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1 Introduction 

The merits of contemporary quark models {the Standard Model) in describing properties 
of elementary particles are impressive._ However, it is well known that [1] the only 
uncertain aspect of the Standard Model is the mechanism that gives elementary particles 
their masses. In the simplest version of the model, these masses depend on constants 
that specify the strength of the interaction of various elementary particles with a new 
kind of field but these constants are just free parameters of the theory. It seems that -
the mass distribution of elementary particle resonances is a fundamental problem of 
modern theory until we have a final theory of forces and matter, particles and fields. 
Therefore, a systematic analysis of existing experimental data is desirable to establish 
simple phenomenological rules for the mass distribution of resonances. 

2 General results 

One of the most remarkable corner-stones for foundation of the quantum theory was 
the Balmer formula for the spectrum of a hydrogen atom. It is our purpose here 
to demonstrate that the Balmer-like formula for the mass distribution of elementary 
particle resonances can be obtained from a systematic analysis of all available 
experimental data. 

Some resonances have a dominant decay channel, and we suggest that the mo~entum 
of this channel should manifest itself in properties· of decays through other chan~els. 
For example, it is known that the pion 7r± decays through the muon and neutrino with 
a probability about unity and asymptotic momentum PI = 29.79l8MeVfc. We are 
unable to explain this property of the pion; we· only suggest that it is fundamental 
for comprehension of the structure of some. resonances. To est~blish some common 
properties of the mass distribution of elementary particle resonances, we check the 
usefulness of a commensurable principle [2] of decay asymptotic momenta. In other 
words, we check the following ratio: 

Pn = nPt, n = 1,2,3, ... (1) 

where PI= 29.7918 Mevfc. 
The masses of resonances are calculated by the formula 

_Mth = Jm~ + P; + Jmf+P; = Jm~ + n2Pl+ Jm~ +n2P{, {2) 

where rna and mb are masses of decay products of the resonance to be considered. Th~ 
results and corresponding experimental data [3] are givenin,Table 1. A mo're complete 
analysis has been made in [4] _and contains a few h~ndred of resonances. . -

· We can· ~ee from the table that such a simple phenomenological method describing · 
the exp~riniental data within the accuracy of measu~ements is unusual and unexpected-. 
for this branch 'of physics. The results of the x2 calculations are given in Fig. 1 as a 
function· of decay momezi.tum P including about 4 hundred experimental data. Well 
pronounced deep mirumum x2 is found ~t PI = 29.79 MeV /c which corresponds to the 
above-mentioned decay momentum. If we change PI= 29.79 MeV/c to PI= 29.79±0.3 
MeV jc, the magnitude of x2 will increase three times. Therefore the mass distribution of 
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Table 1. Invariant masses of resonances decaying through binary channels with 

X2=C H C Mexp- Mth) / .6Maxp) 
2

) (N 
,;.,. momenta P,;. = n * 29.7918 MeV /c, I:::..M =I Mexp ~· Mth I· 

resonances decay channels · Pe:r:p. n Pe:r:p/n Mexp' Mth !:::..M 
7r± . Jl±Vv.. 29.79 1 29.79 139.56995 139.56995 

p(770) 7r±7r:;: 358 . 12 29.83 768.5 ±0.6 767.56 0.94 
p(1450) 7r±7r:;: 719 ' 24 29.96 1465 ±25 1456.99 ·8.01 
p(2150) 7r±7r:;: 984.15 33 29.82 "" 1988 1985:97 2.03 
ft(1285) a0 (980)tr0 235.01 8 29.38 1282.2±0.7 1285.87 '3.67 
ft(1420) ao(980)tr0 356.10' 12 29.68 1426.8± 2.3 . 1428.59. 1.79 
ft(1510) ao(980)tr0 not seen . 14 . 29:79 1512±4 1506.67 5.33 
!2{1270) 7r±7r'f 622.03 21 29.62 1275± 5 '1282.01 7.01 
!2{1430) 7r±7r'f 701.26 24 29.22 1436:!:i~ 1456.99 20.99 
!2{1565) 7r±7r'f 769.95 26 29.61' 1565 ± 20 1574.12 9.12 

28.5 29.0 29.5 30.0 30.5 31.0 

I 
!2(1640) 7l"±7l"'f 807.02 . 27 29.89 1638± 6 1632.79 5.21 .. !2{1810) . 7r±7l"'f 896.70 30 29.89 1815± 12 1809.17 5.83 p Fig. 1 
/2(1950) 7!"±7!":;: 988.19 33 29.95 "" 1996 1985.97 10.03 
/2(2150) 7l"±7l"'f 1015.45 ' 37 29.87 ""2226 2222.19 3.81 

resonances is a sensitive function of the basic decay momentum and the good description ry(1295) ao(980)tr0 246.54 8 30.82 1295±4 1285.87' 9.13 
of the experimental data to be observed is not accidental. It II_leans that this observation ry(1440) ao(980)7r0 346.80 12 28.9 1415 ± 10 1428.59 ' 13.59 
manifests the simple physics of resonances remaining unnoticed. ry(1760) ao(980)7r0 not seen 20 29.79 1760 ± 11 1760.84 0.84 

