

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯдЕРНЫХ ИССЛЕДОВАНИЙ
$98-14$
E2-98-14
Hep-th/9712235
L.G.Mardoyan ${ }^{1}$, A.N.Sissakian, V.M.Ter-Antonyan ${ }^{2}$

8D OSCILLATOR AS A HIDDEN SU(2)-MONOPOLE

Submitted to «Ядерная физика»

[^0]
1 Introduction

This paper deals with the problem of monopole generation from oscillator-like systems, i.e. systems with a potential chosen as "oscillator + anything". In turn, the mentioned problem is connected with the search for the electromagnetic duality (ED) in the structure of Quantum Mechanics (QM). The existence of QM-duality seems important for two reasons. First, QM is a mathematically more simple theory than the gauge theories, so we have an excellent polygon for experience in ED. Second, there appears a wide range of applications because of ED pretentions to realize accurate calculations outside perturbation theory: according to ED, strongly coupled gauge theories can be formulated in the form of weakly coupled magnetic monopoles [1].

During the last years, the following machinery has been developed for a monopole generation: Hurwitz-like transformations applied to 2D, 4D and 8D quantum oscillators transfer them into the charge-monopole bound systems in $\mathbb{R}^{2}, \mathbb{R}^{3}$ and \mathbb{R}^{5}, respectively [2-4]. In two space dimensions the oscillator model was also constructed which can be transformed into a charge-monopole bound system with fractional statistics, interpolating the bosonic and fermionic limits [5]. Thus, the important extension of ED to the world of anyons is achieved.

Recently, the algebraic approach has been developed to clarify the relation between the 8 D quantum oscillator and the charge-dyon bound system with the $S U(2)$-monopole $[6]^{4}$. This approach is exhaustive but rather abstract. We make here an attempt to fulfill this gap ${ }^{5}$ by presenting the analytical approach that is more explicit and hence more acceptable for understanding. Special attention is given to the space-gauge coupling and to the spectroscopy of the charge-dyon bound system.

$2 \mathrm{SU}(2)$-Monopole

Let us recall the way used for passage from the 8 D oscillator to the $5 \mathrm{D} S U(2)-$ monopole. The initial system is governed by the equation

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial u_{\mu}^{2}}+\frac{2 m}{\hbar^{2}}\left(E-\frac{m \omega^{2} u^{2}}{2}\right) \psi=0 \tag{1}
\end{equation*}
$$

where $u_{\mu} \in \mathbb{R}^{8}, \mu=0,1, \ldots, 7 ; u^{2}=u_{\mu} u_{\mu}$.
With the help of the special transformation ${ }^{6}$

$$
\begin{aligned}
& x_{0}=u_{0}^{2}+u_{1}^{2}+u_{2}^{2}+u_{3}^{2}-u_{4}^{2}-u_{5}^{2}-u_{6}^{2}-u_{7}^{2} \\
& x_{1}=2\left(u_{0} u_{4}+u_{1} u_{5}-u_{2} u_{6}-u_{3} u_{7}\right)
\end{aligned}
$$

[^1]\[

$$
\begin{align*}
& x_{2}=2\left(u_{0} u_{5}-u_{1} u_{4}+u_{2} u_{7}-u_{3} u_{6}\right)^{\prime} \tag{2}\\
& \therefore x_{3}=2\left(u_{0} u_{6}+u_{1} u_{7}+u_{2} u_{4}+u_{3} u_{5}\right) \\
& x_{4}=2\left(u_{0} u_{7}-u_{1} u_{6}-u_{2} u_{5}+u_{3} u_{4}\right) \\
& \because \\
& \alpha_{T}=\frac{i}{2} \ln \frac{\left(u_{0}+i u_{1}\right)\left(u_{2}-i u_{3}\right)}{\left(u_{0}-i u_{1}\right)\left(u_{2}+i u_{3}\right)} \in[0,2 \pi) \tag{3}\\
& \because \\
& \beta_{T}=2 \arctan \left(\frac{u_{2}^{2}+u_{3}^{2}}{u_{0}^{2}+u_{1}^{2}}\right)^{1 / 2} \in[0, \pi] \\
& \gamma_{T}=\frac{i}{2} \ln \frac{\left(u_{0}+i u_{1}\right)\left(u_{2}+i u_{3}\right)}{\left(u_{0}-i u_{1}\right)\left(u_{2}-i u_{3}\right)} \in[0,4 \pi)
\end{align*}
$$
\]

