf:tlons), a{ld the presence of four non-dynamical degrees of freedom provides
the Invariance. It 1s necessary to add new non-dynamical variables for extension of
R e ;n:iqlent .gz(-)lgquor,example, the triadic extension of ADM-parameters involves

non-dynamical antisymmetric tensor ¢;; which provides the SO(3) local i vari
o the Appendin. 8] 3 p e SO(3) local invariance

2.2 Existence of the global excitation. . - =

It has been shown [7] that any one of kinemetric invariants can be locally ! converted
to zero by fixing a family of hypersurfaces t = const. - R

Can it be done globally? That is the question which needs to be investigated in’
more details. First of all let us restrict the Einstein manifold by some topological -
conditions. Here and further we assume the existence of global foliation of the whole
manifold on the family of space-like-hypersurfaces t = const. We suggest that the
following condition be fulfilled:

/ ANVEPz =0. (10)
Thekcondition (10) is trivialif the hypersﬁrfacgs t = const are closed, for the as-
ymptotically flat metrics of the hypersurfaces 2 the following behavior of the lapse
function at infinity is sufficient: »

const
71:?, e>0. (11)

N=1+
All these suggestions are valid, for example, for homogeneous Friedmann metric. If
we allow these assumptions then it is impossible to convert the trace of the external
curvature to zero (or to constant) for nonstatic metric if the matter stress energy
tensor satisfies the strong energy condition Top — %T 20
Indeed, the trace of equation (6) with respect to h* gives

b N* s sn 1 8T 3 ,
N —I—V—V,‘bfb +°R— GAN = - (T5h" + 21)- | (12)
Taking (2) into account, we have - - ' ‘
i) N" 1 i13 8wk a 1 | ‘
y —IVV,‘b— NAN + bjb'.! + _‘CT(TaBV W - §T) =0. | . ,,(13)

The spatial integral of the las‘t ‘equati(v)n gi-ves‘
/ (b— N*V,b)Vhd®z + / {bi;b7 + §:§(Tagu°pﬂ - %T)}N\/ﬁd% =0. (14)

If the first integral is equal to zero (=0, b= const, ...) then b;; = 0 (static metric)
and To,gl/al/a —_ %T =0. . Ce ‘ R '

" If b+ 0 then in the rest frame of reference where N k = 0 (line of time envelops
normal unit vector v*) the vk depends on time and, of course, cannot be a constant.
The next step of our consideration is connected with extraction of the factor ag(t)
from metric by conformal transformation. It can be called global excitation as it
depends only on time, and, as will be shown below, the dynamics of this quantity
involves some spatial integral characteristics of the remaining local variables.

17Locally” means in the frame of some coordinate map.- i . . . s

2]t means the following behavior at infinity: hijl, — F(t)di;- »



'3 Dynamics of global excitation
3.1 Global excitation

T‘hie‘extra.ction of the factor a(t) from' metric by conformal transformation means
the following parametrization with respect to the (1 + 3) decomposition: -

ds? = a(t) (N2dt* - hyyyda'de’), dz' = dz' 4 Nidy, - (15)
N T
ds® = a(t)%ds? or Guv = a(t)g(o) s (16)

The conformal transformation has one-to-one. correspondence between the hyper-
surfaces ¢ = const of the manifolds g,, and 9(e)ur- The conformal transformation of
the external curvature is :

bij = a(t)b(eyi; + hoyija(t), (17)
b(C) d
b=-2+ BW' (18)

Some useful formulas of conformal transformation are prese:nted iﬂ the Af)pendix,
C. Here we write the constraint (2)

3R

a?

"4(.1b(c) - 6a? 87k o
Now® T N2ai i o2l =0.  (19)
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There is one additional degree of freedom a(t) in the parametrization (15). In order
to save the whole amount of independent variables, it is necessary to involve an
additional global condition. We choose the following condition: -

/é(c)\/i;daz =0. (20)

In ?ther words, it means that "spatial averaging” of the divergenée of the unit vector
V7 is equal to zero: : o : ce

/V,,Vé’\{/)z—cdsz =0. L (21)

Now from (19), using the space integration with the volume element /=g = N.a'/F,

we obtain ’

d_2 <Rc'>_ <‘Tod>
o L __i',,,a? .6 ;__ 3
in the same.way from the trace of the équa.tion (4) we obtain -

. . .
+ 5 < (b —by) >; (22)

,__:_‘dll./o <Rs i ¥ '/'.' k
Ta 2a Vo T 6 3 < T >ty <(Bgebi =) > (23)
where Yoty T o . ; -
L _ [ 3 1 7. :

ot b fanre

8rx 1 L .
< Too >= —CTVO/TaBVc ”ch\/h_cdsI, (25)
- 4

< T >=TE o [N fhabs, R,
< (bae'beyi* — b)) >= ‘170 / (b(c)kib(c)ik — B Nofhod's. (27)
In the case of op(‘n: (and asymptotically flat) hypersurfaces { = const we assume
< R.># 00, <Ti># o0, < T > o, (28)
< (bepbiey* — By) ># oo (29)

