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1 Introduction 

This work is devoted to the investigation of Einstein equations from the kinemetric 
invariants point of view. The role of kinemetric quantities in General Relativity 
is known, and they are one to one related ·with ADM-parameters' in Hamiltonian 
formulation of gravity [1]. Recently the Ga~gel~ss Hamiltonian Reduction pr~cedure 
for the gravity was proposed [2, 3]. This method is based ori the explicit resolution 
of the first-order constraint under a canonical momentum, which is connected with 
the trace of the external curvature. In this context there is a need to investigate 
dynamical and geometrical properties of such a kinemetric invariant as a trace of 
external curvature. As the basis for our consideration we shall take the trace of the 
external curvature of the family of hypersurfaces t = const and spatial averaging of 
dynamical equa~ions. . .. . 

In Section 2, usual Einstein-equations are written in terms of ADM-parameters. 
Here we also show that the trace of external curvature cannot be globally converted 
to constant by any coordinate transformations and discuss the existence of global 
excitation. 

In Section 3, we extract the global dynamics from Einstein equations and repre­
sent the approximations in which this dynamics repeats the Standard Cosmological 
Model. We discuss the relation of this dynamics and global variable with time­
surface term and Hamiltonian reduction method. 

All denotations and useful formulas are given in the Appendix. 

2 External curvature and existence of global ex­
citation 

2.1 Einstein equations in terms of ADM-p~ame~ers 

We can express .the Einstein equations Ra{J- !YafJR = 8;:Tap in·terms ofADM~ 
parameters . · ' ' 

ds2 = N 2dt2
- hiiJxiJxi, Jxi = dxi + Nidt 'I: . (1) 

by direct substitution. It is well known that such a substitution c~~ .he ~asily . 
obtained by using the Gauss relations and P~terson-Kodaci equations of the theory 
of hypersurfaces in Riemannian manifolds [4, 5] (see the App~ndix, B): ' . ' . '• 

1 (3R b2 bi bk) 81l'X:T. a B 0 X:o = 2 . + - k) -7, afJII, _Jr ~ , 
(2) ' 

• • ,x:~ =: Vkb- V;b~ + _s~x:Tk;.va := 0, (3) 

• ' 'j 

0 ., ; ' •.. ,... '· ' ' •' .. . 0 

b ij 3 1 . ' .· hi; 3 ' I k • 2 2 b 2tl.N) 811'11: -+ R;·--V·V·N+bb .. +-(- R-bkb -b --+- =-T. .. (4) N J . N '.- J IJ •. 2 ' • ·, ' ' I ' :.: N N ' c4 .,, ' . 

where 

~ ;; = b;;- (b;k V;Nk + b;k V;Nk + Nk'\7 kb;;)- 2Nb;kbJ , 

"lj- ~,,. . •<~·1..·.1\ r• .._..,.,., ~­~ ('i .. !1~ ~oli: i.lu.-ch u:4wt«i•.J • 

l f.:.':~;,;.mJ.I ucc:ael:t1*lilll 
~ f;f.,i!;llirtnTi=HA 



0. .. k . 
b j = bj- N Vkbj, -i.O 

0 . ' k 
b= b-N Vkb,· 

b = b:ih;j, b~ = hikbkj, 3 R is.the seal~ curvature of the inner m~tric h;i· 
For the completeness of the. system of the equations (2)-( 4) the definition of the 

external curvature must be added: ' . . . 

1 . '. ' 
.b;i = 2N(h;i- V;Ni- \liN;). 

Taking into acc~u~t that 

' 0 

( _3R- bib~- b2-~ + 2/:l.N) = R(g) = ...,_87r~>.T,, 
N· N · ·· c4· 

we can rewrite the equation (4) in the form. 

0 
b ij 3 1 ' 87r K. ( ,1 ) ··-+ R;·--V·V·N+bb .. --. T. .. +-h .. T =0 N 1 N • 1 •1 . c4 •1 . 2 •1 • 

Let us write the Einstein equations in the schematic form: 
the constraints 

K.o = 0, kk = 0 

and the dynamic equations 

h ~ /(I)(b, h, N, Ni, Tap), 
-~ ~ . 

h = /(zJ(b, h, N, N;). 

(5) 

(6) 

(7) 

(8) 

(9) 

From the structure ofthese ~qu~tions .we. can see that"thelapse functio~ N and 
the shift vector.Nk are not included' in the constraints and there are no dynamical' 
equations for these quantities. They are contained in the right-hand side of Eqs. 
(8), (9) and provide the invariance under group of diffeomorphism of the coordinate 
transformations 

:, 
t'=t'(t,x), x'=x'(t,x). 