we present \mathbb{R}^{8} as a direct product $\mathbb{R}^{5} \otimes S^{3}$ of the new configuration space \mathbb{R}^{5} with the Cartesian coordinates $x_{j} \in(-\infty, \infty)$ and the intrinsic space S^{3} with the coordinates α_{T}, β_{T} and γ_{T}. In the new coordinates, Eq.(1) can be led to the form

$$
\begin{equation*}
\frac{1}{2 m}\left(-i \hbar \frac{\partial}{\partial x_{j}}-\hbar A_{j}^{a} \hat{T}_{a}\right)^{2} \psi+\frac{\hbar^{2}}{2 m r^{2}} \hat{T}^{2} \psi-\frac{e^{2}}{r} \psi=\epsilon \psi \tag{4}
\end{equation*}
$$

Here $r=\left(x_{j} x_{j}\right)^{1 / 2}$ and $j=0,1, . ., 4$

$$
\begin{equation*}
\epsilon=-m \omega^{2} / 8, \quad e^{2}=E / 4 \tag{5}
\end{equation*}
$$

The operators \hat{T}_{a} are the generators of the $S U(2)$ group and have the form

$$
\begin{align*}
& \hat{T}_{1}=i\left(\cos \alpha_{T} \cot \beta_{T} \frac{\partial}{\partial \alpha_{T}}+\sin \alpha_{T} \frac{\partial}{\partial \beta_{T}}-\frac{\cos \alpha_{T}}{\sin \beta_{T}} \frac{\partial}{\partial \gamma_{T}}\right) \\
& \hat{T}_{2}=i\left(\sin \alpha_{T} \cot \beta_{T} \frac{\partial}{\partial \alpha_{T}}-\cos \alpha_{T} \frac{\partial}{\partial \beta_{T}}-\frac{\sin \alpha_{T}}{\sin \beta_{T}} \frac{\partial}{\partial \gamma_{T}}\right) \tag{6}\\
& \hat{T}_{3}=-i \frac{\partial}{\partial \alpha_{T}} .
\end{align*}
$$

The 5D vectors \vec{A}^{a} have the form

$$
\begin{aligned}
\vec{A}^{1} & =\frac{1}{r\left(r+x_{0}\right)}\left(0,-x_{4},-x_{3}, x_{2}, x_{1}\right) \\
\vec{A}^{2} & =\frac{1}{r\left(r+x_{0}\right)}\left(0, x_{3},-x_{4},-x_{1}, x_{2}\right) \\
\vec{A}^{3} & =\frac{1}{r\left(r+x_{0}\right)}\left(0, x_{2},-x_{1}, x_{4},-x_{3}\right) .
\end{aligned}
$$

Let us introduce in \mathbb{R}^{5} the hyperspherical coordinates $r \in[0, \infty), \theta \in[0, \pi]$, $\alpha \in[0,2 \pi), \beta \in[0, \pi], \gamma \in[0,4 \pi)$ according to

$$
\begin{aligned}
x_{0} & =r \cos \theta \\
x_{1}+i x_{2} & =r \sin \theta \cos \frac{\beta}{2} e^{i \frac{a+\gamma}{2}} \\
x_{3}+i x_{4} & =r \sin \theta \sin \frac{\beta}{2} e^{i \frac{a-\gamma}{2}}
\end{aligned}
$$

In these coordinates

$$
\Delta_{5}=\frac{1}{r^{4}} \frac{\partial}{\partial r}\left(r^{4} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin ^{3} \theta} \frac{\partial}{\partial \theta}\left(\sin ^{3} \theta \frac{\partial}{\partial \theta}\right)-\frac{4}{r^{2} \sin ^{2} \theta} \hat{L}^{2}
$$

where

$$
\begin{aligned}
& \hat{L}_{1}=i\left(\cos \alpha \cot \beta \frac{\partial}{\partial \alpha}+\sin \alpha \frac{\partial}{\partial \beta}-\frac{\cos \alpha}{\sin \beta} \frac{\partial}{\partial \gamma}\right) \\
& \hat{L}_{2}=i\left(\sin \alpha \cot \beta \frac{\partial}{\partial \alpha}-\cos \alpha \frac{\partial}{\partial \beta}-\frac{\sin \alpha}{\sin \beta} \frac{\partial}{\partial \gamma}\right) \\
& \hat{L}_{3}=-i \frac{\partial}{\partial \alpha}
\end{aligned}
$$