By the way, the phenomenological analysis of elementary particle and resonance ry(2225) ao(980)tr0 not seen 30 29.79 "'2221 2232.82 11.82 
mass distribution was popular in early days. For example, authors of [5] come to the 

ao(980) . K±JC 89.11 3 29.70 )003.3±7 1003.40 0.10 
conclusion that the appearance of quanta of energy (mass) is possible only in the case 

ao(980) ·K±Jr 119.80. 4 29.95 1016 ± 10 1015.71 0.29 when the action achieves the magnitude multiple of the Planck constant n. 
a2(1320)· K°K± ·443.32' 15 29.55 1330 ± 11 1334,76 4.76 Ofcourse, there arises a question: what is the role of resonance decay channels 
a4(2040) ·· K~K- •. 812.19' 27 30.08 1903 ± 10 1889.68 13.32 with a very small probability? We know from nuclear physics (see, for example, [6]) 
a4(2040) K~K-. 891.46 ., 30 29.72 2040±30 2044.01 4.01 that basic vectors with small (large) w~ightsin the ground states of nuclei become the 
B(1876) pp 29.94 1 29.94 ,. 1877.5 ± 0.5 1877.49 0.01 doniimint (small) ones in highly excited states. The same phenomenon is expected in 
B(1880) pp. - 2 - not seen 1880.32 the physics of resonances. Let us consider as a basic channel the following decay channel 
B(1885) pp 94.31 3 3i.44 1886± 1 1885.04 ' • 0.96 

1r
0 

._.. Jl±e'f with P1 =26.1299 MeV /c and fraction ~ 10-8 %. The results of calculations 
B(1890) pp 120.67 4 30.17 1892 1891.62 0.38 are presented in Table 2. 
B(1900) pp . 142.29 5 28.49 1898± 1 1900.05 2.05 Tables 1, 2 contain rich information, and it is possible to make many fundamental 
X(1900) pp 138.91 5 27.78 1897± 1 1900.05 3.05 conclusions based on them. We think that the results contained in the tables 
B(1910) pp 180.62 6 30:10 •1911 1910.30 0.70 convincingly demonstrate the empirical fact of commensurability of resonance decay 
B(1920) pp 207.76 7 29.68 '·1922 1922.34' 0.34 product momenta within the accuracy of existing experimental data: In other words, 
X(1920) pp 203.09 7 29.01. "" 1920 1922.34 2.34 resonance decay product momenta are quantized. It is clear from the tables that 
B(1936) 240.08 8 30.01 1936 ±0.3: 1936.14 0.14 commensurability of momenta does not depend on th~ type of interaction between pp 

., 

30.tn 1937.3:!:1.3 1.16 X(1936) pp 240.08 8 1936.14 resonance decay products, quantum numbers of resonances and type of particles. . . 0.7 

0.66 B(1950) pp 274.14 9 30.46 '1951 ± 0.3 1951.66 Moreover, commensurability of momenta is justified for all considered resonances. It 
B(1970) pp 298.14 '' 10 29.81 1969±2 1968.87 o:13 seems to be a universal property of resonances, and many periodic structures are just 
X(1970) pp 296.48 10 29.65 1968 1968.87 0.87 governed by this property. A main question arises here: is this commensurability precise 
B(1990) pp. 328.15 1i. 29.83 1989± 1 1987.71 1.29 or approximate? We do not know the answer but think that it is as precise as the one 
B(2008) pp 357.30 12 29.76 2008± 3 2008.15 0,15 in solids and crystals. If so, the common structure of elementary particles must be 
X(2008) pp 361.49 12 30.12 2011±7 2008.15 2.75 analogous to that of solids and crystals. An excellent possibility for prediction of new 
X(2030) pp '. 381.86 13 29.37 2026±5 2030.12 4.12 resonances and verification of masses of the existing ones arises in any case. 
B(2050) 'pp 415.12 14' 29.65 ;, 2052 .· 2053.60 i.60 
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Continuation of Table 1 
resonances decay channels Pe:r:p n Pe:r:11 /n. Me:r:p Mth {).M Continuation of Table 2.· 

B(2080) pp 447.44 15 29.83 2079 ± 4. 2078.51 0.49 
X(2080) pp 448.60 15 29.91 2080± 10 2078.51 1.49 
B(2105) pp 477.97 16 29.87 2106±4 2104.82 1.18 
B(2130) pp 502.80 17 29.58 2129 ± 5 2132.47 3.47 

'B(2160) pp - 18 - not seen 2161.41 
B(2190) pp 566.45 19 29.81 2192± 3 2191.58 0.42 

-Table 2. Invariant masses of higher excited resonances decaying through binary 
channels with momenta Pn = n * 26.1299 MeV /c, {).M =I Mexp- Mth I-

resonances· decay Pe:r:p ·n Pt!xp/n Me:r:p Mth {).M 
channels 

7ro JL±e'f 26.1299 1 26.1299 134.9764 134.9764 
Di(2460)0 .JL±e'f 1227.18 47 . 26.11 2458.9 ± 2.0 2460.75 1.85 
·Sj(5732) JL±e'f 2848.02 109 26.13 5698± 12 5698.'28 0.28 
s;;(5850) JL±e'f 2925.55 112 26.12 5853± 13 5855.00 2.00 

Y(1S) : JL±e'f 4729.59 181 26.13 9460.37 ± 0.21 9460.20 0.17 
w(782) e-e+ 390.97 15 26.06 781.94 ± 0.12 783.90 1.96 

