


1 Introduction

The merits of contemporary quark models (the Standard Model) in describing properties

of elementary particles are impressive. However, it is well known that [1] the only

uncertain aspect of the Standard Model is the mechanism that gives elementary particles

their masses. In the simplest version of the model, these masses depend on constants

that specify the strength of the interaction of various elementary particles with a new

kind of field but these constants are just free parameters of the theory. It seems that -
the mass distribution of elementary particle resonances is a fundamental problem of

modern theory until we have a final theory of forces and matter, particles and fields.

Therefore, a systematic analysis of existing experimental data is desirable to establish

simple phenomenological rules for the mass distribution of resonances.

-2 | General results

One of the most remarkable corner-stones for foundation of the quantum theory was
the Balmer formula for the spectrum of a hydrogen atom. It is our purpose here
to demonstrate that the Balmer-like formula for the mass distribution of elementary
particle resonances can be obtained from a systematic analysis -of all available
experimental data. ’ o v o

Some resonances have a dominant decay channel, and we suggest that the momentum
of this channel should manifest itself in properties’ of decays through other channels.
For example, it is known that the pion % decays through the muon and neutrino with
a probability about unity and asymptotic momentum P, = 20.7918MeV/c. We are
_ unable to explain this property of the pion; we only suggest that it /is fundamental
for comprehension of the structure of ‘some resonances. To establish some common
properties of the mass distribution of elementary particle resonances, we check the
usefulness of a commensurable principle [2] of decay asymptotic momenta. In other
words, we check the following ratio: o '

P.=nP, n=1,2,3,.. - E © (1)

where P, = 29.7918 Mev/c.
The masses of resonances are calculated by the formula.-

| Ma=\mI+Ply\mItP2=\/miymPit\mitniP;,  (2)
where m, and m, are masses of decay products of the resonance to be co‘n‘siideredv., The
results and corresponding experimental data [3] are given in Table 1. A more complete
analysis has been made in [4] and ‘contains a few hundred of resonances. =~

" We can' see from the table that such a simple phenomenological method describing *
the experimental data within the accuracy of méasixfeménts is unusual and ‘unexpected
for ‘this branch of physics. The results of the x? calculations are given'in Fig. 1 asa
function' of decay momentum P including’ about 4 hundred experimental data. Well
pronounced deep minimum x? is found at P, = 29.79 MeV/c which corresponds to the
above-mentioned decay momentum. If we change P, = 29.79 MeV/c to P, = 29.794+0.3
MeV/c, the magnitude of x? will increase three times. Therefore the mass distribution of -
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resonances is a sensitive function of the basic decay momentum and the good description
of the experimental data to be observed is not accidental. It means that this observation
mamfests the simple physics of resonances remaining unnoticed.
‘By the way, the phenomenological analysis of elementary particle and resonance
mass distribution was popular in early days. For example, authors of [5] come to the
- conclusion that the appearance of quanta of energy (mass) is possxble only in the case
when the action achieves the magnitude multiple of the Planck constant .
Of course, there arises a question: what is the role of resonance decay channels

with a very small probability? We know from nuclear physics (see, for example, [6]) -

that basic vectors with small (large) weights in the ground states of nuclei become the
dommant (small) ones in highly excited states. The same phenomenon is expected in
the physws of resonances. Let us consider as a basic channel the following decay channel
7% = pEe¥ with P;=26.1299 MeV/c and fraction =~ 10-8%. The results of calculations
are presented in Table 2.

- Tables 1, 2 contain rich information, and it is possible to make many fundamental
conclusions ‘based on them. We think that the results contained in the tables
convincingly demonstrate the empirical fact of commensurability of resonance decay
product momenta within the accuracy of existing experimental data. In other words,
resonance decay product momenta are quantized. It is clear from the tables that
commensurability of momenta does not depend on the type of interaction between
resonance decay products, quantum numbers of resonances and type of. particles.
Moreover, commensurability of momenta is justified for all considered resonances. It
seems to be a universal property of resonances, and many periodic structures are just
governed by this property. A main question arises here: is this commensurability precise
or approx1mate'7 We do not know the answer but think that it is as precise as the one
in solids and crystals If so0, the common structure of elementary particles must be
analogous to that of solids a.nd crystals. An excellent possibility for prediction of new
resonances and ygr;ﬁcatxon of masses of the existing ones arises in any case.