and

$$
\hat{L}^{2}=-\left[\frac{\partial^{2}}{\partial \beta^{2}}+\cot \beta \frac{\partial}{\partial \beta}+\frac{1}{\sin ^{2} \beta}\left(\frac{\partial^{2}}{\partial \alpha^{2}}-2 \cos \beta \frac{\partial^{2}}{\partial \alpha \partial \gamma}+\frac{\partial^{2}}{\partial \gamma^{2}}\right)\right]
$$

Let us introduce $\hat{J}_{a}=\hat{L}_{a}+\hat{T}_{a}$. Since $\hat{J}^{2}=\hat{L}^{2}+\hat{T}^{2}+2 \hat{L}_{a} \hat{T}_{a}$, Eq. (8) can be rewritten as

$$
\begin{equation*}
\left(\Delta_{r \theta}-\frac{\hat{L}^{2}}{r^{2} \sin ^{2} \theta / 2}-\frac{\hat{J}^{2}}{r^{2} \cos ^{2} \theta / 2}\right) \psi+\frac{2 m}{\hbar^{2}}\left(\epsilon+\frac{e^{2}}{r}\right) \psi=0 \tag{9}
\end{equation*}
$$

where

$$
\Delta_{r \theta}=\frac{1}{r^{4}} \frac{\partial}{\partial r}\left(r^{4} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin ^{3} \theta} \frac{\partial}{\partial \theta}\left(\sin ^{3} \theta \frac{\partial}{\partial \theta}\right)
$$

Emphasize that

$$
\left[\hat{L}_{a}, \hat{L}_{b}\right]=i \epsilon_{a b c} \hat{L}_{c}, \quad\left[\hat{J}_{a}, \hat{J}_{b}\right]=i \epsilon_{a b c} \hat{J}_{c}
$$

Introduce the separation ansatz

$$
\psi=\Phi(r, \theta) G\left(\alpha, \beta, \gamma ; \alpha_{T}, \beta_{T}, \gamma_{T}\right)
$$

where G are the eigenfunctions of \hat{L}^{2}, \hat{T}^{2} and \hat{J}^{2} with the eigenvalues $L(L+1)$, $T(T+1)$ and $J(J+1)$. If this is substituted into Eq. (9), the differential equation for the function $\Phi(r, \theta)$ inmediately follows

$$
\begin{equation*}
\left(\Delta_{r \theta}-\frac{L(L+1)}{r^{2} \sin ^{2} \theta / 2}-\frac{J(J+1)}{r^{2} \cos ^{2} \theta / 2}\right) \Phi+\frac{2 m}{\hbar^{2}}\left(\epsilon+\frac{e^{2}}{r}\right) \Phi=0 \tag{10}
\end{equation*}
$$

Because of an $L T$-interaction, we look for the function G in the form

$$
G=\sum_{M=m+t}(J M \mid L, m ; T, t) D_{m m^{\prime}}^{L}(\alpha \cdot \beta, \gamma) D_{i t^{\prime}}^{T}\left(\alpha_{T}, \beta_{T: \gamma_{T}}\right)
$$

where $(J M \mid L, m ; T, t)$ are the Clebsch-Gordan coefficients and $D_{m m^{\prime}}^{L}$ and $D_{t t^{\prime}}^{T}$ are the Wigner functions.

4 Hypermomentum

Pick up the function $\Phi(r, \theta)$ of the form

$$
\Phi(r, \theta)=R(r) Z(\theta)
$$

Then, equation (10) is separated into

$$
\begin{equation*}
\frac{1}{\sin ^{3} \theta} \frac{d}{d \theta}\left(\sin ^{3} \theta \frac{d Z}{d \theta}\right)-\frac{2 L(L+1)}{1-\cos \theta} Z-\frac{2 J(J+1)}{1+\cos \theta} Z+\lambda(\lambda+3) Z=0 \tag{11}
\end{equation*}
$$

and a purely radial equation

$$
\begin{equation*}
\frac{1}{r^{4}} \frac{d}{d r}\left(r^{4} \frac{d R}{d r}\right)-\frac{\lambda(\lambda+3)}{r^{2}} R+\frac{2 m}{h^{2}}\left(\epsilon+\frac{r^{2}}{r}\right) R=0 \tag{12}
\end{equation*}
$$

with the separation constant $\lambda(\lambda+3)$ equal to the nonnegative eigenvalues of the hypermomentum operator.