X(1097) e-e+ 548.5 21 26.12 1097::::~~ 1097.46 0.46 

resonances decay channels · Pe:r:p n Pex11 /n Afe:r:p l'vfth {).}.1 

no </>po 260 10 26 1864.5±0.5 1864.08 0.42 
D± fo(980)7r± 732 28 26.14 1968.5±0.6 1967.82 0.68 . 
n± 1J1(958)p± 470 18 26.11 1968.5±0.6 1968.03 0.47 • 

Do~(2536)± D°K± 392 15 26.13 2535.35±0.34 2535.6 0.25 
s± e±l 2639 101 26.13 5278.9±1.8 5278.24 0.66. 
so e± JL'f 2639 -101 26.13 5279.2±1.8 5280.35 "1.15 

1Jc(1S) · K*(892)± K'f 1307 50 -26.14 2979.8±2.1 2978.38 0.42 
t/J(2S) /Xca(1P) 261 10 26.1 3686.00±0.09 3686.38 0.38 

Xbo(1P) 1Y(1S) 391 15 26.07 9859.8±1:3 9860.44 0.64 
Y(2S) /Xb1(1P) 131' 5 26.2 10023.3±0.31 10023.41 0.11 

L:(1385)0 A7ro 208 8 26 1383.7±1.0 1383.93 0.23 
A+ 3(1530)° K+ 471 18 26.17 2284.9±0.6 2284.25 0.65 c 

Ac(2593)+ At7ro 261 10 26.1 2593.6±1.0 2593.9 0.30 
-;:;+ L;+ K"(892)0

• 653 25 26.12 2465.6±1.4 2465.89 0.29 -c 
-;:;0 n-K+ 522 20 26.1 2470.3±1.8 2471.11 0.89 -c 

3c(2645) =t1r- 107 4 26.75 2643.8±1.8 2642J8 1.62 

K*(1410) e±v. 706.00 27 26.15 1412 ± 12 1411.02 0.98 
. p(1450) e-e+ 732.5 28 26.16 1465± 25 1463.28 1.72 

; /2(1565) e-e+ 782.5 30 26.08 1565± 20 1567.79 2.80 
T e±,.Y 888.5 34 26.13 1777::::g:~~ 1776.83 0.17 

X(1830)- e-e+ 915.00 35 26.14 ~ 1830 1829.09 0.91 
7r2(2090) e-e+ 1045.00 40 26.13 2090± 29 2090.39 0.39 
fo(2200) e-e+ 1098.50 42 26.15 2197± 17 2194.91 2.09 
K2(2250) e±v. 1123.50 43 26.13 2247± 17 2247.17 0.17 
n;(2460)0 e-e+ 1229.45 47 26.16 2458.9± 2 2456.21 2.69 
Di(2460)± e±v. 1229.50 47 26.16 2459 ±4 2456.21 2.79 
·!2(2510) e-e+ 1255 48 26.15 2510 ± 30 2508.47 1.53 

77c(1S) e-e+ 1489.90 57 26.14 2979.8 ± 2.1 2978.81 0.99 
so e-e+ 2639.6 101 26.13 5279.2 ± 1.8 5278.24 0.96 
s± e±v. 2639.45 101 26.13 5278.9 ± 1.8 5278.24 0.64 

Sj(5732) e-e+ 2849.00 109 26.14 5698 ± 12 5696.32 1.68. 
Sj(5732) e±v. 2849.00 109 26.14 5698 ± 12 5696.32 1.68 
s;;(5850) e-e+ 2926.5 112 26.13 5853± 15 5853.10 0.10 
s;;(5850) e±v. 2926.5 112. 26.13 5853± 13 5853.10 0;10 

. 1(10860) e-e+ 5432.5 208 26.12 10865± 8 10870.05 5.04 
. fl(1285) <Pi 236 9 26.22 1282.2±0.7 1281.36 0.84 

!I(1285) ao(980)7r0 234 9 26 1282.2±0.7 1282.38 0.18 
a2(132o) 77'(958)7r0 287 11 26.09 1318.1±0.7 1317.51 0.59 
-K~ 1ro1ro 209 8 26.13 497.672±0.031 497.66 0.01 

K2(143o)± K±l 627 24 26.13 1425.4±1.3 1425.24 0.16 
n± .'Jt11r± 862 33 26.12 1869.3±0.5 1869.11 0.19 . 
[Jo '..0 

r :Kfo(980) 549 21 26,14 1864.5±0.5 1863.97 0.53 

Table 3. The masses of resonances grouped ncar the masses of 
n-(1672.45 ± 0.29) and r(1777::::g:~~) 

baryons Mbaryon mesons AJ::;~son ern 

n- 1672.45 ± 0.29 T . 1777::::~:~~ 
w(l600) · . 1663 ± 12 X(1775) 1776.± 13 
w3(1670) 1673 ± 12 /J(1710) . 1768 ±14 ; 
7r2(1670) 1676 ± 6 7i(1800) •. 1775 ± 7 ± 10 
</>(1680) 1677 ±'12 p(1700) 1780 
P3(1690) .. 1679 ± 11 J\2(1700). ~ 1780 
P3(1690) 1673 ± 9 Kj(1780) 1779 ± 11 
p(1700) 1659 ± 25 {).(1750)P31 .1i78.4±9 

K*(1680).' 1677 ± 10 ± 32 {).(1620)S31 
.. 