Fixing of these variables has a clear geometrical and physical sense. Indeed, from 
the lapse function and shift vector we can construct the space-time unit vector va = 
(-Ji, :- "J: ), which is normal to ,the family of hypersurfaces t = const, and the fixing 
.of ir' ·corresponds to the setting of continuum of the observers with synchronized 
clocks [6]. . 

'So we have a dynamical' syst~m with diffeomorphic group of in variance (four arbi­
trary functions), and the presence of four non-dynamical degrees of freedom provides 
the invariance. It is necessary to add new non-dynamical variables for extension of 
the invariant group.·For.exainple, the triadic extension of ADM-parametersinvolves 
a non~dynamical.antisymm~tric tensor t;i which provides the S0(3) local invariancc 
(see the Appendix, B). 
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2.2 Existence of the global excitation 

It has been shown [7] that any one of kinemetric invariants can be locally 1 converted 
to zero by fixing a family of hypersurfaces t = const. , ' · 

Can it be done globally? That is the question which needs to be investigated in 
more details. First of all let us restrict the Einstein manifold by some topological · 
conditions. Here and further we assume the existence of global foliation of the whole 
manifold on the family of space-like hypersurfaces t = const. We suggest that the 
following condition be fulfilled: 

j !:l.N..fhrfx =·0. (10) 

The condition (10) is trivial·if the hypersurfaces t = const are closed, for the as­
ymptotically flat metrics ~f the hypersurfaces 2 the following behavior of the lapse 
function at infinity is sufficient: 

const 
N ~ 1 + rH• , f > 0. (11) 

All these suggestions are valid, for example, for homogeneous Friedmann metric. If 
we allow these assumptions then it is impossible to convert the trace of the external 
curvature to zero (or to constant) for nonstatic metric if the matter stress energy 
tensor satisfies the strong energy condition Too-.,. ~T ~ 0. 

Indeed, the trace of equation (6) with respect to hii gives 

• k b N 2 3 1 81r~>. ; . 3 
-- -Vkb+ b + R- -!:l.N = -(T. .. h1 + -T) N N ' N c4 '1 2 . 

Taking (2) into account, we have 

• k b N 1 ; · 871"K. a B 1 
-- -Vkb- -!:l.N + b.li + -(T. pv v- - -T) = 0 N N N 1 ' c4 a 2 . 

The spatial integral of the last equation gives 

(12) 

(13) 

j (h- NkVkb)..Jhd3x + j{b;jbij + 8~K. (Tapvavfl_ ~T)}N..Jhrfx = 0. (14) 

If the first integral is equal to zero (b = 0, b = ronst, ... ) then b;j = 0 (static meti:ic) 
and Tapvavfl- ~T = 0. . . • 

If b 1= 0 then in the rest frame of reference where Nk = 0 (line of time envelops 
normal unit vector va) the ../h. depends on time and, of course, cannot be a constant. 
The next step of our consideration is connected with extraction of the factor a0(t) 
from metric by conformal transformation. It can be called global excitation as it 
depends only on time, arid, as will be shown below, the dynamics of this quantity 
involves some spatial integral characteristics of the remaining local variables. 

1"Locally" means in the frame of some coordinate map. 
2It means the following behavior at infinity: h;; I.., --t f(t)6;;. 
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3 Dynamics of global excitation 

3;1 Global excitation 

The extraction of the factor a(t) from metric by conformal transformation means 
the following parametrization with respect to the (I + 3) decomposition: 

2 2 2 2 ""i"'. '"'i i i ds = a(t) (Ncdt - h(c)ijdx dx3 ), dx = dx + Ncdt, (15) 

or 

ds
2 = a(t)

2
ds; or g"" = a(t)9(c)"v· (16) 

The conformal transformation has one-to-on~ correspondence between the hyper­
surfaces t = canst of the manifolds g"" and 9(c)"v· The conformal transformation of 
the external curvature is 

b;i = a(t)b(c)ii + h(c)iia(t), (17) 

b= b(c) +3~. 
a Nca2 (18) 

Some useful formulas of conformal transformation are presented in the Appendix, 
C. Here we write the constraint (2) 

3 
R(c) 1 2 ; k ·4ab(c) . 60.2 Sr.~~: "' f3 

- 2- + 2(b(c)- b(c)k b(c)i ) + -N 3 + N 2 4 - 24.2Taf3Vc Vc = 0. (19) 
a a ca ca a c 

There is one additional degree of freedom a(t) in the parametrization (15). In order 
to sa~e the whole amount of independent variables, it is necessary to involve an 
additional global condition. We choose the following condition: 

J b(c)jh;d3 x = 0. (20) 

In other words, it means that "spatial averaging" of the divergence of the unit vector 
v~ is equal to zero: 

I \7 av;...jf:;d3 x = 0. (21) 

Now from (I9), using the space integration with the volume element F9 = Nca\/1!;., 
we obtain . . . 

