


1 Introduction. e

This paper deals with the problem of monopole generation from oscillator-like
systems, i.e. systems with a potential chosen as "oscillator + anything™. In turn,
the mentioned problem is connected with the search for the electromagnetic duality
(ED) in the structure of Quantum Mechanics (QM). The existence of QM-duality
seems important for two reasons. First, QM is a mathematically more simple
theory than the gauge theories, so we have an excellent polygon for experience in
ED. Second, there appears a Wlde range of applications because of ED pretentions
to realize accurate calculations outside perturbatlon theory: according to ED,
strongly coupled gauge theories can be formulated in the form of weakly coupled
magnetic monopoles [1].

During the last years, the following machinery has been developed for a mono-
pole generation: Hurwitz-like transformations applied to 2D, 4D and 8D quantum
oscillators transfer them into the charge-monopole bound systems in IR?, R® and
IR®, respectively [2-4]. In two space dimensions. the oscillator model was also
constructed which can be transformed into a charge-monopole bound system with
fractional statistics, interpolating the bosonic and fermionic limits [5]. Thus, the
important extension of ED to the world of anyons is achieved.

Recently, the algebraic approach has been developed to clarify the relation
between the 8D quantum oscillator and the charge-dyon bound system with the
SU(2)-monopole {6]*. This approach is exhaustive but rather abstract. We make
here an attempt to fulfill this gap® by presenting the analytical approach that
is more explicit and hence more acceptable for understanding. Special attention
is given to the space-gauge coupling and to the spectroscopy of the charge—dyon
bound system.

2 SU(2)-Monopole

Let us recall the way used for passage from the 8D oscillator to the 5D SU(2)-
monopole. The initial system is governed by the equation

Py 2m maw?y?
—— — — — 1
E) + Y (E 5 )¢ 0, (1)

where u, € R%, 1 =0,1,...,7; v? = u,u,.
With the help of the special transformation®

2 2 2 2 2 2 2 2
To = U+ UuUp+U;+ U~ UG — Uy — Ug — Uy
z = 2(u0u4 4 UyUs — Upllg — U3U7)

4The particular version of the problem was previously considered in [7]-
$8ee also [2] where the analytical approach to the same problem was presented more concisely.
Formula. (2)is known as the Hurwitz transformation [8]; (3) is copied from [9].
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Ty = 2(uou5 — U uyg + ugtty — usua) S (2)
o 23 = 2ugtig + uruy + ugtg + uaus) '
24 =" 2(uotir — urug = Ulis + ugtty) ;
L (g ) (g — ius)
ap . = ln €{0,2
- T (uo—zul)(uz—}-zua) [0,27)
: : 2 S
7 . 2 +ul N
. Br = 2arcten (u%+u¥) €fo,n] )
vy = (uo + tup J(uz +iug) < [0,47) .

- 2 (uo — dug fug — fug)

we present R® as a direct product R® @ $° of the new configuration space R®
with the Cartesian coordinates x; € (—00,00) and the intrinsic space §° with the
coordinates ar, f7 and 7. In the new coordinafces, Eq.(1) can be led to the form

1 a
e —hA°) T @)
Here'r = (z;2;)/? and j = 0,1,..,4
e=—muw'l8, & =E/4. {5}

The operators T, are the generators of the SU (2) group and have the form

) - 3 ) a8 cosar &
7y = thr, 86r  sinfrdyr
) 3 (cos ar cot fr Bar + Smaraﬁr sin B 572‘)
) 2 8 a sinar 8
T = ¢ dr
X i (sm ay cot fr— Bor 38y T Sinfr 3’TT) ©
. 8
Ty = ~ig—
8 1801;-

The 5D vectors A® have the form
1

Al = e (0 —g, -

A - r(r+$0)(03 T4, x37327m1)

£ o= — 02—

A° = T‘(T +Io)(01$3, T4,y xl13:2)

/S S (0,22, — 21, 24, ~23)
7‘(”"‘*‘.’30) 12y 1y L4, 3)-
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Every term of the triplet A} coincides with the vector potential of 5D Dirac
monopole” with a unit topoIoglca.l charge and the line of singularity along the
nonpositive part of the zo-axis. The vectors A} are orthogonal to each other,

1 (r—mo)6

Aldl =
) 2 (r+ zg)

and also to the vector § = (24, %1, %2, %3, 24).