1786.7 ± 2 
N(1650)Su 1672 {).(1900)S31. 1780 
N(1675)DJs 1673 . .6.(190S)F3s . . 1787+ti.O 

· N(1680)FJs 1674 ± 12 Li(1910}P31 I . 179_0.,.7 

N(1700)DI3 .. 1o70 ± 10 · A(1800)SoJ .. 1767 
N(1710)Pu 1670 A(1810)PoJ . 1780 ±'20 

· N(1720)PJ3 . 1675 L:(1750)SII · li85 ± 12 
{).(1600)P33 1672 ± 15 L:(1750)PII 1770 ± 20 
{).(1620)S31 1672 ± 5 L:(1775)DII 1777± 5 
{).(1700)D33 1672 3(1820)D13 1770 
A(1670)Sol 1670.8 ± 1.7 - -

L:(1670)Pu 1671 ± 2 
L:(1670)D11 1671 ± 3 --

' L:(1670)Sumps . 1670 ± 4 ·-·-· 
'- - ----

4 
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We are able to interpret some of the resonances as radial excitations. _For example, 
p(770), p(1450) and p(2150)-mesons decay through two pions .with momenta 358, 719 
and 1065 MeV jc, i.e. their momenta are commensurable. 

Obviously, the accuracy of resonance masses to be predicted depends on the accuracy 
of decay product masses used in calculations. Therefore, our predictions of resonance 
mMses are to be considered as preliminary ones. We ask readers to send information 
about more _accurate contemporary experimental resonance mass data. We will be 
indebted for this. 

We have established that experimental values of masses of P P and P P resonances 
[7] coincide within the accuracy of experimental data. This remarkable observation was 
highlighted in our earlier works [8, 9]. But the s/stematic analysis of experimental data 
brings us to a more general conclusion to be switched on below after discussing some 
examples. 

In Table 3 we have collected the masses of resonances grouped near the . masses 
of r-lepton and n-hyperon .. The masses of resonances coincide within the accuracy of 
experimental data. This observation is valid for many resonances independently of their 
type, quantum numbers, interactions, and so on. If so, good perspectives for a combined 
systematic analysis of this type of resonances are opened. 

3 · Nucleon structure 

The excited states of nucleons have been investigated in a large number of experiments. 
The main information of the masses, widths and elasticities for N and D. resonances 
comes from the partial-wave analysis of N1r, NTJ, 'A.K and ~K data sets (for details see 
[3]) .. We would like to propose that the properties of the ground state of nucleon can be 
studied from the experiments perfonned for extraction of information about the excited 
states of nucleons. · 

The proton is practically stable (mean lifetime i > 1.6 * 1025 years- independent 
of the decay mode [3]). According to the minimal SU(5) Grand Unified Theory (see 
minireview [10], page 1673) it can- decay via different channels. For example, p ·-> 

e+1r0
, p-> 1-'+/, p-> vK*(892)+, .... But the_proton does not decay despite the 

possibility from energy-momentum conservation law. 
Let us consider the problem of particle's stability at least. According to our 

hypothesis [7], a stable particle (proton, neutron) represents a complex ideal wave 
resonator. Each individual resonator has the frequency I.LI; and uncertainty in frequency 
tli.LI;. 'A wave function of eigen oscillations of a combination of coupled resonators can 
be represented in the form: 

1 D.I.LI; 
lJ! = L a;(I.LI;r'),/27r (I.LI- 1.L1;)2 + f:::.I.Lil /4' (3) 

where a;(I.LI;r') is the radial part of the partial wave function. 
The channel energy distribution of a resonator can be calculated by the formula 

J ~2dr= j (~a;(I.LI;r') 1 D.I.LI; 2 

27r (I.LI- 1.L1;)2 + D.I.LirJ4 
dr. (4) 

6 

So, t:vo ~~Ilclu~iops fo~lo._wf~o~J4)::, .. · . , . _ . ·• ·' .: ,; ... , , ·, ., . ,; :· 
l) lf'a.llw; ~ Wo and D.I.LI; .=;= tl'fo --:+ 0 (or. T -+ "9. -reSOJ1ator .. ~th;ide~ly ,refl~cting 

walls), ·· · · ··.. · · · ·· . " · . · · 

1 'l!2
dr= 1 (217rc(LI-(LI~~w~ 6(Liu4) (~a;(I.Lior')r dr= 

1. _;; 
27r f .• 

{5) 

It seems that just this case of a syste~~of resonators corresponds to stable systems 
(like proton and neutron), when all the fre'q~encies of a system of resonators are ideally 
coordinated and equal to each other.:.Jn other. words, <!ll channel motions in the stable 
systems -~e ex~ctly ~y~chro~~us .. Am'plit~cles are coh~;ently summarized. App~ently, 
th~ root of the riddle about stability ofsome. particles (like proton, neutron, electron) 
lies in it. · 

2) If I.LI; = I.Lion;Jn; (where n; and n; are integer numbers, there. can arise beating 
phenomena well known·irithe wave th~ory. 'Thl.s"case correspond~ to hil:dron'resomirices 
such as fo( 400 .:_;1200)and p-nies~ns,':D.-isobar;.:. Witli a large width:. ' ' . . . .. 