It is convenient to make in Eq.(11) a change of variables, $y=(1-\cos \theta) / 2$ and write

$$
Z(y)=y^{L}(1-y)^{J} W(y)
$$

Substituting this into Eq.(11), we obtain the hypergementric equation

$$
y(1-y) \frac{d^{2} W}{d y^{2}}+[c-(a+b+1) y] \frac{d W}{d y}-a b W=0
$$

with $a=-\lambda+L+J, b=\lambda+L+J+3, c=2 L+2$.
Thus, we find that

$$
\begin{array}{r}
Z(\theta)=(1-\cos \theta)^{L}(1+\cos \theta)^{J} \\
{ }_{2} F_{1}\left(-\lambda+J+L, \lambda+J+L+3 ; 2 L+2 ; \frac{1-\cos \theta}{2}\right)
\end{array}
$$

This solution is well behaved at $\theta=\pi$ if the series ${ }_{2} F_{1}$ terminates, i.e.

$$
-\lambda+J+L=-n_{\theta}
$$

where $n_{\theta}=0,1,2, \ldots$

5 Energy Levels

Let us now turn to the radial equation and introduce the function

$$
f(r)=e^{\kappa r} r^{-\lambda} R(r)
$$

It is easy to verify that the equation for $f(r)$ has the form of the confluent hypergeometric equation

$$
z \frac{d^{2} f}{d z^{2}}+(c-z) \frac{d f}{d z}-a f=0
$$

where $z=2 \kappa r, \kappa=\sqrt{-2 m \epsilon / \hbar^{2}}, c=2 \lambda+4, a=\lambda+2-1 / \kappa r_{0}$ and $r_{0}=\hbar^{2} / m e^{2}$. For the bound state solutions $(\epsilon<0)$

$$
\lambda+2-1 / \kappa r_{0}=-n_{r}=0,-1,-2, \ldots
$$

and therefore

$$
\epsilon_{N}^{T}=-\frac{m \epsilon^{4}}{2 \hbar^{2}\left(\frac{N}{2}+2\right)^{2}}
$$

where

$$
N=2\left(n_{r}+\lambda\right)=2\left(n_{r}+n_{\theta}+J+L\right)
$$

6 Degeneracy

For fixed T, the energy levels ϵ_{N}^{T} do not depend on L, J and λ, i.e. are degenerate. The total degeneracy is

$$
g_{N}^{T}=(2 T+1) \sum_{\lambda} \sum_{L}(2 L+1) \sum_{J}(2 J+1)
$$

Since $\lambda=n_{\theta}+J+L$ and $N=2\left(n_{r}+\lambda\right.$), it follows that (for fixed N and T) $\lambda=T, T+1, \ldots, N / 2$. Then, $L_{\max }=\lambda-J_{\min }\left(L_{\max }\right.$ is fixed) and therefore $L_{\text {max }}=\lambda-\left(L_{\max }-T\right)$ or $L_{\max }=(\lambda+T) / 2$. Thus,

$$
g_{N}^{T}=(2 T+1) \sum_{\lambda=T}^{N / 2} \sum_{L=0,1 / 2}^{\frac{\lambda-T}{2}}(2 L+1) \sum_{J}(2 J+1)
$$

(a) $J=|L-T|,|L-T|+1, \ldots, L+T$, for $L=0, \frac{1}{2}, \ldots, \frac{\lambda-T}{2}$
(b) $J=|L-T|,|L-T|+1, \ldots, \lambda-L$, for $L=\frac{\lambda-T+1}{2}, \ldots, \frac{\lambda+T}{2}$
and rewrite the formula for g_{N}^{T} in a more explicit form

$$
\begin{array}{r}
g_{N}^{T}=(2 T+1) \sum_{\lambda=T}^{N / 2}\left\{\sum_{L=0,1 / 2}^{\frac{\lambda-T}{2}}(2 L+1) \sum_{J=|L-T|}^{L+T}(2 J+1)+\right. \\
\\
\left.\sum_{L=\frac{\lambda=T+1}{2}}^{\frac{\lambda \lambda T}{2}}(2 L+1) \sum_{J=|L-T|}^{\lambda-L}(2 J+1)\right\} .
\end{array}
$$