' . a2 < Rc > < Too > 1 i k 2 

a2 + - 6- = 3 + 6 < (b(c)k b(c)i - b(dj) >; (22) 

in the same way 'from the trace of the equation (4) we obtain 

• 2ii . _0.
2 aVo < Rc > I . I . i k . 2' 

·--+--2-----=- < T.·· > +- < (b()kb()"-b) > a a2 .. q Vo (i 3 II • • 2 c . c • c ' 
l f· '. ;, • 

(23) 

where · 

Vo =I ~c jh;d
3
x, < Rc >= ~I RcNcjh;d3x, 

; ::-
(24) 

81J"K I I "' 11 r;- 3 <Too>= 7 Vo Taf3Vc v;; Ncy hcd x, (25) 

4. 

Sr.n I I .. r;-< 1';; >= -;A\.-~ 1ijh'/ Ncy hclfx, (26) 

(b ib k b2 ) ' - I I ib k 2 ' r;- "I < (c)k (c)i - (c) /- Vu (b(c)k (c)i - b(c)):'licyhctf :r. (27) 

In the case of open (and asymptotically flat} hypersurfaces t = co11.,f we assume 

< Rc >=/- cx:i, < 1i; >=f. 00, <Too >=f. 00, 

i . k 2 < (b(c)k b(c)i - b(c)) >=/- 00. 

3.2 Relation with dynamics of Standard 
Cosmological Model 

(28} 

(29) 

If we neglect. t.he kinetic inhomog<•twous part. of gravitation with respect to spatial 
averaging of stress energy tensor 

< (b(c)k;bcc/- b(c)) >= 0 (:JO) 

and assume 
Vo · 
Vu = 0, (a 1) 

then the <'<]Uat.ions (22) and (23) take t.!IC' form 

it2 < U, > < Too > · 
a2 + --(j-. - = --3-, (:t~) 

2ii 0.2 < u, > 1 ' ' .. --+----=- < 1·· > (.II) a a2 (j 3 11 
• ' 

Now we can compare the global dynamical equations (:J2),(:1:J) with I he Einsl<•in 
equation of Friedmann-Robertson-Walkcr (FRW) homogem•ous nwtric: 

ds2 = a7.·nwds; = a~.·nw[d2t- d2x- df!j, ~- = l.!l. -I, (:H) 

( 

•2 ) ( .,.. "2 ) • aF/liV , , -aFIIIV aFIIW • , 
.! - 2--+k = luo, ----+-2---k hc··•·un·)ij = l;j. 

aFilW annv aFilW 
(:15) 

The FRW dynamics of the global· variable a(t) can l)(' obtaim•d hy SJH'cifyin~ t lw 
properties of the quantities< 'li; >, < 1;JO >and < R, >. In such a way\\"<' ohtain 
a mathematical equivalence between the dynamics of the global <'X <"it at ion and the 
dynamics of space fact.or in FH.W cosmological model. 

3.3 Time surface term 

The llilbert-Einst.ein action of pure gravity in the (I + :!) tlt•comJHisitiun has t lit' 
form 

W "'I tr'xhjll =I tlttf'xNVh(-='u- (b~ll; -ll)) + 1~. (:IIi) 

where 

~=I dltf'x (- :~(Vhb) + Vh(ilN + N'b)) 

5 



is a surface term, containing- time and space surface terms. If thf' condit-ion (I 0) is 
~alid and Nk = 0, then we have the. time surface term only 

~ = j dtd
3
x (- j~(Vhb)). 

After the conformal transformation ( 15) and fulfilment of (20), the above expression 
takes the form 

~ = -3 j dt! (ilVo), (:!7) 

and we can conclude that the global variable.a determines the time surface tern!. 

4 Discussion 

Tlie canonical quantization of gravity requires solving the problem of construction of 
the "physical Hamiltonian", which can be treated as the whole energy of considered 
sy.stem. Recently the method of Ham.iltonian reduction was proposed in [2, 3] for 
isolating physical degrees of freedom and constructing a physical Hamiltonian and 
energy. Conceptually, this method relies on the canonical transformation (Pa,a)--+ 
(P~,TJ), which absorbs the time surface term; and on explicitly solving a first-order 
constraint with respect to the new canonical momentum P~. This allows us to treat 
the variable TJ as a new invariant 3 parameter of evolution and the momentum P~ as 
a physical Hamiltonian or energy. ·But the main peculiarity of this method is that 
the variables Pa and a must be global variables (dependent on time only) and, of 
course, it is tested only for FRW cosmological model. 