These resonances are combinations of resonanceswith a:s'm'all *idth: An.' experiment 
gives us •information about: the en.;etope of intensities 'of res~nance excita.ti~m; . fine 
stn.ictures will be found wheri the a~curacy increases. The situation .is in full ari~logy 
with giant fesonances in' atomic nuclei [9};. arid ~h~re are many' exampies in atomic . 
spectroscopy. The.-beatiiig pheD:bmerion is known; in-microcosm. N~~ it is a 'gen~i:ally 
accepted view point that appeara~ce of magic numbers (a structurepossessing. a l;u.-ge' 
binding energy) in atomic iiudei, atmns;·a:nd metallic clusters is c~nditi?ned by beating 

[11!~; _+·.·.-·. ;·:·.· -,;', .... •: -,;. ·;;_ _· ,; . '.,, ·. . .; ''· •:: ,:· ' . 

'' 
4 .. _ Th~.--·~c;n·~~r~ation-: laws ;and: the Regge..:like' 

.. t~<lj~storie~ ·. · ., ·· · · <•• -~ · .. · l, ''' • 

The'' well! known. ~esults· in''hi~h-energy. physi~s indi~ate that' there' is' a -P~~~~~d,. 
connection between spins and masses. of strongly interacting elementary particles, 
had;ons. The spin J of some baryons·· .i.nd ni~sons appears to be nearly proportional 
to the square of; their mass M: M 2 ·-rx. J;: The correlation between spiri·and xhass' 
of experimentally known low mass hadrons is represented by a straightline: Regge '' 
trajectory [12] in a Chew-Frautschi [13] plot. These 'trajectories are remarkably linear 
and apprpJ_Cim~~ely . parall~l ( ?-u~ traJ~stori~s. of m~so~~ goillg. pp ,.[, = ~_and. of h<l:l'Y<?ns .. 
up to J ~ 15/2); i.e., the angular momentupi:> a l!.rt!!ar,f~ction,~f the squar_e of}he 
particle mass [3]. · 

The general formula which connects ·the ma?cimal spin . J and mass M of heavy 
hadrons was obtained in [14jby usinir·siriiple arguments of\iimensional analysis and 
similarity principle 

1 

r~ 1i(M r* .,. ·'. ----
: . ... mp,,·: ~ •:·;:' 

. . '~ ' : (6( 

where mi> is theproton·mass;·thenumbe'r( takes'valu~· (=1~:2, 3 and Characterizes the 
spatial dimensionality of hadrons. . ·· · ' ' 

7 ;· 



The case ( = 1 describes one-dimensional string-like hadrons and corresponds to the 
well-kllown straight-line trajectory for ordinary hadrons and had.rcinic resonances [13} 

J = 1i(M )2. 
mp 

(7) 

The case (=2 corresponds to two-dimensional disk-like hadrons 

J = 1i( M )3f2_ 
mp 

{8) 

· Finally, ( =3 corresponds to the case of t~ee-dimensional or spherical hadrons 

J = 1i( M )4/3. 
mp 

{9) 

, An analysis [14} of the data on the rotation of cosmic objects to be observed shows 
that all of them can be Classified into two groups, in which spiri~mass relations are given 
by formulae (8) and {9), respectively. . . · 

. . The first one includes clusters of galaxies, single galaxies, . globular, and open 
star clusters and perhaps stellar associations and super-associations. The angular 
momentum-mass distributions for these objects are described by equation (8). 
.. The second group of objects described by equation (9) includes single stars, planets, 

.~d asteroids. . . .· .. . . . _. . . .. •. . . , · . 
· The plot (14]Ig J' versus lg M shows a remarkable regularity, and the theoretical 

liries'describe not,only the shape, but also absolute ~ues in tremendous mas's and ~pin 
intervals (the mass interval is about 34 orders of magnitude, the corresponding interval 
for angular momenta covers about 60 orders of magnitude) without invoking arbitrary 
parameters. Therefore, Muradian's approacli incorporates in a natural way fundamental' 
quMtum ~echanical constants 1i and mp. 

· It is worthwhile to note following the conclusion of R.M: Muradian· (14] that 
equations. (7-9) can be obtained_from~.{2) by using the Bohr-Sommerfeld quantization 
conditions · · · .. , , . 

Pr = nn := Jn, (10) 

'and the' assumption that the masses of ann-dimensional rotational object can be written 
in the form 

m =pr<, (H) 

~llere p .i~ the constant density ofthe object (note 'th~t R.M. Mur~an used Pr = 
.J1i/2).·Therefore equation (2) acquires the form · 

. ~ _;/ •. . J21i2 
M = ym•. + dJ = y(prC)2 + c2r2. (12) 

The minimization of this expression over. r. provides the Regge-like trajectories (7-9) 
with the accuracy of a constant factor. This resUlt is remarkable because the observed 
and weil-established Regge-like trajectories in micro- and macrosystems were obtained 
from the first principles. 