Finally, after some tedious calculations we obtain the following result:

$$
\begin{aligned}
& g_{N}^{T}=\frac{1}{12}(2 T+1)^{2}\left(\frac{N}{2}-T+1\right)\left(\frac{N}{2}-T+2\right) \\
& \left\{\left(\frac{N}{2}-T+2\right)\left(\frac{N}{2}-T+3\right)+2 T(N+5)\right\}
\end{aligned}
$$

For $T=0$ and $N=2 n$ (even) the r.h.s. of the last formula is equal to ($n+$ 1) $(n+2)^{2}(n+3) / 12$, i.e. to the degeneracy of pure Coulomb levels. Further, $T=$ $0,1, \ldots N / 2$ and $T=1 / 2,3 / 2, . . N / 2$ for even and odd N, respectively. Therefore,

$$
g_{N}=\sum_{T=0,1 / 2}^{N / 2} g_{N}^{T}=\frac{(N+7)!}{7!N!}
$$

i.e. we obtain the degeneracy of the energy levels for the 8 D isotropic quantum oscillator.

7 Conclusions

Formulae (2) and (3) together with the ansatz (5) form the duality transformation mapping of the 8 D quantum oscillator into the charge-dyon system with the $S U(2)$-monopole. Let us stress the meaning we use for the term duality. Both Eq.(1) and Eq.(4) contain two quantities, ω and E. For Eq.(1) ω is the fixed parameter (coupling constant) and E is the quantity to be quantized (energy of the 8 D oscillator). On the contrary, as it easy to see from (5), for Eq. (4) E is a fixed parameter (Coulomb coupling constant) and ω is the quantity to be quantized (ω^{2}-energy of the final system). Thus, the 8 D quantum oscillator and the charge-dyon bound system with the $S U(2)$-monopole are not identical, but dual to each other.

This type duality is valid not only for the $8 \mathrm{D}, ~ 4 \mathrm{D}$ and 2 D oscillators, but also for oscillator-like systems with the potentials

$$
V\left(u^{2}\right)=c_{0}+c_{1} u^{2}+W\left(u^{2}\right)
$$

where $W\left(u^{2}\right)$ has a polynomial form

$$
W\left(u^{2}\right)=\sum_{n=2}^{\infty} c_{n} u^{2 n}
$$

For such modified potentials, the ansatz (5) can be rewritten as

$$
\epsilon=-\frac{c_{1}}{4}, \quad e^{2}=\frac{E-c_{0}}{4} .
$$

Thus, the value of the function $V\left(u^{2}\right)$ at $u^{2}=0$ contributes to the Coulomb coupling constant e^{2}. It is also easy to verify that the l.h.s. of Eq.(4) acquires the additional term ($-W(r) / 4 r$).

8 Appendix

Consider the normalization of the wave function $\psi\left(\vec{x}, \alpha_{T}, \beta_{T}, \gamma_{T}\right)$. A standard calculation shows that the radial wave function $R(r)$ normalized by the condition

$$
\int_{0}^{\infty} r^{4}\left[R_{n_{r} \lambda}(r)\right]^{2} d r=1
$$

has the form

$$
\begin{array}{r}
R_{n_{r} \lambda}(r)=\frac{4}{r_{0}^{5 / 2}\left(n_{r}+\lambda+2\right)^{3}} \frac{1}{(2 \lambda+3)!} \sqrt{\frac{\left(n_{r}+2 \lambda+3\right)!}{\left(n_{r}\right)!}} \\
(2 \kappa r)^{\lambda} e^{-\kappa r} F\left(-n_{r} ; 2 \lambda+4 ; 2 \kappa r\right) .
\end{array}
$$