Ta.ble 1. Invariant masses of resonances decaying through binary channels w1th
momenta P, = n % 29.7918 MeV/e, AM =| M., — M l- S

“AM

resonances - decay cha.nnels P,,p N Pap/n M., Mgh

TE - uFu, - -~ 2979 1 2979 139.56995 139.56995 = —
p(T70)- rtr¥ 358 12 29.83 7685106  767.56 . 0.94
p(1450) ntn¥ 7197 24 2996 1465+25  1456.99 ° '8.01
p(2150) rEp¥ 984.15 33 29.82  ~ 1988 1985.97 - 2.03
£1(1285) - ao(980)7° © * 235.01 8 . 29.38 1282.2+0.7 . 1285.87 3.67 .
£(1420) ao(980)7° 356.10 .. 12 29.68 . 1426.8£2.3 .1428.59- 1.79
£(1510) a9(980)7% - not seen - 14 -.29:79 151244 1506.67  5.33
f2(1270) rEn¥ 622.03 21 29.62 1275+5 . 1282.01 - 7.01
f2(1430) ¥ 701.26 24 29.22 143612 1456.99  20.99
f2(1565) nEn¥ 769.95 26 29.61°: - 1565+20 - 1574.12  9.12
f2(1640) rEn¥ 807.02 - 27 29.89 - 1638+6. . 1632.79 . 5.21
f2(1810) N S 896.70. 30 29.89 : 1815+12 . 1809.17  5.83
f2(1950) rip¥ 988.19 33 29.95  ~ 1996~  1985.97 - 10.03
f2(2150) . wixF 101545 . 37 29.87 - ~2226 " 2222.19: - 3.81
n(1295) ao(980)7°  246.54 8 30.82 12054 1285.87 . ' 9.13
n(1440)  ao(980)x° 346.80 12 289  1415+10° 1428.59 - 13.59
n(1760) - ao(980)7°  notseen 20 29.79 . 1760+11  1760.84  0.84
7(2225) _ap(980)7°  .not seen 30 29.79 ~2221 - 2232.82 - 11.82
ao(980) . K*ES - .8911 3 2970 1003.3+7  1003.40  0.10
ao(980) : CKERT 11980 4. 2095 1016+10 1015.71  0.29
az(1320)+ - KOK* ' -443.32 715 29.55 * 133011 - '1334.76 " 4.76
ay(2040) v KJK-- - 81219, 27 30.08 ~1903+10 = 1889.68 13.32
a4(2040) KK~ . '891.46 130 29.72 204030  2044.01 ' 4.01
B(1876) “pp o 72994 1 29.94 ¢ 18775:&05 " 1877.49 © 0.01
B(1880) + .Y pp i e it— 2 — not seen 1880.32 - - —
B(1885) :i* ~ ' pp - ' - 9431 -3 31.44 «1886:t1 ©11885.04 ' 0.96
B(1890) : .~ pp - ¢ 12067 4. 30.17 1892 1891.62 * 0.38
B(1900) PP 14229 © 5 2849 - 1898+1 1900.05 © 2.05
X(1900) PP 013891 5 27718 © 1897+1 1900.05  3.05
B(1910) pp 18062 6 3010 1911 1 1910.30 . 0.70
B(1920) PP 207.76 -7 29.68 1922 1922.34° 0.34
X(1920) PP .203.09 - 7. 29.01. y;1920 < 192234 234
B(1936) . pp 24008 . -8  30.01 1936:&03" 11936.14  0.14
X(1936) - : - pp . 24008 '8 30.01  1937.3%3- 193614 1.16
B(1950) ~ <. pp - . -274.14 9" 3046 ‘1951:&03 195166  0.66
B(1970) Yipp - 29814 ©710° 29.81 19693:2 ©1968.87 ' 0.13
X(1970) - P . 296.48° 10 29.65 = 1968 ' 1968.87 = 0.87
B(1990) “pp 032815 11 20.83 198941 - 1987.71° 129
B(2008) pp'- - 357.30 12 29.76  2008+3  2008.15  0.15
X(2008) - - pp 361.49 12 30.12 20117  2008.15 '2.75
X(2030) - pp o -: 3818 13- 29.37 2026+5  2030.12 4.12
B(2050) . PP © 41512 <14 29.65 512052 070 2053.60 1.60
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Continuation of Table 1

My AM

resonances decay channels Pep .0 Pepfn - Mep o
-~ B(2080) PP - 447.44 15 29.83 2079+4: 2078.51 0.49
S X(2080) _ o 448.60 15 29.91 2080 +10- 2078.51 1.49
i B(2105) ‘ PP 47797 16 29.87 2106+4 2104.82 1.18
. B(2130) PP 502.80 17 29.58 2129+5 213247 3.47
"B(2160) PP _ 18 — not seen 2161.41 —
"/B(2190) PP 566.45 19 29.81. 2192+3 2191.58 0.42

“Table 2. Invariant masses of higher excited resonances decaying through binary

channels with momenta P, = n'* 26.1299 MeV/c, AM =| M., — M |

. Contmnahon of Table 9.

