


1 Introduction-

The notion of “time”, in general relativity, is many-sided [1, 2, 3].

General relativity is invariant with respect to general coordinate transformations in-
cluding the reparametrizations of the “initial time-coordinate™ t s t' = ¢(t).

The Einstein observer, in GR, measures the proper time as the invariant geometrical
interval.

The Hamiltonian reduction [1] of cosmological models inspired by GR [1, 2, 3] revea.ls
the internal dynamical “parameter of evolution ” of the Dirac invariant sector of physical
variables {4, 5, 6, 7, 8]. In cosmological models this “evolution parameter” is the cosmic
scale variable, and the relation between an invariant geometrical interval and dynamical
“evolution parameter” (the “proper time” dynamics) describes data of the observational
cosmology (the red shift and Hubble law).

In this paper we would like to generalize the Hamiltonian reduction with internal
evolution parameter to the case of field theories of gravity.

For researching the problem of “time” in a theory with the general coordinate trans-
formations (1], one conventionally uses [9, 10} the Dirac-:ADM parametrization of the
metric [11] and the Lichnerowicz conformal invariant variables [12] constructed with the
help of the scale factor (i.e. the determinant of the space metric).

The Dirac-ADM parametrization is the invariant under the group of kinemetric trans-
formations. The latter contains the global subgroup of the reparameterization of time
t = t' = t'(t). The Hamiltonian reduction of such the time-reparametrization invariant
mechanical systems is accompanied by the conversion of one of the initial dynamical vari-
ables into parameter of evolution of the corresponding reduced systems. York and Kuchar
[9, 10] pointed out that such variable in GR. (which is converted in the evolution parameter)
can be proportional to the trace of the second form. .

In the contrast with [9, 10], we suppose that the second.form can be decomposed on
both- global excitation and local one.

The ADM-metric and the Lichnerowicz conformal invariant varlables allow us [13, 14]
to extract this evolution parameter of the reduced system, in GR, as the global component
of the scale factor.

The main difficulty of the Hamiltonian reduction in GR is the necessity of separation
of parameters of general coordinate transformations from invariant physical variables and
from quantities including the parameter of evolution and proper time.

Recently, this separation was fulfilled in the cosmologlca.l Friedmann models [7, 8]
with the use of the Levi-Civita canonical transformation [15, 16, 17], which allows one
to establish direct relations between the Dirac observables of the generalized Hamiltonian
approa.ch and the Friedmann ones in the observational cosmology (the red shift and the
Hubble law) expressed in terms of the proper time.: ./ :

It has been shown that in this. way one can construct the normalizable wave function
of the Universe so that the variation of this function under the proper time lea.ds to the
“red shift” measured in observational cosmology [8].

We show that the Hamiltonian reduction of GR distinguishes the conformal time as
more preferable than the proper time from the point of view of the  correspondence principle
and causality ‘' [18]. The usage of the conformal time (mstea.d of the proper one) as a
measurable interval can be argued in the conformal unified ‘theory (CUT)' [19, 20] based
on the standard model of fundamental interactions where the Higgs potential is changed
by the Penrose-Chernicov-Tagirov Lagrangian for a scalar field [21]:

The corntent of the paper is the following. In Section 2, we use a model of classxcal
mechanics with the time reparametrization invariance to introduce definitions of all times
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used in the extended and reduced Hamiltonian systems. Section 3 is devoted.to special
relativity to emphasize the main features of relativistic systems with the frame of reference
of an observer. In Section 4, we consider the Friedmann cosmological models of expanding
Universe to find the relation between the evolution parameter in'the reduced Hamiltonian
system and the proper time of the Einstein-Friedmann observer. In Section 5, a dynamical
parameter of evolution is introduced in GR as the global component of the space metric, and
an equation for the proper time in terms of this dynamical parameter is derived. Section
6 is devoted to the construction of conformal invariant theory of fundamental interactions
to analyze similar dynamics of the proper time in this theory.