3.2 Relation with dynamics of Standard
Cosmological Model

If we neglect the kinetic inhomogencous part of gravitation with respeet to spatial
averaging of stress energy tensor

< (k' by = biy) >=10 _ o @0)
and assume .
' Vo . .
=0 31
Ve {31)

then the equations (22) and (23) take the form
.2 P
ESLEE L @)
a? 6 -3 '
2% & <R> 1 ' .
e st lops 33
‘ ) a + a? 6 3 < > , ( ’ )
Now we can compare the global dynamical cquations (32),(33) with the Einstein
cquation of Fricdmann-Robertson-Walker (I'RW). honiogencous metric:

ds? = abpds? = alpyd®t — &y ~dq], b= Lo.—1, (31

.9 o5 .2

3 (—“;’"W + k) =T, (—————3“" U /L k) heprrs = Tiye (35)
arnpw aFpw aArpw

The FRW dynamics of the global- variable a(f) can be obtained by specifving the

properties of the quantities < 75; >, < Ty > and < I, >. In such a way we obtain

a mathenatical equivalence between the dynainics of the global excitation and the

dynamics of space factor in FRW cosmological model.

3.3 Time surface term

The Hilbert-LKinstein action of pure gravity in the (1 + 3) decomposition has the
form

W~ / Hr/=gR = / AP eNVR(=R — (Bl - B) 425, (36)

where

¥ = / did*z (—é—)[(ﬁb) + VR(AN + .:\"‘1,))
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' is a surface term, containing-time and space surface terms. If the (on(lmon (10) is
valid and N* = 0, then we have the time surface term only

b - 3 9
L= /dtd z (—a—t(\/ﬁb)> .

After the conformal!l transformatlon (15) and fulfilment of (20), the above expression
ta,kes the form

T= _3/dt5(avo), (37)

and we can conclude that the global variable a determines the time surface term.

4 Discussion

The canonical quantization of gravity requires solving the problem of construction of
the "physical Hamiltonian”, which can be treated as the whole energy of considered
system. Recently the method of Hamiltonian reduction was proposed in [2, 3] for
isolating physical degrees of freedom and constructing a physical Hamiltonian and
energy. Conceptually, this method relies on the canonical transformation (Paya) —
(P,,1), which absorbs the time surface term, and on explicitly solving a first-order
constraint with respect to the new canonical momentum P,. This allows us to trcat
the variable 77 as a new invariant 3 parameter of evolution and the momentum P, as
a physical Hamiltonian or energy.:But the main peculiarity of this method is thdt
the variables I and @ must be global variables (dependent on time only) and, of
course, it is tested only for FRW cosmological model.

.« ; The main result of the present work is the existence of global excitation dynamics
and the possxbx]lty of extraction of this dynamics from Einstein equations. This
dynamics can be made similar to the FRW metric scale factor dynamics by some
common and quite wide assumptions. The Hamiltonian reduction method [3] can

be dxrect]y applied to the global excitation Yarlab]e a.nd is valid for.more common

case then homogeneous FRW model.

IWith respect to time reparametrization.
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Appendix

A Denotations

We use the following definitions of the Riemann and Ricci curvature:

(VaVp — VVa)AY = —A”R‘;Ba, (38)
(VaVp — V5Va)A? = ~APR,,. (39)

Here V, denotes the covariant derivative with respect to the space-time metric Jap
with a signature (1,-1,-1,-1). Greek indices denote the four-dimensional space-time

components e, 3,5... = 0,1,2,3; whereas the latin, indices denote the space compo-
nents a,b,c... = 1,2,3. All the underlined indices correspond to the nonholonomic
tetradic

9ap = haphg, p=0,1,2,3 (40)

-

or triadic components s _ “
h.'j = w;iwjk, ) _lg = 1,2, 3 N C . (41)
Here h;; denotes a space metric with a signature (1,1,1).

Note that the covariant derlva.tlve V does not act on ‘underlined mdlces

V.T? ~an’+1“f’ T’ e (42)
We define the covariant derivative which acts on usual and underlined indices as .,
. DaTf = 8uT) + 15, T¢ —5aTP, (43)

where '7»_%, is the Ricci rotation coefficients, which a.;_é consistent with the tetrads

hag

"Dhy=0. " (44)
The same is valid for the trladlc derivative correspondmgly
© Dwj=0. ' (45)

B The (1+3) decomposition

B.1 Gause equation and Peterson-Codaci identity ‘
In accordance with the generalfthebfy [5], we have the following Gause equation and
Peterson-Codaci tdentity:

C =R =2(Vibje — Viba), - (46) ‘
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R ijp = Rijat % (bixbst — bebit), . o (47)

where il is the inner curvature of hypersurface. We take plus in formula if v*v, = 1

or minus if v*v, = —1. Here v* is the vector orthogonal to hypersurface, b is the
second curvature, V; is the covariant derivative with respect to the inner metric of
hypersurface.