AI ezp ) AMt h

resonances - decay channels “P.;,;» n" . Pu,/n AM
¢° 260 10 26 1864.5+0.5 1864.08 0.42

fo(980)7% 732 28 26.14  1968.5+0.6 ~1967.82 0.68

3 7'(958)p* 470 18- 26.11  1968.5+£0.6 - 1968.03  0.47
D,,(2536)* D°K* 392 15 26.13 2535.35+0.3¢ 2535.6° 0.25
. efy 2639 101  26.13 5278.941.8 ~ 5278.24 - 0.66 -

et pu¥ 2639 101 26.13  5279.2+1.8  5280.35" ‘1.15

©OK*(892)*KT 1307 50 26.14 2979.8+2.1 2978.38 0.42

“ U axe(1P) 261 107 261 3686.00+0.09 3686.38 0.38

¥T(1S5) 391 15 26.07 9859.8+1:3  9860.44 0.64

Txu(1P) 131 57 - 26.2  10023.3+0.31 10023.41  0.11
Ax® 208 8 26 1383.7+1.0  1383.93 0.23 °

3 Z(1530)°K* 471 18 26.17  2284.940.6  2284.25 ° 0.65
A-(2593)* A}n® 261-° 10 - 26.1  2593.6+£1.0 25939  0.30
o TRET(892)% 653 25 26.12°  2465.6+1.4  2465.89  0.29
Q-K+t 522 20 261  2470.3+1.8  2471.11 0.89

St 107 4 2675  2643.841.8 2642.18 1.62

Table 3. The masses of resonances grouped near the masses of ..
Q-(1672.45 £ 0.29) and T(17771539) A

baryons . MEerven mesons : J\I::;""?
Q| 167245029 [ ¢ | 177703
w(1600) .. | 166312 | X(1775) | 1776+13
wy(1670) | 1673 +12 £,1m0) 1768 £14 . |
m5(1670) | 1676+6 | 7(1800) | 177547410}
#(1680) | 1677 £12 p(1700) " 1780 :
p3(1690) 1679 + 11 K(1700) ~ 1780
p3(1690) 1673+9 " | K3(1780) | 17794£11
"p(1700) 1659+25 | A(1750)Py, | 1778.4 49 |
K*(1680) | 1677 £ 10 £ 32 | A(1620)S3; | '1786.7+2
N(1650)Sy, | 1672 ' | A(1900)Ss; | - 1780
N(1675)Dss 1673 | A(1905)Fss | 1787459
'N(1680)Fys 1674 +£12 | A(1910)Py, |~ 1790
N(1700)Dy5”~ 1670+10 ' | A(1800)Se, |~ 1767
N(1710) Py, 1670 A(1810) Py | 1780 +20
© N(1720)Py5 1675 £(1750)Sy, | 1785 £ 12
A(1600)Ps; 1672415 | S(1750)P,; | 1770 + 20
A(1620) S5, 1672+£5 | Z(1775)Dyy | 177745
A(1700) D33 - 1672 Z(1820)Dys5 1770
A(1670)Sp, 1670.8 £ 1.7 -
£(1670) P, 167142 —
£(1670)Dy, | 167143 ~-
(1670)Bumps | 1670+ 4 .