-2 Classical mechanics -

We consider a reparametrization invariant form of classical mechanics system

. t2 \
- WE b, qi; 0, golt, Nl = /dt (—Poéo + Zpiéi ~ NHE(0, po, @, Pi)) , (1)
1 L '
where
HEg(q0, po, i pi) = [-po + H (pi, ¢:)] @

is the extended Hamiltonian.
. The action (1) was constructed from

’ 90(2)
R
W= [pi, ilgo]) = dqo [Z pi——H (p.,q.)] (3)
g0(1)
by the introduction of a “superfluous” pair of canonical variables (po, go) and the Lagrange
factor (N).
: Tbe reduction of the extended system (1) to (3) means the explicit solution of the
equations for “superfluous” canonical variables and the Lagrange factor

sW .
SN =02 P+ Hpig) =0, " (4)
w =0 = po=0,
i | (5)
W
61)0 =0 = dqo = Ndt =dT. (6)

Equation (4) is a constraint; eq. (5), is the conservation law; and eq. (6) establishes the
relatroh ‘between the evolution parameter of the reduced system (3) and the “Lagrange
time”, which can be defined for any time reparametrization invariant theory with the use
of the Lagrange factor

dT = Ndt.. (7)

The “Lagrange time” is invariant (T'(t') = T(t))s :

In the considered case, these two times, gg and T', are equal to each other due to the
equation for “superfluous” momenta. However, in the following, we shall mainly consider
opp051te cases.

" Here, we would like to emphasize that any trme reparametrxzatron invariant theory
_contains three tlmes

M) the “mathematical time?: (t) (with a zero conjugate Hamiltonian:(4) as a constraint),
this time is not observable, . '
L) the "Lagrange time” T’ (7) constructed with the help of the Lagrange factor,
D) the dynamical “parameter of evolution” of the corresponding reduced system (3), which
coincides in this case with the “superfluous” variable (go).
The last two times are connected by the equatron of motion for the “superfluous”

momentum.
3 Relativistic mechanics

Let us consider the relativistic mechanics with the extended action
we [p,,q,,po,qolt N]= /dt (—poqo+2p' P = —[—P0+Pz + m2]) ~(8)

In this theory, one usually solves the constramt -pi+ P. +m?2=10 w1th respect’ to the
momentum with negative sign in the extended Hamiltonian. As a result we get

W g
3N 0= (Po)i = :!:Wv (9)

so that the conjugate (superﬂuous) variable converts into the evolutlon parameter of the
corresponded, reduced systems descrlbed by the actlons : ’

L Wy [p.,q.lqo] / dgo [ZP:%:F\/P. +m’] o (10)
. . 90(1) : .

v

The latter correspond to two solutions of the constramt
The variation of actlon (8) wrth respect to the “superfluous” momentum po glves :

LT 4o P
0,5 Ty, = gt / dqo———”‘—'—
(90)x = / \/m
On the solutlons of the equatlons of motion (11) represents Lorentz transformatlon of
the proper time go of a particle into the proper time T of an observer T= qO\/l —vZ,
In this theory we have again three times:~ : L
M) the “mathematical t1me” (t) (w1th E zero con_]ugate Hamlltoman asa constramt) th1s ‘
time is not observable,
L) the "Lagrange time” T constructed with the help of the Lagrange factor and grven by
(11); this time coincides with the proper. time of an observer,
D) the dynamical “parameter of evolution” of the corresponding reduced system (10),
Wthh coincides with the proper time of a particle. e : :
In contrast with the mechanical system considered above, the evolutlon parameter (D)

“differs from the “Lagrange .time”. (L) which"coincides with proper time of the Emstem-'
Pomcare observer. The latter is defined as the measurable time mterval in SR...

W dqo + NPo (11.)'

8po | dt



4 Classical and quantum cosmologiéal models

We consider the cosmological model inspired by the Einstein-Hilbert actjon with an elec-
tromagnetic field [2, 3, 5, 6, 7, 8] - :

_ M R(g) S | ‘ »
W = /d4$\/—g [’HTMPI - ZF,‘,,(A)F‘“’(A)] - (12)
If we substitute the Friedmann-Robertson-Walker (FRW) metric with an interval
ds? = g, dztdz” = ad(t)[N2ae? - 15dz'dz?) ; CVR(y%) = % (13)
i . r

0

?nto the action, this system reduces to the set of oscillators. It is described by the action
in the Hamiltonian form [6, 8]