We see, that Eq.(4) describes the charge—dyon system with the SU(2)-mono-

pole.
By using the orthogonality condition for vectors A? we can transform the Eq.(4)

into 3 5 9
Y.V e o - _TE
(A5"22A5T°3z,- r(r+xo)T)¢+ 7 (e+

3 LT-Coupling

Let us note that

67)¢=o. )

iA ai, r(r—iEﬁL
where

b = 51Du(e) + Daa)

by = 5Die) + Da(s)

£y = £ [Dufa) + Do)
and

0 i}
Di(z) = —m"'a—a:; + xj—(':E .

Using these formulae we can transform Eq.(7) into

4 e 92 co 22 é) _ .
(As—mLT-mT)zﬁ+ﬁz (e+r $p=0. (8)

We see that £q.(8) contains the LT ~coupling term demonstrating that we have no
way to separate the wave function dependence on IR® and S°.

?The SU(2)-monopole theory in IR® was constructed by Yang [10).



Let us mtroduce in R® the hyperspherical coordinates r € [0,00), 8 € [0,7],
« € [0,2n), B € [0,7] » 7 € [0,4x) according to

Zg = rcos#

zy tizy = rschosgc‘ E

T3+ 174 rsmf?s_mge‘ z

In these coordinates .

139 0 1 2 a 4 .
A _— 3g ™~y F  r2
°= 3 ( 3?‘) + r2sin®§ 59 (Sm 936') r2sin® 3L

where
sy 250
e (ﬂ— zizza%)
and

- L 1 a2 . 32 32
=
{(’M’ +cotﬁaﬂ+sm ,@( 2(:05,6l 3‘7 )} ]

Let us introduce J, = L, +7,. Since /2 = Eryfryof T, Eq.t8) can be rewritten

i* J? 2m e?
(Ara_rzsinzﬂﬂfr2c0526/2)¢+?(€+7)¢=0 )

_ 120 ) 1 8. 5,9
A= A5 ( 6r) + 53558 (sm 6%) .

Emphasize that

where

[ﬁasﬁbl = ifcbcf/c’ [jas jb] = I—Ecuiu:'j:c -
Introduce the separation ansatz

#) = @(7‘, G)G(Ot, )67 Y &, 167" 7T)
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where G are the eigenfunctions of L2, T2 and J? with the eigenvalues L(L + 1),
T(T + 1} and J(J +1). If this is substituted into Eq.(3). the differential equation
for the function &¥(r, #) iinmediately follows

LL+1)  JT+1) 2m e?
8 — — - i —_— -_— =1{-

(A TR s!n) 8/2 " rlcos?f/2 + n\° + r =0 (10)
Because of an LT-interaction, we look for the function & in the form ‘

G= z ('I“‘IIL m, T t )Dmm (ﬂ'ﬂ'. T)D;‘:’(O'Tv 167'1 '}T)
M=m4t

where (JMIL,m ;T,i ) are the Cchsch-Gnrdan coefficients and DL _ . and DZ, are
the Wigner functions.

4 Hypermomentum

Pick up the function $(r, #) of the form
&(r,8) = R{r)Z(F).

Then, equation (10) is separated into

1 d 3,42 2L(L+ 1) 27(J +1) . _
sinae—@( 9'&5)— - cosf 1+c056Z+)\(/\+3)Z-—0 (11)
and a purely radial equation
1d{ ,dR A(A+3) 2m ¢?
- o - — = 2
i dr (T dr) r? R+ W (€+ T =0 (12)

with the separation constant A(A + 3) eqnal to the nonnegative eigenvalucs of the
hypermomentum operator.

It is convenient to make in Eq.{11) a change of variables, y = (1 —cos8)/2 and
write

Z(y) =y (1 - ) W(y).
Substituting this into Eq.(11), we obtain the hypergeometric eguation
y(1 ~ y)d;—jf 4c~(a+b+ 1)y]f:% —-abW =0
withge A3+ L4 J,b=2+L+J+3,c=2L+2
Thus, we find that
Z(8)=(1—cos8)"(1 + cos @)

2Fy (—A+.I+L,A+J+L+3;2L+2;______1—;"59).
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This solution is well behaved at 8 = = if the series ,F| terminates, i.e.
“A+J+L=-ng

whereny = 0,1,2,....

5 Energy Levels
Let us now turn to the radial equation and introduce the function
f(r) = v R(r).
It is easy to verify that the equation for f(r) has the form of the confuent hyper-

geometric equation

d df

2f+( —2) L —af = 0

where z = 2kr, k = \/—2me/R%, ¢ =244 4, a = A+ 2 = 1/xry and rg = A%/ me?.
For the bound state solutions (¢ < 0}

A+2-1fkryg=—-n, =0,-1,-2,

and therefore
B
N aRHE 12y
where

N=2(n,.+.k)=2(n,+na+J+L).