resonances’ decay P, ‘n P,,,,/n " M., My, AM
:.channels
o pEet 26.1299 1 26.1299 - 134.9764 134.9764 —
D3(2460)°.  -pteT 1227.18 47  26.11° 2458.9+2.0 2460.75 '1.85
“B3(5732) - pre¥ 2848.02 109 26.13 5698 + 12 569828 -0.28
B*,(5850) piﬁ 292555 112 26.12 5853 + 13 5855.00  2.00
S T@AS) pre¥ . 472959 181 26.13  9460.37+0.21  9460.20 0.17
w(782) e"et 39097 15 26.06 ¢ 781.94+0.12 783.90  1.96
¢ X(1097) “e~et 548.5 21  26.12° 1097115 1097.46 - 0.46
K*(1410) etu, 706.00 27  26.15 "14124+ 12 - 1411.02 0.98
-~ p(1450) - e~et 732.5 287 26.16 1465+ 25 1463.28 1.72
2 f2(1565) . e"et 7825 30 26.08 © 15654 20 ‘1567.79 2.80
- ety 888.5 34 26.13.. . 1777493 © 1776.83 0.17
‘X(1830)~ . eet 915.00 35 26.14 . .~ 1830 1829.09 ~ 0.91
- m3(2090). . e~et 1045.00 40. 26.13 2090+ 29 2090.39 - 0.39
fo(2200). . e"et . 1098.50 42 26.15.. 2197+ 17 2194.91 .2.09
K;(2250) . ey, 1123.50 43 26.13 . - 2247+ 17 224717 0.17
.. D3(2460)° . e"et 122945 47  26.16 2458.9 + 2 2456.21 -.2.69
D;(2460)% . e*u, 1229.50 .47 26.16 2459 + 4 2456.21 2.79
£2(2510) . emet 1255 48 26.15 ~. 2510+ 30 2508.47 1.53
7(18) . eet 1489.90 . 57 26.14  2979.8+2.1 = 2978.81 : 0.99
. B% e~et 2639.6 101 26.13 = .5279.2+1.8 5278.24  0.96
Bf . efv,  .2639.45 101. 26.13 = 52789+ 1.8 5278.24  0.64 .
Bj3(5732) - .e"et 2849.00 109 26.14 - 5698+ 12 5696.32 1.68°
B3(5732) . . e*u, 2849.00 109 26.14 5698 + 12 5696.32 . 1.68
B:,(5850) . e"et 2926.5 112 26.13 5853+ 15 . 5853.10 0.10
B;;(5850) .. ety 2026.5 112. 26.13 5853+ 13 - 5853.10 - 0:10
© - T(10860),  eet 5432.5 208 @ 26.12 10865+ 8  10870.05 5.04 -
- H(1285) - ¢y 236 9 2622 . 1282240.7 1281.36 0.84-
. h(1285) a0(980)7r 234 9 26 1282.240.7 . 1282.38 .0.18 ..
a2(1320) - . 7'(958)x® 287 11. 26.09 , 1318.140.7 1317.51  0.59
. K)o nOg0 - 209 8  26.13 - 497.672+0.031 497.66 . 0.01 -
Kz(1430),*i/ ‘ K* .627 24 2613 . 14254413 142524 0.16
- D* . R’zt 862 33 26.12 1869.3+0.5 . . 1869.11 0.19 -
D° fo(980) 549 21 26.14  .1864.5+0.5 = 1863.97 0.53
e 4



We are able to interpret some of the resonances as radial excitations. For example,
p(770), p(1450) and p(2150)-mesons decay through two plons w1th momenta 358, 719
and 1065 MeV/c, i.e. their momenta are commensurable.

Obviously, the accuracy of resonance masses to be predicted depends on the accuracy
of decay product masses used in calculations. Therefore, our predictions of resonance
‘masses are to be cons1dered as preliminary ones. We ask readers to send information
about more accurate contemporary experimental resonance mass data. We will be
1ndebted for this:

We have established that experimental values of masses of PP and PP resonances
[7] coincide w1thm the accuracy of experimental data This remarkable observation was
hlghhghted in our earlier works [8, 9]. But the systemat:c analysis of experimental data
brings us to a more general conclusion to be sw1tched on below after discussing some
examples. .

In Table 3 we have collected the masses of resonances grouped near the masses
of 7-lepton’ and Q- hyperon. The masses of resonances coincide within the accuracy of
experimental data. This observation is valid for many resonances independently of their
type, quantum numbers, interactions, and so on. If so, good perspectives for a combmed
systematlc analysis of this type of resonances are opened.

3 Nucleon structure

The excited states of nucleons have been investigated in a large number of experiments.
The main information of the masses, widths and elasticities for N and A resonances
comes from the partial-wave analysis of N7, N7,’AK and ZK data sets (for details see
{3]). ' We would like to propose that the properties of the ground state of nucleon can be
studied from the experlments performed for extractxon of 1nformatlon about the excited
states of nucleons. ‘
The proton is practically stable (mean llfetlme 7> 1.6%10% years — independent
of the decay mode [3]). According to the minimal SU(5) Grand Unified Theory (see
minireview [10] page 1673) it can decay via different channels. For example, p —
etn®, p — p*y, p — vK*(892)*,... But the proton does not decay despite the
possibility from energy-momentum conservation law.