8 

Let us· discuss an example . of a hydrogen atom.. The electrostatic force bet\veen 
the proton and electron leads to the formation of bound states of the hydrogen atom. 
Following Bohr, we require the equality of the Coulomb and centrifugal forces 

e2 mv2 

(13) 
r2 r 

and using Bohr's quantization condition (10) we obtain the admissible values of r. or 
the Bohr radii: 

n2h2 h2 
2 • 

r= me2 =n a,, a,= me2' (14) 

where a1 is the radius of the first Bohr orbit. The momentum of an electron on an n-th 
Bohr orbit equals 

2 p 2 
p = me = ___!_ p = ~ 

nh n·' 1 h ' 
( 15) 

where P1 is the momentum of the electron on the first Bohr orbit. 
Therefore, we can conclude from equations (14) and (15) that the electron monwnta 

and orbits in a hydrogen atom are quantized. Note that the minimal value of the orbit 
radius and the maximal vdlue of the momentum depend on the electron r!'duced mass m. 
If we should consider other systems, for a example e± e'~', Jl± e'~', then the corresponding 
minimal orbit radius and maximal momentum are scaled according to the cmisid<'r<'d 
reduced masses. The same conclusions can be obtained from quantum theory. \V<' han• 
chosen the simplest way. One can see that equation (15) for the electron mom<·nhmt 
quantization on an n-th Bohr orbit is the same (inverted) in the analytic form as the 
momentum quantization for decay products of elementary particle r<'solmnces ( 1 ). 

It is easy to find the. energy of a hydrogen atom, which is equal to tlH' kim·tic and 
potential energies (in the nonrelativistic limit): 

e2 e2 e2 
E = .Jm2c4 + P2c2- mc2- -;:- = - 2r = - 2n2at. (16) 

We note the well-known fact that Bohr solved the problem of quantization of a hydrogen 
atom in 1913 (15], long before the creation of quantum theory. 

Sommerfeld [16] generalized Bohr results to the rdativistic case 

E = mc2 1 + a
2 

· 2 - mc2, 
( ) 

-1/2 

(n,+Jn~-a2) _.· 
( 17) 

where n, and n<b arc radial and azimuthal quantum numbers, o = c2 /he is the 
fine-structure constant. It is worthwhile to note that the Sommcrfdd l'<'lHtlt.s coineidt• 
exactly with the Dirac results obtained later if one puts 71¢ = j + 1/2 where j is the 
orbital angular momentum plus spin of an electron. 

To conclude a short excursion of t.hc history of physics we can say that the 
exactness of the Bohr and Sommerfeld results for a hydrogen atom in nonrclat.ivistic ami 
relativistic cases is surprising because t.lt<'se results have heen obtained within classit-al 
equations of motion and Ehrcnfest adiahat.ic invariants. This coincidenct' cannot hi' 
accidental. 
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. In. further discussion,. we will employ on the hypoth~sis that conservation laws of 
energy-momentum and Ehrenfest's adiabatic invariant and also the resonator principle 
for standing waves of any physical nature are common for all hierarchic systems. 

The analogy between the relativistic form of a free particle Hamilton function and 
dispersion relations for standing waves in a hollow metallic resonator (waveguide) has 
been discussed long ago (for a recent review see, for example, paper [17]). It seems that 
the underlined analogy has a deep physical reason. 

Let us cil.rry out a visual comparative analysis of quantization of a classical field for 
the string displacement q(t, x) and scalar field described by the same equations [18]. 
The classical field of displacement is described ?Y the equation 

iPq(t, x) a2q_cf, x) 
8f2 - 8x2 = 0, (18) 

where the linear density of the string and the velocity of spreading of oscil)ations are 
equal to unity. The following relations are present when both ends of the string are 
fixed: _q(t,O) = q(t,a) = 0. Then, the classical eigenstates of equation (18) are 

q(t,x) ~ exp[±iwnt]sin(knx), kna = mr. (19) 

The Klein~Gordon equation is a relativistic analog of (18) 

8
2

</J(t,i) _ 1:::.</J(t,i) + [m2 + V(i)]ifJ(t,P) = 0. 
•t2 i 

(20) 

It describes, a neutral scalar field where m is the particle mass and V(i) is the potential 
ofan external field.interacting with the field </J. When V = 0 and the field </J is defined in 
the interval [0, a] with zero boundary conditions </J(t, 0) = ifJ(t, a) = 0, the eige~functioris 
and eigenfrequencies in the one:dimensional case acquire the form 

./ n2~2 <Pn(t,x)~exp[±iwnt]sin(knx), kna=n~, wn=)m2 +k;.=.vm2 +7· (21) 

So, the quantized fields of displacements and eigenfrequencies· of a classical 'string 
and eigenfunctions and eigenfrequencies of a relativi;tic s~alar field have the similar 
analytical form. They coincide when m = 0. This is a consequence of the identity 
of appropriate equations and b~undary conditions. Moreover, the formulas for 
cigenfrequencies of a classical string and a quantum relativistic scalar field coincide with 
those for eigenfrequencies of classical resonators. For example, the eigenfrequencies of 
the_ cavity-resonators having a cylindrical form with the radius R and with the length 
dare equal to - · 

7r V x . n2 
Wn =- (_.!2_)2 + -, 

JLt: 1rR d2 
(22) 

where x,j arc solutions of the equations 

· J,(x,i) = 0 or J~(x,i) = 0, (23). 

while v ~ 0 andj=1, 2, 3, ... 
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The mass formula (2) for resonances can be rewritten in the following form 