Below you can find all the traces of (46),(47):

Ryt = £(Vib— Vb)), (48)

~ Rrij = — Ry F Rasgov™ & (bbig — bby), (19)

— R= —R £ 2R, & (b — b7, (50)

Ragu‘;uﬁ =4V, — b;bf + 0%, 7 = {1°,8'log v° + v'b}, (51)
R =R +2Var® F (6] + b%).- | (52)

B.2 ADM-Parametrization

We use the following ADM-parametrization of metric:

N?— N*N, , —N; o N
gos = S e N )
—N.i H _hij ' ' _‘% ) NNI;’J — hv
or in a simpler form:
ds® = N2dt? — hy;dz'de?, def = dzf + N'dt. (54)
The second curvature is defined as
1 .
bij = g (his — VilV; — Vi), (55)
and the unit time-like vector
' 1 Ne
a_ (2 56
= (3-¥) | (56)

is normal to the family of hypersurfaces t = const.’ Gause equation and Péterson-
Codaci 1dent|ty in the ADM pa.ra.metnza.tlon ]ook as

R = (V- ViH), N 1)

Rij =Ri; — Raijov°” — (bib; = bbi;), (58)

8

R=—"R+2R.0°0" + (b1 — 0?), (59)

b '1’\’ ‘\'
ogwv® = Var = @~ 7). 7 = (2 TN Xy (g
R=—"R+42V,7" — (bib] — b?). - (61)

‘The last. five formulas can be obtained from (48)-(52) by using th(‘ upper sign and
taking into account signature of the metric: -

b= —=b. b= b, k>R Qi — 3R
It is necessary to specify one term in (58) more exactly:
If("-‘j‘fil/"u"f = . -—--I:—,(i),'j — ;\”’V,,b;j — b,-ijN“ — jkV,-}\'k)+
(62)
+%V,—V,<N + I)?bkj, :

where l‘);j is the partial derivative with respect to time.

B.3 Triadic formulation and eigenvalue of external curva-
ture

For diagonalization of the external curvature it is convenient 10 write down all
Kinstein equations in triadic form .

hi; = wyw;y, . (()J)

where under repeated indices we assume the summation rmd lh( underlined mdl((s
denote the triadic or the nonholonomic components.
Any local S0(3) transformations do not produce changes in-the metric II,J ‘So
triadic formalism extends the group of the symmetry of the (mg.,uml theory. The
“instein cquations in triadic formalism take thé form

ko = R+ - by xbix — §”—"21' 't =0, (61)
T (‘
S o
= Vib— Viby + ’”"n,, =0, (65)
Yig s s f,, oy .
Tl + ‘”1_'1 — NVlVlN + bbl-l_ TA(Ill + zhill) = (. (66)
w;_ = —wi; [N(bﬁl + [51 i:_Nll - N'f'w;;“\*',,,wﬁ,,] . (67)

where ) . U e )
: ¥ [Q & 1
bgi=bii—N‘ka,,+N(l A _,3— b‘i J)



and t,’,’ is the antisymmetric tensor
— 1 n ‘ 7 ‘] ‘ m “V
= N(“" [iWiln t [jl i) +/ wj mwin)-

The system of Eqgs. (64)-(67) can be also written-in a schematic form, i.e. with
the constraints

ko =0, rx=0 (68)

and the dynamical equations
b= fu)(bh, N, N*, Tug, Li5), (69)
h= fiy(b,h, N, 1V‘?70;;, i)- (70)

So, we can note the presence of the non-dynamical antisymmetric tensor 75 ; that
provides SO(3) local invariance.

If we choose a system of the eigenvectors of external curvature as a triadic systvm
b;; = di;i, the equation (66) takes the form (here for simplicity T3 = 0)

N i=2Ri—bX + %vivizv, (1)
Al 3 LOVN, itk (72)
(tﬁ_ N Tkir )(,\ — M) = Rig+ GViVeN, ik,
where A = 'ﬁ)‘f - 3y\ and 7k p is the Ricci coefficient. The constraint (65) can -
be represented as ’
Ocde — b+ Z()\k = Ak =0 (73)

C Conformal transformation

The conformal transformation

ds? = a®(t, z)ds? ‘ ‘ (74)
produces the following transformation of kinemetric quantities:
h [3)}
SRi; = *Rggir — -v Vka+ aaaka ‘a’ KLYV (75)
p= —Rﬁ et iviavia, (76)
a? a a?
1
[ = Dl + (6050 + 800 - h(ei;0%a), (77)
o b(C) 3":,60(1 o __ l o
b,‘j = ab(c),-j + h(c)ich (')aa . b= T + —aT—, v = al/c , (78)
1 a a
¢
== (b?c) +6-3b¢ + 9(;)’) ) (79)
@ o
. Ja
bby; = (b")b(c). ;+ 2 b(c) + — ) , (80)
where
= vZ0,a.
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