Let us consider the problem of particle’s stability at least. According to our
hypothesis [7], a stable particle (proton, neutron) represents a complex ideal wave
resonator. Each individual resonator has the frequency w; and uncertainty in frequency
Aw;." A wave function of eigen oscillations of a combination of coupled resonators can
be represented in the form:

1 Aw; -

where a,(w;7) is the radial part of the partial wave function.
The ‘channel energy distribution of a resonator can be calculated by the formula

/ v = / ( a.(w,f")\/ o (w_w)Az“: =7 4)2dF. (4)

.So, two conclusions follow from. (4) L e
1) If all Ji. = _‘wo and Aw, Awo - 0 (or T —» oo —resonator w1th 1deally reﬂectmg

walls), )
o= (o= acar) (Feen) -

1o o) Awp ST A SRTSPRE
27r @ —wop +A 2/4 RN 6(w “we). (5)

" It seems that just this case of a system of resonators corresponds to stable systems
(like proton and neutron), when all the frequenc1es of a system of resonators are ideally
coordinated and equal to each other.; In other.words, all channel motijons in the:stable
systems are exactly synchronous. Amphtudes are coherently summarized. Apparently,
the root of the riddle about stability of some particles (like proton, neutron, electron)
lies in it. .

2) If w; = wonj/ny (where nj and n} are 1nteger numbers, there. can arise beatlng
phenomena well'’known inthe wave theory "This" case corresponds to hadron resonances ,
such as fo(400 =1200) and-p-mesons, A-isobar.... ‘with & large width. ‘ i ‘

These resonances are combxnatlons of resonances with a small w1dth An expenment
glves us-inforrhation about’the envelope of intersities “of’ resonance exc1tat10n, “fine
structures will be found’ wlien the accuracy increases. The 31tuat10n is in full analogy ‘
with giant fesoriances in’ atomic nuclei [9], and there are many exa.mples in atomic
spectroscopy.  The:beating pheriomenon is known in ‘microcosm.” Now it is'a generally
accepted view p01nt that appearance of maglc numbers (a structure possess1ng a large“
blndlng energy) in atom1c nuclel, ato a.nd metalllc clusters is condltloned by beatlng .
[11] ‘ » - » , 5

4Theconservat10n laws and the Regge-hke“f‘

tra Jectorles ,

The" well:known résults’ in hlgh-energy physws mdlcate that there is a pro‘_undir
connection between spins and masses: of strongly interacting elementary particles,
hadrons. The spin J of some ba.ryons and mesons appears to be nearly proportlonal
to.the square of: their mass My M2 .o Ji The correlation between spm and mass"'
trajectory [12] in a Chew-Frautschi [13] plot. These trajectories are remarkably linear
and approx1mately parallel (such trajectories of mesons going up J.= 6.and of baryons .
up to J = 15/2), i.e., the angular momentum is a llnear functxon of the square of the
particle mass [3]. "

The general formula which connects the maximal spin;J and mass M of heavy
hadrons was obtained in [14]: by usmg sunple arguments of ‘dimensional analysis and
similarity pr1nc1ple

where m,, is the proton mass;: the number C fakes values (=1} 2 3 and cha.racterlzes the\:
spatial dimensionality of hadrons. :



The case C = 1 describes one-dimensional string-like hadrons and correSponds to the
well-known straight-line trajectory for ordinary hadrons and hadronic resonances {13}

M : o
| B Q)
7 .. The case’C =2 corresponds to two-dimensional disk-like hadrons
7 » T M 3/2 ; - . '
J= h(mp) ; : - (8)

- Finally, (=3 corresponds to the case of three-dimensional or spherical hadrons

,th(_ﬂf)qa_ o o)

“An a.na.lysrs [14] of the data on the rotation of cosmic obJects to be observed shows

tha.t all of them can be classified into two groups, in whxch spln-mass relatlons are glven :

e by formulae (8) and (9), respectively.

The first one includes clusters of ga.la.xxes, smgle gala.xxes, globular, and open

" star clusters and perhaps stellar associations and super-associations. .. The angular
momentum -mass distributions for these objects are described by equation (8)... - :
' The second group of objects descrlbed by equa.txon ) mcludes smgle stars, planets,
a.nd asteroxds

“intervals (the mass interval is about:34 orders of magnitude, the corresponding interval

for angular momenta covers about 60 orders of ma.gnltude) without invoking arbitrary’ .
: -‘pararneters. Therefore; Muradian’s a.pproa.ch mcorporatesm anatural way fundamental -

“‘quantum mechanical constants A and m,,.

" "It is worthwhile to note following the conclusxon of RM Muradxan [14] that -
equatlons (7-9) can be obtamed fromr(2) by usmg the Bohr-Sommerfeld quantlzatxon o

- ‘condltlons K . ;
i, Pr——nh Jh :ag:fj;'if “;, _v‘ ao)

'a.nd the a.ssumptlon tha.t the masses of an n-dxmensxona.l rota.tlona.l ob Ject can be written .