Mth = Jm~ + P~ + Jm~ +P~ = 
1 - n2 

Ab(a) + A2 + 
D 

(2a) 

where Ac and Av = 1/ P 1 are the Compton and de Broglie wave lengths; respectively .. 
The similitude of analytical forms for eigenfrequencies of cavity~ resonators for micro­

and macrosystems, invariant masses of elementary particle resonances and eigeri~ues . 
for hydrogen atoms is not accidental but represents the general law of the resonator 
principle. The Regge-like trajectories being fundamental for elementary particle physics 
provide a powerful instrument for understanding the mass and spin distributions of 
astrophysical objects (14], the velocity and orbit distributions· of planets and their 
satellites in the Solar system [8, 19] without any free parameters independent of'the 
type of interactions, and so on. The Regge-like trajectories, as it has been shown 
above, have been obtained by using the two invariants: the energy-momentum and.the 
Ehrenfest adiabatic invariant. 

Furthermore, the ratio of the average kinetic energy of a system to its frequency 
Ekin/v, according to the Boltzmann theorem (20], is the Ehrenfest adiabatic invariant, 
and this affirmation does not depend on the type of interaction of constituents belonging 
to the whole system. Actually, lord Rayleigh pointed out the fact in 1902 that in some 
sine-like oscillating systems (standing waves in an adiabatically decreasing cavity, a 
transversely oscillating string inside a narrow shrinking ring) adiabatic changes occur 
so that the correlation between energy and frequency remains fixed (21]. 

Our discussions may seem old-fashioned. But the coincidence of predictions following 
from the Ehrenfest adiabatic invariant quantization condition with true results of 
quantum theory. obtained frorri analytic calculations' is . extraordinary. When some 
parameters of a system change adiabatically, the Ehrenfest adiabatic invariant is a 
constant of motion in the classical and quantum mechanics. Therefore, quantization of 
this invariant le~ds .to the known results of quantum theory. Apparently, the Ehrenfest 
adiabatic i~variant is a universal invariant for periodic motions including resonances 
of elementary particles. We have checked this infe'rence using a systematic analysis of 
experimental data for asymptotic momenta P of decay products of elementary particle 
resonances. We have used the Bohr-Sommerfeld quantizatioU: 'rule (as a special case of 
the Ehrenfest adiabatic invariant qu:ntization rule) 

Pn = nh/rn = nPo or Pn = Pr;fn.: (la) 

5 The 'second K~pi~r 'Iaw,and·the .. Planck.constant 
1i 

The history of adiabatic invariants has _approximately two stages. The first stage 
corresponded to the time when the main question of theory was: what type of quantities 
are the adiabatic invariants? The.clarification of this question was very important for 
solying the problem of quantization in the old quantum theory. The main postulate of 
old quantum theory formulated by Ehrenfest (for details see (20]) stated that only the 
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adiabatic invariants should be quantized. The second stage has beenstarted recently 
and the main question is: how exact are adiabatic invariants? Answers ·can be found 
in the monograph [22]. The adiabatic invariants seem to be reduced to the exact one 
under definite conditions (for details see [22]. 

An important question of physics is to establish the conservation laws of motion. 
If the number of those laws is large enough, then they can describe the motion of a 
system in an adequate way. As an interestir'!g example, we consider the ground state of 
a hydrogen atom in a classical way 

e2 p2 
H=--+-. 

r.··' 2m 
(24) 

If we introduce the quantity f = rv, the invariant of motion according to the second 
Kepler law, then 

lhvr mf 
p=mv= --= -, 

r r 

and equation (24) is rewritten in the following form 

e2 j2 
H=--+~ r 2r2 . 

The minimum of (26) will be achieved at 

From (26) and (27), we obtain 

ro = mf2 
e2 . 

e4 
Hmin = Emin = - 2mj2 • 

(25) 

(26) 

(27) 

(28) 

The value of the invariant of motion f can be calculated from (28), if we use the 
experimental value [3] for the ground state of a hydrogen atom. The result is equal to 

f = 12.8808885 * 10-22c2 s-1
• 

Let us calculate the quantity 

-:> 
mf = mvr = 6.5821220* 10-22MeV * s, 

which is exactly equal to the Planck constant h. 

(29) 

(30) 

. This result is amazing: we have used the classical Hamiltonian for a hydrogen atom 
using the second Kepler law, then we have found the minimum of this Hamiltonian. 
Equating this minimal value of the Hamiltonian to the ground state energy of a hydrogen 
atom, we have calculated the electron sectorial velocity f. As a final result, we obtain 
that the action is equal to the Planck constant 

mf=mvr= h, (31) 

and we come to the Bohr quantization condition for the ground state of a hydrogen 
atom. It means that the Planck constant h is the Ehrenfest adiabatiC invariant for the 
ground state of a hydrogen ·atom. 
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Therefore the Planck constant h and the Bohr quantization condition for the ground 
state of a hydrogen atom have been deduced from classical mechanics by using only two 
invariant!;: the conservation of energy and the second Kepler law. It ~ that this 
result is exact and fundamental. But the question arises: is it possible to reproduce the 
quantum mechanical results from classical mechanics for excited states of a hydrogen 
atom? 