• The main result of the present work is the existence of global excitation dynamics 
and the possibility of extraction of this dynamics from Einstein eqm.tions. This 
dynamics can be made similar to the FRW metric scale factor dynamics by some 
common and quite wide assumptions. The Hamiltonian reduction method [3] can 
be directly applied to the global excitation variable and is valid for more common _ 
~aie· then homogeneous FRW model. 

3 \Vith respect to time reparametrization. 

6 

.. 

I) 
iJ 

) 
7 

Acknowledgments 

We are grateful to P.Aichelburg,D.Khokhlov for stimulating discussion: 

Appendix 

A Denotations 

We use the following definitions of the Riemann and Ricci curvature: 

(VaY'il- VpY'a)A"~ = -APR~!la• 

(VaY'p- VpY'a)Ail = -NRpa· 

(38) 

(39) 
Here V a denotes the covariant derivative with respect to the space-time metric 9a!l 
with a signature (1,-1,-1,-1). Greek indices denote the four-dimensional space-time 
components a, /3, 'Y··· = 0, 1, 2, 3; whereas thelatinjndices denote the space compo­
nents a, b, c ... = 1, 2, 3. All the un'derlined indices correspond to the nonholonomic 
tetradic 

9a!l = hae.h~, e = 0, 1, 2, 3 (40) 
or triadic components I;,_' 

h;j := Wifi~jf£, };_ .= 1, 2, 3. (41) 
Here h;i denotes a space metric with a signature (1,1,1). 

Note that the covariant derivative V a does not act on underlined indices 

-v s~ =as~+ r~" r~. (42) 

We define the covariant derivative which acts on usual and underlined indices as _ 

. DaT~ =as~ +.f~a T~- ~aT:, 
~ • - ' , - .. - •.r -

(43) 

where 'Y~a is the Ricci rotation coefficients, which are consistent with the tetrads 
h~ - •. -·.· . . 

- • Dah~ = 0. (44) 

The same is valid for the triadic derivative correspondingly: 

D;wi = 0. (45) 

B The (1 + 3) d~co~nposition 

B.l Gause equation and· Peterson-Cod~cfidentity 
In accordance with the general'th~ry [5]; ~e have' the following Gause equation and 
Peterson-Codaci identity: 

· -R;i,k~vP = ±(V';bjl;-V';b;k), (46) 

7 



R ;;,kl = R;;,kr ± (b;~cb;r- b;~cb;r), (47) 

where R is the inner curvature of hypersurface. We take plus in formula if vPvP = I 
or minus if vPvp = -1. Here vP is the vector orthogonal to hypersurface, b;~c is the 
second curvature, V; is the covariant derivative with respect to the inner metric of 
hypersurface. 

Below you can find all the traces of (46),(47): 

R;pvP = ±('V;b- 'V;b{), 

- R ij = -R;; =f Ra;,;pvaVJ ± (bfbkj- bb;;), 

- R= -R ± 2Rarwavf3 ± (b;b{- b2
), 

RafJV0 vfl = ±'VaT0
- b;b{ + b2

, T0 = {v0 b,(Jilogv0 + vib}, 

R =R +2'Vara =t= (b;b{ + b2
). • 

B.2 ADM-Parametrization 

We use the following ADM-parametrization of metric: 

( 

N 2 - NkN1c 

9afJ= 
-N; ( 

1 -N; . N2 
. gafJ = 
' N> -hu) -N' ' 

or in a simpler form: 

N' ) -N, 

N'N' _ hii ' 
N> 

ds2 = N 2dtl- h;;dxiJxi, Jxi = dx; + Nidt. 

The second curvature is defined as 

1 . 
b·· = -(h··- 'V·N·- V·N.·) 
'' 2N '' ' ' ' ' ' 

and the unit time-like vector 

va = (!,-;) 

{ 48) 

{49) 

{50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

is normal to the family of hypersurfaces t = canst: Gause equation and· Peterson­
Codaci identity in the ADM-parametrization look as 

R;pvP = -('V;b- V;b{), (57) 

R;; = 3 R;;- Ra;,;pvaVJ- (bfb~c; ~ bb;;), (!iS) 

8 

ll = - 3 /l + 2R,,1v"v3 + (bjb{- b2
), ( .j!J) 

" a ., k ; 2 " b a; N N; 
R.,.1v v =V.,r -(bA-b ). r ={-:Y'N+ sb}. (60) 

R = - 3 R + 2\i,r"- (b~bf- b2
). (61) 

The last. five formulas can be obtained from (48)-(52) by using the uppPr sign and 
takiug into account siguature of tlw nwtric: 

b-t-b. b-t-b~, il-+- 3 /l. il ii -+ 3 R;;. 