‘m the form. ...

g }J h/2) Therefore equation (2) acquires the form

with the accuracy of a constant factor. This result is remarkable because the observed

and well-esta.bhshed Regge-like trajectories in micro- and ma.crosystems were obtained:

- from the ﬁrst prxnc1ples,

:The plot [14] ng versus lgM shows a remarkable regularlty, and the theoretxca.lv,
lines describe not only the shape, but also a.bsolute va.lues in tremendous mass and spin "

- I Come=art, .7‘1 Lo (11)~"
' Where p is the consta.nt densxty of the object (note that R M. Muxadian used Pr =

‘The mxnlmlzatlon of this expression over.r provxdes the Regge—hke trajectoncs (7-9)

Let us'discuss an example of a hydrogen atom. ' The electrostatlc force between
the proton and electron lcads to the formation of bound states of the hydrogen atom
Following Bohr, we requlre the cquallty of the Coulomb and centrlfugal forces

comy o (13)

and using Bohr's quantization condition (10) we obtain the admissible values of r. or
the Bohr radii: 2 2 ' o
h 2 _h
r= 2 =na, a =
me
where ay is the radius of the first Bohr orbit. The momentum of an electron on an n-th

Bohr orbit equals

(14)

me?’

2 2 .
P:%:%, P="=, v (1)
where P, is the momentum of the electron on the first Bohr orbit.

Therefore, we can conclude from equations (14) and (15) that the electron momenta
and orbits in a hydrogen atom arc quantized. Note that the ninimal value of the orbit
radius and the maximal value of the momentum dcpond on the clectron reduced mass m.
If we should consider other systems, for a example e*e¥, pte¥, then the corresponding
minimal orbit radius and maximal momentum are scaled accordmg to the considered
reduced masses. The same conclusions can be obtained from quantum theory. We have
chosen the simplest way. Onc can see that equation (15) for the clectron momentum
quantization on an n-th Bohr orbit is the same (inverted) in the analytic form as the
momentum quantization for decay products of elementary particle resonances (1).-

It is easy to find the encrgy of a hydrogen atom, which is equal to the kinctic and
potential energies (in the nonrelativistic limit):: :
- 2 2 o2

2.4 202 _ 2_c_=___..=_’_;
E =+vm2c* + P%*c? —mc - 5 Sty (16)
We note the well-known fact that Bohr solved the problmn of quantization of a hydrogen
atom in 1913 [15], long before the creation of quantum theory.
Sommerfeld [16] generalized Bohr results to the relativistic casc

-1\/2 ‘
- az . L . 2
E=md|1{ —F—— —mc*, (17)
| (ne+n3—a?) ) -
wheren, and ny are radial and azimuthal quantmn'numbcrs; a = /he is the

fine-structure constant. It is worthiwhile to note that the Sommerfeld results coincide
cxactly with the Dirac results obtained later if one puts ny = j + 1/2 where j is the
orbital angular momentum plus spin of an clectron.

To conclude a short excursion of the history of plysics we. can. say that -the
exactness of the Bohr and Sommerfeld results for a hydrogen atom in nourelativistic and
relativistic cases is surprising because these results have been obtained within classical
equations of motion and Ehrenfest adiabatic invariants. This coincidence cannot - be
accidental. o '



. In further discussion, we will employ on the hypothesxs that conservation laws of
energy—momentum and Ehrenfest’s adiabatic invariant and also the resonator principle
for standing waves of any physical nature are common for all hierarchic systems.

The analogy between the relativistic form of a free particle Hamilton function and
dispersion relations for standing waves in'a hollow metallic resonator (waveguide) has
been discussed long ago (for a recent review see, for example, paper [17]). It seems that
the underlined analogy has a deep physical reason.

Let us carry out a visual comparative analysis of quantization of a classical field for
the string displacement g(t,z) and scalar field described by the same equations [18).
The classical field of displacement is described by the equation

9%(t,3)  9%lt,z)
. om @

where the linear density of the string and the velocity of spreading of oscillations are
equal to unity. The following relations are present when both-ends of the string are
fixed: ¢(2,0) = ¢(t,a) = 0. Then, the classical eigenstates of equation (18) are

g(t, z) ~ exp(tiwnt]sin(knz), kna =nn. , (19)
The K_leiniGdrdon equation is a relativistic analog of (18) -‘

0%4(t,7)

o —M(t;r‘)+frﬁ”‘+~V(r')]¢(xt,-r;)”=}0- (20)

It idesc‘riBes a neutral scalar field where m is the particle mass and V() is the potential
of an external field interacting with the field ¢. When V = 0 and the field ¢ is defined in
the interval [0, a] with zero boundary conditions #(t,0) = 4(t,a) = 0, the eigenfunctions

and eigenfrequencies in the one-dimensional case acquire the form

) 2.2
\/m2 + k= ym?+ na: . (21)