6 The predictions of resonance masses 

The above-presented method is able to describe the existing experimental data. Evt'll a 
short comparison our calculations with experimental data of masses of the elementary 
particle resonances suggests simple ideas for experimental searches of nonobserwd ones. 
This is obvious; We would like in this section to discuss another idea for this purpose. 
Let mi consider idew domimirit decay channels of the resonances: 

:=:--+ II.Ti-

with fraction 99.887 ±0.035%, 

:=:(1530)0 -+ :=:-Ti+ 

with fraction· WO%, 
Eo~k·cc 

with ftactio,; 100%, , 
E--+ n1r-

with fiacthm 99.848 ± 0.005%. The m~ses of hea~ier resonanci'S wcrc calml~tcd h,· the 
formula: •: . . . . . . . . . 

M,l.= J:m2+ p2+ ..jm2 + p2 = · t,;;l.f.~zpz +.1m2 +n2P2 
. I· . n 2. o .. " . V 11'1 ~ I V 2 .I • 

(32) 

where ni1; m2.and P, are-tlie masses and. momenta of de<~ay produrts from our of thr 
dominant channels Cited above.· The results o£ our calculations and the rorr<'~<ponding 
experlm~~ntal data {3] arc illustrated iir Figures 2-9 .. The X -axis rharactcriz<~ tlu• families 
ofresonances (baryonic or mesonic) andY-axis represents their masses (in MeV). Tbt• 
figures show that momenta :p1 to b.e proposed generate the .families ofrcs{)uanrt'~< with 
different quantum numbers. We tliink that thcr~sults givC11 in the figun~ rom·iuringly 
demonstrate- the 'empirical fact that resonance decay proditct nuitiwuta mid tlu·ir masst"S 
arC quantized. It is clear that COtllmCt~~~~rabi}ityo{ tllOIIl(,!lta dOt'S lllll drpt•iu} Oil tht' 
type ofinteraction betvy!!Cn·resomiticC decay prodm;ts, quantum numbrrs.(>f rl'l<onanr<'~<' 
and the 'type of particlcll. ·An e.xccllcnt possibility for: the prrdictinn of m·w rcsnn;uu·<'~< 
and verific'ation of masses of cxistirlg ones arises in any cast', ., . . ' . 

At the bcginni~g ~f this p~pcr ~e h~v~ ;n"C;tt"i,;~ed about hyJ>;>tll~t!rai d<·r;Jy dJmJm•ls 
of a proton; We decided tO investigate some of these dmmwls, fnr rxampl<·. p .... 

vl\*(892)+. 'The ma.Ssesrif 1'; v, J\"{892)7' arr ku~n~u. Sow~ an; ahl;.:·~alrulat<· tlw 
decay momentum .·p,' and then to cval;tat~. the mas~rs .~f c"Xrited stat..;. of .a proton 
using the formula analogous to (32) whl·rf. 711), 7112 are th(; ma..;sefi ofhypotlu·tiral dN'a}' 
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Figure 4. The mass distribution of baryonic resonances with momenta multiples of 
146.55 MeV fc. Tli~ basic mome~tum is taken from the channel3<1530)0 --+ :=:-7r+ with 
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fraction 100%. 
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particles ( v and K*(892)+) and P1 is the momentum of their relative motion. The results 
of calculations and the corresponding experimental data are illustrated iri Figu~e 10. 11. 
There is a good correlation between the experimental data and theoretical calculations. 
Moreover, there are many new predicted resonances. 

This last example have demonstrated clearly· the possibility to extract some 
information about the inner structure of nucleon using experimental data for excited 
nucleon states. This possibility will be discussed in future publications. 

7 Conclusion 

In conclusion we are able to say that. we have established the Balmer-like parameter-free 
formula for masses of elementary particle resonances in accordance with the systematic 
analysis of experimental data. 

The usc of formula (2) is so simple that one can check all our results. The 
interest of our results is not only in their close~lCss t~ the experimental data. but 
also in the derivation of formula (2) from· the two inv~riants: the <·ons~rvation law 
of energy-momentum and the Ehrcnfest adiabatic invariant. · 
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rapeeB ll>.A. H ~p. 
EanLMepono~o6Hrui !lJopMyna 
,WU1 MaCCOBOI'O pacnpe~eneHIDI pe30HaHCOB sneMeHT 

IlpOBe~eH CHCTeMaTuqeCKHH aHaJIH3 pe30HaHCOI 
BneqeHHeM BCeX HMeiOIUHXC.SI SKCnepHMeHTanhHbiX j. 

qeHHIO, qTO HMnynhChl npO~OB pacn~a H Ma 
Ilonyqeua 6anbMepono~o6uru~ !lJopMyna .wm pacnpe, 
MeHTapHhiX qacTHQ. HaiiiH ua6nro~eHIDI noJBOAAIO 
SKCnepHMeHTaJlhHOI'O llOHCKa HOBhiX pe30HaHCOB H CHC 

Pa6oTa Bhmonueua B Jia6opaTopuu reopeTnqec 
6osa OIUII1. 

llpenpHHT 06beJIHHeHHOfO HHCTHT)'Ta liJlepHbiX HCC 

Gareev F.A. et al. 
The Balmer-Like Formula 
for Mass Distribution of Elementary Particle Resom 

Elementary particle resonances have been syste1 
available experimental data: We have come to the c' 

. product momenta and masses of resonances are to 
formula for mass distribution of elementary particle 
These observations allow us to formulate a strat 
for new resonances and systematize the already kno 

The investigation has been performed at 
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