: o
E . _ . 1d . 2,
W= [ps, 455 po, aolt, N, —/dt (—poao + 57 (Poao) + Zj:p;f - N, [—% + hz(ag)]) ,
1
where (14)
ka2
h*(ao) = =32 + Hu(py, f), * (15)
0 A

the variable ag is the scale factor of metric (13), k = +1,0, —1 stands for the closed ﬁat and
open space with the three-dimensional 52 ime
A tonal curvature (6kry*). We kept also the time-surface
term which follows from the initial Hilbert action [6].
The equation of motion for the matter “feld” corresponds to the conservation law

d
s Hm(ps, f)=0. 7 _ . (16)

Let us consider the status of different times (M, L, D) in the>the(‘)ry.
M) The main peculiarity of the considered system (12) is the invariance with respect to
reparametrizations of the initial time : ' .

t— t = t'(1). 17)

IhlS mv'a.rla.nce leads to the enér constrai p
BgY nstraint and oints out tlla.t tlle initial time ¢ is not
B L n

Lg g}heétLagranE: tiime” tF of the extended system (14) coincides with conforrﬁa] time 7 [8]
ol the Einstein-Friedmann observer who moves to i i

gether with the Uni
the “proper time” interval dslyz—o o m'easures

dtp =’ aocht =‘aod7]. ) - ; (18)

D) The reduction of the extended system (14) by resolving the cons‘tl‘aint; gNl =0 with

respect to the momentum with negative sign-in the extended Hamiltonian distinguishes

the scale la.ctox as the dy i 3 »
namical param ter of e luti n of h y '
: £: " € Ol evo. tVO ‘0 the Iedqced S stem : 5, 2, 3, 6].

7 2 - '
. . —Z+h =0 ) : N (19)
has two solutions
e N Py 4

that rorréspond to two actions of the réduced system (likeé in- relativistic ‘mechanics con-
sidered in Section 3). The substitution of (20) into eq. (1) leads to the action- o

ag(2) :
df d . )
”’f[l’pfl‘lo]: / day [Zj:”fm”him(aoh) (1)
. ag(1) 2 )

with the evolution parameter ao. : B oL B
We can see the equation of motion” for “superfluous”-momentum pg of the extended
system (14) o Y )

(SW : dao dag ’
_—= =2— —_—2 29
Spg VT P T =2y, =2 (22)
(together with constraint (20)) establishes the relation between the conformal and proper’
times (18) of the observer and the evolution parameter ag.(similar.to (6) and (11))

ag o . .
ne =1 / dah™':  dty = ao(n)dn. (23)

Those times can be calculated for concrete values of the integral of motion
Hy=E. . . - S (249)

Equation (23) presents the Friedmann law [22] of the evolution of “proper time™ with
respect to the “parameter of evolution” ag. . . . : R Lo
The ezlended system describes the dynamics of the “proper time” of an observer with
respect o the cvolution paramecler. S
This proper time dynamics :ofba‘n observer of the Universe was used by Friedmann [22]
to describe expansion of Universe. This expansion is connected with the Hubble law

Z:M—l:D”Hub(lp)-I-;.." S (25)
-ao(tF) IS » ,

where Hllub(ti‘) is the H_ubBle p‘aramctér and I'is the ‘diétayr»lr;n between !':al:lll and the
cosmic object radiating photoris. - : ‘

“'To reproduce this proper time dyna;ﬁics'tho‘\)ari:il,i.on» prixléii)lo ﬁppliod to'the reduced
system (21) should be added by.the convention about measurable time of an observer (18).
_In particular, to get direct.relation to the observational cosmology (25) of the Wheeler-

DeWitt [23] wave function based on the qu;i‘n'trum ‘constraint ...

: ..2‘ S L e d R :
Po 2 - L oG
x s == v =0; = — L 2(
équatiorf (26) should be added"_by the éonienijon of an observer falik(’r)-ul. the in(fi\xuré\hh‘ time
interval (18)." In this’context, it has been shown [8] that there are the Levi-Civita type
canonical transformations:: [15] of “superflious” variables ~+*" " ’

(po,éo);f’ (u,i?)