11 is IIPn•ss<try t.o spPcify one tc•mJ iu (58) more exactly: 

ll .. ;.;,w",/1 = --/v{b;;- .\'Pvpb;;- b;k v;Nk- b;kv;Xk)+ 

+-/vV.;\i;I'V + b7bki> 
((i2) 

whc~n~ b;; is the partial derivative wit-h respPct to I ime. 

B.3 Triadic formulation and eigenvalue of external curva­
ture 

For diagonali:r.atiou of the extemal curvature it is couveniPut to writP dm\'11 all 
Eiust.ein equations in triadic form 

h;j = W;!i.Wjfs., ( (i;!) 

where under repeated indices we assume the sununation and t.hP uudPrliriC'd iudicPs 
dPnote the triadic or the nonholonomii: components. 

Any local SO(:l) transformations do uot producP changPs iu t.lw Ill PI ric h;i. So 
triadic formalism extends the group of the symmetry of the origiual t hmry. ThP 
Einstein equations in triadic formalism take th(; f6nn 

t>o :
1
/' b2 b b Srr~~:21' " 11 - 0 ~ + ;- ik ik- -;:::J nfW V - , (<il) 

. _ ...,.b ..., 1 Srr~~:," , 
11:!£_ = VI;_ - Yj_li!;_ + -;:::Jl!i.nV = Q, (fi5) 

0 . . 

b u :1 I Srrt> (" I ") --+ /l--~'ii-'VN+bb·_-- 1_··+-h· I =0 N !!. N t !.. t.!. rA ~ .!!. 2 l! . ((iii) 

w~ = -wi [iv(b~;_,t + lkt'iiifNil- N"'wj'v,.u.·~ .. J. - - (li7) 

where 
(•) :·.. . k. : . _: ... • : 

b i.i = bi.,t- N 'Vkbi,t + N(ti.!£bkf- bi.~l~,t). 

9 



and ti.i. is the antisymmetric tensor 

t!.i. = ~(wawDn + V!LND + Nmwzvmwi.n)· 

The system of Eqs. (64)-(67) can be also written in a schematic form, i.e. with 
the constraints 

"o = 0, Kk = 0 (68) 

and the dynamical equations 

b = fcl)(b,h, N, Ni, 1~{1,1;;), ((i!J) 

h=f(2J(b,h,N,N;,1'afl,t;;). (70) . -
So, we can note the presence of the non-dynamical antisymmetric tensor 'Iii that 
provides S0(3) local invariance. -

If we choose a system of the eigenvectors of external curvature as a triadic system 
bi.j_ = tSi.i.>.i., the equation (66) takes the form (here for simplicity Ta{J = 0) 

0 3 1 
>. i. = Rii.- b>.1 + N V 1Vi.N, (71) 

( 
NP ) 1 

lJsi- j\jl!E.i.!!_ Pi.->.!.)= 
3 

Ri.!. + N Vi.ViN, i =I 1£, (72) 

where~ i. := -k5.i.- ';; Ok\_ and /!£i.p is the Ricci coefficient. The constraint (65) can 
be repres'ented as -

a!.>.i- aib +I:": Pi- >.1)/;ki = o. 

C Conformal transformation 

The conformal transformation 

ds2 = a2(t,x)ds~ 

produces the following transformation of kinemetric quantities: 

3 3 1 2 !l h(c)ik -
R;; = R(c)ik- -V;Vka+ 2o;auka- --~a, 

a a a 
3 /l 4 2 3 R =__.!=!--~a+ -V1aV,a, 

a2 a a2 

f~; = r~cJii + ~(tS~o;a + tS7o;a- hccJiioka), 
a 

b b h 
a !l b b(c) 3v~ Oaa a 1 a 

ij = a (c)ij + (c)ijVc uaa , = - + --2 -, V = -vc , 
a a a 

( 

0 0 ) 2 1 2 a a2 
b = 2 b(c) + 62b(c) + 9(-) , 

a a a 

.. 1 ( .. ~ 3 ~ 2) 
b'1 

b;; = al b(!Jb(c)ij + 2 al b(c) + 7 • 

where 
~= v';oaa. 
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(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 
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