The full wave function

$$
\psi=C_{L T J}^{\lambda} R_{n_{r} \lambda}(r) Z_{\lambda L J}(\theta) G_{L T m^{\prime} \ell^{\prime}}^{J M}\left(\alpha, \beta, \gamma ; \alpha_{T}, \beta_{T}, \gamma_{T}\right)
$$

is normalized by the condition

$$
\int|\psi|^{2} d v=1
$$

where

$$
d v=r^{4} \sin ^{3} \theta d r d \theta d \Omega d \Omega_{T}
$$

and

$$
d \Omega=\frac{1}{8} \sin \beta d \beta d \alpha d \gamma, \quad d \Omega_{T}=\frac{1}{8} \sin \beta_{T} d \beta_{T} d \alpha_{T} d \gamma_{T}
$$

Using the formula

$$
{ }_{2} F_{1}\left(-n, n+a+b+1 ; a+1 ; \frac{1-y}{2}\right)=\frac{n!\Gamma(a+1)}{\Gamma(n+a+1)} P_{n}^{(a, b)}(y)
$$

where $P_{n}^{(a, b)}(y)$ are the Jacobi polynomials, and taking into account that

$$
\begin{array}{r}
\int_{-1}^{1}(1-y)^{a}(1+y)^{b}\left\{P_{n}^{(a, b)}(y)\right\}^{2} d y= \\
\frac{2^{a+b+1}}{2 n+a+b+1} \frac{\Gamma(n+a+1) \Gamma(n+b+1)}{n!\Gamma(n+a+b+1)}
\end{array}
$$

$$
\int D_{m_{2} m_{2}^{\prime}}^{j \dot{j}}(\alpha, \beta, \gamma) D_{m_{1} m_{1}^{\prime}}^{j_{1}}(\alpha, \beta, \gamma) d \Omega=\frac{2 \pi^{2}}{2 j_{1}+1} \delta_{j_{1} j_{2}} \delta_{m_{1} m_{2}} \delta_{m_{1}^{\prime} m_{2}^{\prime}}
$$

it is easy to obtain that

$$
C_{L, J T}^{\lambda}=\sqrt{\frac{(2 L+1)(2 T+1)(2 \lambda+3)(\lambda-J-L)!\Gamma(\lambda+J+L+3)}{2^{2 J+2 L+5} \pi^{4} \Gamma(\lambda+J-L+2) \Gamma(\lambda-J+L+2)}} .
$$

Acknowledgement.

We are grateful to Yeranuhy Hakobyan, Armen Nersessian and George Pogosyan for many discussions on the subject of dyon-oscillator duality.

References

[1] N.Seiberg, E.Witten. Nucl.Phys. B, 1994, vol. 431, p. 484.
[2] L.G.Mardoyan, A.N.Sissakian, V.M.Ter-Antonyan.
Oscillator as a Hidden Non-Abelian Monopole. Preprint JINR E2-90-24. Dubna, 1996. Hep-th/9601093.
[3] V.Ter-Antonyan, A.Nersessian. Mod.Phys.Lett. A, 1995, vol. 10. p. 2623.
[4] A.Nersessian, V.Ter-Antonyan, M.Tsulaya.
Mod.Phys.Lett. A, 1996, vol. 11, p. 1605.
[5] A.Magkakian, A.N.Sissakian, V.M.Ter-Antonyan. Phys.Lett. A, 1997, vol. 236, p.j.
[6] T.Iwai, T.Sunako. J.Geom.Phys., 1996, vol. 20, p. 250.
[7] L.S.Davtyan, L.G.Mardoyan, G.S.Pogosyan, A.N.Sissakian, V.M.Ter-Antonyan. J.Phys. A, 1987, vol. 20, p. 6121.
[8] D.Lambert, M.Kibler. J.Phys. A, 1988, vol. 21, p. 307.
[9] Le Van Hoang, Tony J.Viloria, Le anh Thu. J.Phys. A, 1991, vol. 24, p. 3021.
[10] C.N.Yang. J.Math.Phys., 1978, vol. 19, p. 320.

[^0]: ${ }^{1}$ E-mail: mardoyan@thsunl.jinr.dubna.su
 ${ }^{2}$ E-mail: terant@thsun1.jinr.dubna.su

[^1]: ${ }^{4}$ The particular version of the problem was previously considered in [7].
 ${ }^{5}$ See also [2] where the analytical approach to the same problem was presented more concisely.
 ${ }^{6}$ Formula (2) is known as the Hurwitz transformation [8]; (3) is copied from [9].