So the quantlzed fields of displacements and elgenfrequencxes of a classical string
and eigenfunctions and eigenfrequencies of a relativistic scalar field have the similar
analytical form. They coincide when m
of appropriate equations and boundary ‘conditions. Moreover, the formulas for
cigenfrequencies of a classical string and a quantum relativistic scalar field coincide with
those for eigenfrequencies of classical resonators. For example, the eigenfrequencies of
the cav1ty~resonators having a cylindrical form with the radius R and with the length
d are equal to ]

¢,.(t z)~ e:p[:}:zw,.t]sm(knx) kna = v, w,

Tyj -
wn——— 2y + } - (22)
where .1:,,] are solutxons of the equatlons

wluleu>0and] 1 2 3
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= 0. This is a consequence of the identity -

J(I,,)_ow(z,,)_ ey

The mass formula (2) for resonances can be rewritten in-the folloWing form SR

—Jmz+ pza sopro | Lo n ' ntoc
Mo =it i i+ "'J TOREY; *J IR AR
where Ac and Ap = 1/P, are the Compton and de Broglie wave lengths,‘ respectivély. )

The similitude of analytical forms for eigenfrequencies of cavity-resonators for micro-
and macrosystems, invariant masses of elementary. particle resonances and eigerivalues..
for hydrogen atoms is not accidental but represents the general law of the resonator
principle. The Regge-like trajectories being fundamental for elementary particle physics
provide a powerful instrument for undersfanding‘the mass and spin distributions of
astrophysical objects [14], ‘the velocity and orbit "distributions of planets and-their
satellites in the Solar system [8, 19] without any free parameters independent of the
type of interactions, and so on. The Regge-like trajectories, as it has been shown
above, have been obtained by using the two mva.rla.nts the energy-momentum a.nd the
Ehrenfest adiabatic invariant. ' » :

Furthermore, the ratio of the average kinetic energy of a system to its frequency
E\in/v, according to the Boltzmann theorem [20], is the Ehrenfest adiabatic invariant,
and this affirmation does not depend on the type of interaction of constituents belonging
to the whole system. Actually, lord Rayleigh pointed out the fact in.1902 that in some
sine-like oscillating systems (standing waves in an adiabatically decreasing cavity, a
transversely oscillating string inside a narrow shrinking ring) adiabatic changes occur
so that the correlation between energy and frequency remains fixed [21].

Our discussions may seem old-fashioned. But the coincidenceof predictions followmg
from the Ehrenfest adiabatic invariant quantization condition with true results of
quantum ‘theory.obtained from analytic. calculations:is .extraordinary. When some
parameters of a system change adiabatically, the Ehrenfest adiabatic invariant is a
constant of motion in the classical and quantum mechanics.: Therefore, quantization of
this mvarlant leads to the known results of quantum theory.: Apparently, the Ehrenfest
adiabatic invariant is a universal invariant for periodic motions including resonances
of elementary particles. We have checked this inférence using a systematic analysis of
experimental data for asymptotic momenta P of decay products of elementary particle
resonances. We have used the Bohr-Sommerfeld quantization rule (as a special case of
the Ehrenfest adiabatic invariant quantization rule) . :

P —'nh/rn”‘nPo 07‘ P Po/n [OERE SR , (1(1)

5 The second Kepler law and the Planck constant

The history of adiabatic invariants has _approximately two stages. The first stage
corresponded to the time when the main question of theory was: what type of quantities

are the adiabatic invariants ? .The.clarification of this questlon was very important for
solving the problem of quantization in the old quantum theory The main postulate of
old quantum theory formulated by Ehrenfest (for details see [20]) stated that only the:

11



adiabatic invariants should be quantized. The second stage has been started recently
and the main question is: how exact are adiabatic invariants? Answers-can be found
in the monograph [22]. The adiabatic invariants seem to be reduced to the exact one
under definite conditions (for details see [22]. ’

‘An important question of physics is to establish the conservation laws of motion.
If the number of those laws is large enough then they can describe the motion of a
system in an adequate way. As an mterestmg example, we consider the ground state of
a hydrogen atom in a classical way

2 2

H= —i + : (24)
: 2m
If we 1ntroduce the quantity f = rv, the 1nvar1ant of motion according to the second

Kepler law, then
thor f

p=mv=—=—=, : (25)
T T r
and equation (24) is rewritten in the following form
' e2 mf?
H= -5 + 27 . R (26)
The minimum of (26) will be achieved at
mf?
o = 'E—z. (27)
From (26) and (27), we obtain
et .
Hoin = Enin = =55+ (28

The value of the invariant of motion f can be calculated from (28), if we use the
expenmental value [3] for the ground state of a hydrogen atom The result is equal to

y f = 12.8808885 x 10-22 % s (29)
Let us calculate the quantity

5 mf = mor = 6.5821220 * 1072 MeV * s, (30)

which is exactly equal to the Planck constant h.