6 Degeneracy

For fixed T, the energy levels €% do not depend on L, J and ), i.e. are degenerate.
The total degeneracy is

gh=02T+1) 33 (2L +1)3 (27 +1).
A L J

Since A = ng + J + L and N = 2(n, + 1), it follows that (for fixed N and T)
= N7+ 1,..,8/2 Then, Lo = A~ Join (Lmex is fixed} and therefore
Lmuz =A- (Lmax - T) or Lmtz:r = ()\ + T)/2 ThUS,-

N2 .!.ﬂ

gk =02T+1)> Z (2L+1)Z(2J+1)

=T L=0,1/2
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Now, comparing [L —~T| < J <L+ T and J < X —~ L we conclude that
(@ J=1L~T\L~T|+1,;L+ T, for L=0,1,..,25T

TR

(B) T =|L-THIL-TI+1,..s A= L, for [ = 2=T41 M7

2

and rewrite the formula for ¢% in 2 more explicit form

NJ2 .._‘.Z

gh=0r+1)3{ 2 @L+1) }j @J+1)+

A=T L=0t/2 J=|L-T|
AT

E (2L +1) Z 2J+1)};

L= x..r J=|L-T]

Finally, after some tedious calculations we obtain the following result:

- ger e (§-r0) (o249
—12‘(2T+1) > T+1 > T+2

2

For T = 0 and N = 2n (even) the rhs. of the last formula is equal to (n +
D{n+2)*(n +3)/12, i.e. to the degeneracy of pure Coulomb levels. Further, T =
0,1,..N/2and T = 1/2,3/2,..N/2 for even and odd N, respectively. Therefore,

{(F-r+2)(§-r+3) w2z 5},

Nj2 ‘
av= Y g¢k= M
i T=0,1/2 7IN1
i.e. we obtain the degeneracy of the energy levels for the 8D isotropic quantum
oscillator.

7 Conclusions

Formulae (2) and (3} together with the ansatz (5) form the duality transforma-
tion mapping of the 8D quantum oscillator into the charge-dyon system with the
SU(2)~monopole. Let us stress the meaning we use for the term duality. Both
Eq.(1) and Eq.(4) contain two quantities, w and E. For Eq.(1) w is the fixed

"parameter {coupling constant) and E is the quantity to be quantized (energy of

the 8D oscillator). On the contrary, as it easy to see from (5), for Eq.(4) E is a
fixed parameter (Coulomb coupling constant) and w is the quantity to be quan-
tized (w-energy of the final system). Thus, the 8D quantum oscillator and the
charge~dyon bound system with the SU(2)-monopole are not identical, but dual
to each other.



This type duality is valid not only for the 8D, 4D and 2D oscillators, but also
for oscillator-like systems with the potentials

V{u?) = co + cyu® + W(u?)
where W{u?) has a polynomial form
W) =3 cau®
n=2

L J

For such modified potentials, the ansatz (3) can be rewritten as

€ :_FE-oc

e=——=, ef=——

4’ 4 '
Thus, the value of the function V(x?) at u* = 0 contributes to the Coulomb
coupling constant e2. It is also easy to verify that the Lh.s. of Eq.(4) acquires the
additional term (—W(r)/4r). .
8 Appendix

Consider the normalization of the wave function ¥(Z, er, Br,77). A standard
caleulation shows that the radial wave function R(r) normalized by the condition

e - 2
fo P (R a ()P dr = 1
has the form

4 1 (n, + 22 +3)!
Roa(r) = Tts;/z(mr + 2 +2p 23+ 3\ (e )1

(26r) e F(—n,; 2) + 4;2x7) .

The full wave function
= ClpyRua(r)2a0s(8)Gi o @, B, vi oo, Bryvr)
is normalized by the condition
- [lPds =1
where

dv = r*sin® ¢drdfdidQlr

and
1. 1.
d) = gsm Bd3dady, dy = 3 sin Srdfrdordyr .

Using the formula

1- 3 1 ;
2F1(—-n,n+a+b+1;a+1; zy)“ nifta ¥ )P,f""’)(y)

T Dn+ta+l)
where P{#*Ny) are the Jacobi polynomials, and taking into account that
1
f,,(l ~y)* (L + I PEN(y)) oy =

20401 DPlnta+1)(n+b+1)
n+at+db+l nlT(n+adbs1)

e . 97{2
2 - -
.[D,:gmé(a’s 13! 7)D:';"",l (0'1 }61'}‘)(;9 = mﬁj;)}bnum;ém;m;

it is easy to obtain that

or o |CLHET+ @A +3)A =T ~ )TN+ + L +3)
LT = 22HUASAP A+ J — L+ 2)[(A = J+ L+ 2)
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