: This result is amazing: we have used the classical Hamiltonian for a hydrogen atom
" using thé second Kepler law, then we have found the minimum of this Hamiltonian.
Equating this minimal value of the Hamiltonian to the ground state energy of a hydrogen
atom, we have calculated the electron sectorial velocity f. As a final result, we obtain
that the action is equal to the Planck constant

mf = mvr = h, ) ‘ ) (31’)

and we ccome to:the Bohr quantization condition for the ground state of a hydrogen
atom. It means that the Planck constant A is the Ehrenfest adiabatic invariant for the
ground state of a hydrogen atom.

7
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with fraction 99.887 £0.035%.

with fraction 100%,

- and verlﬁcahon of 1 masses ()f cxxstmg ones arises

Therefore the Planck constant % and the Bohr quantization condition for the ground
state of a hydrogen atom have been deduced from classical mechanics by using only.two
invariants: the conservation of energy and the second Kepler law. It seems that this
result is cxact and fundamental. But the question arises: i it possible to reproduce the-
quantum mechanical results from classical mechanics for excited. states of a hvdrogen
atom ? :

6 The predictions of resonance masses

The aboye-presentcd methed is able to describe the existing experinxentél data. Evena

short comparison our calculations with experimental data of masses of the elementary
particle resonances suggests simple ideas for experimental searches of nonobserved ones.
This is obvious;’ We would like in this scction to discuss another idea for thxs purpose.
Let us cons:der n'few dommant decay c]:annc‘]s of the resonances:

= —»A7r

...(1530)D - '=“7r+

wit}i fractxonlﬂo%, :

M,;.-\/m,-i- +\/m,+P2 \/m, n’P2+ mz n’T_”. o (32)

wherc ml, m; and Px are thc masscs audmomenta of dc( ay produ('ts from one of the
dominant channcls cited -above.. The results of our calculations and the corresponding
exper:mental data [3] arc illustrated i Figures 2-9. .The X-axis characterizes the familics

‘of resonances. (ba.ryomc or mesonic) and Y-axis represents their masscs (m McV). The

figurcs show that momenta P, to be proposed generate the faxmhm of resonances with
different quantum numbers. We think that theresults given in ‘the ﬁgun\ convincingly

‘demonstrate the empmcal fact that. rc';onauce dccay produ('t momenta and their masses’
L are quantwed It is clear tha.t commonsurab:hty of momenta dom not drp« il on the
“type:of mterachon bctwoen resonance deeay p

oduch quantum numbers of TesONANCes.
and the ‘type of pdruclcq “An oxccllont p()ssxblllfy for the. pl‘(‘(h(‘h()ﬂ of m-\\ resonances
in any case, ‘
At the bcgmnmg of this paper we have mcntmnod abmxt hypothotvcal (lm'.n channels
of a proton.- We' dec:ded fo: mvcshgatc soimné of ,thesc channels, for example. p —
vK*(892)%." The masses of . v, K*(892)* are known. | So_we arc able; caleulate the.
decay momentum Py and- tlien to cvaluat(‘ the: masscs of cxmcd states of a ‘proton |
usmg thc formula aunlognus to (32) wlxvre m,, mz arc th(‘ masses of hy pnt]u tical decay
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Figure 10. The mass distribution of ba.ryomc resonances with momenta multiples
The basic momentum is taken from the hypothetical channel p -

of 45.52. MeV/c.
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n of mesonic resonances with momenta multiples
The basnc momentum is taken from the hypothetlca.l channel p — -

particles (v and K*(892)*) and P, is the momentum of thexr relative motlon The results
of calculations and the corresponding experimental data are jllustrated in Flgure 10, 11.
There is a good correlation between the experimental data and theoretical calculations.
Morcover, there are many new predicted resonances.

This last example have demonstrated clearly” the possibility to .extract some
information about the inner structure of nucleon using experimental data for excxted
nucleon states. This possibility will be discussed in future publications. - :

7 Conclusion

In conclusion we are able to say that we have established the Balmer-like paramctor—fl ce
formula for masses of elementary particle resonances in accordance with the systematic
analysis of experimental data. : Lo .

The use of formula (2) is so 51mplc that one can check all our re%ults The
interest of our results is not only in their closeness to the cxpcruncntal data, but
also in the derivation of formula (2) from the two mvalmnt% the (onscr\atl()u law
of energy-momentum and the Ehrenfest adiabatic invariant.
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