for which th'g c»()}ISt‘rgLiﬁA (19) bc%n_[noé lincar -

e My =00 T )
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" The conformal time of the observer coincides with the evolatidn parameter, and the new

reduc on Completely coincides with the conventiona quantum field Lh(}()l\ action of
ed acti t I i
matter fields in the ﬂa.t space ’

n(2)
d, .
Wips, fln) = / dn [;Pféq:liu(m,f)}- (28)
140

In this case, the WDW equation (26) of the y ' '
his X new extended inci iith’
Schrédinger equation of the reduced system (refft) Fystem eolncldes with the

d. o ' ' '
E g Ve 1l) = Ha s (n)). (29)

We can get the spectral iti . I e
ca ’g’ pectral decomposition of the wave function of Universe and anti-Universe

over “in” and “out” solutions and- eigenfunctions ' :
) of the operat i
cigenvalues B (H < BIf om B < Br o) perator Hys with the quantum

o _ iW“’)( ) w4}
=3 [ e < Bl > Bln)of) + V) < ) >'9(—n+)a“’]

5 (out)
- 7 (30)
v_(r-1f) = 3 [0 ) -
)= | < B > 0008 40 < i > o183
o S T e : e RIS
where Wg )(7]) is the energy part of the reduced actions (21)[6,8) " R ( )
(i) e d o
Wg (ne) = / dao [21"‘;17(%11)]:55175‘ e
R T eg(n) B i P R R R o

(+ (5 Lo LA

~+®(in) 1.Q(5yy) -are operators of:creation,and. annihilation: of-the Universe (¥4)-with*the"
conformal time n d g pt-) ‘ or the

7 7(+) an B, B are the ones for th i-Uni i
conformal time 77(—) (23). (":l,),:,, out) Lt pe or’ r»ei aﬁqi};l;l{r}n{qxﬁsg (‘I’—) w1th the .
. lef \;vet ;gc;ll the con\{en@ion (18) of an observer and va:iatjéitﬁ‘é'“;a’\blé‘fﬁ;fctio;l‘(36j w1th
Thi C o;; e proper turyel tr, we get the red shift energy E/aq forming the Hubble law

wave function has simple interpretation, the same time of evolution as in the ciaésica.i

theovrvy, ;md bears direct relation'to the observable red shift. ;
e have got the renormalizable function of the Unjverse, 2 xcluded uporfiuous
i ! ! iverse, as we excluded th
van’al,‘bles fr(_)m the set of variables of the reduced system. ’ ‘ : esperfuous
:To obtain this clear quantum theory, we should use the Einstein-Hilbert action (12)
?

Conf . e - N 0 .« . M
ormal invariant observables, and the Levi-Civita prescription for the Hamiltonian re-

conformal time of an observer.’

“ducti - .
uction, which- leads to the conventional matter. field theory in"the flat:space with the

timeog-(emc,a:h:ay .thtat :hf} Har?iltonfan,}eductionsrevéals the preferer;Cet;f. the conf\orkr‘nalk"
! point of view of th inci : i k
in the Nat spch 25, (8] e pr1nc1pl§‘?f co‘rr’espondepce with quantum field theory

5 General relativity

5.1 Variables

The purpose of the present paper is to analyze the problem of “proper time”. dynamics in
the exact Einstein-Hilbert-Maxwell theory :

WwE(g,4)= /d"zx/,—y [—%—("’R - };Fuu(A)F‘,‘"(A)] ; (# =Mpy5-),  (33)
where Mpj is the Plaﬁck‘ massl , k o ' o o ‘

The initial points of our analysis are the (3 + 1) foliation of the four-dimensional man-
ifold [11] :
(ds)? = g dztds’ = N2t — gPdzide? ; (dz' = do’ + N'di) (34)

and the Lichnerowicz conformal invariant variables [12]

CN= (lgONEN; g = PP (el = 1) s = pllg®IMe (39)

15 1
which are convenient for studying the problem of initial data [1, 9, 10} and the Hamiltonian

dynamics.
With this notation the action (33) reads

. R y . Lyt : . : NI IR » - 7 o
Wy = [ d's [—NC%RW(g°>+aau(Nca“a)—} W(A)F""(A)]. - (3)

In the first order formalism, the action (33} in terms of the variables (34), (35) has the

form

%

WE = [Py, A; Py g, Poyall = [ dt [ & [ >~ PyDof — PuDot - Ncﬂ*'.s] . (37)
. g T = | ’

where - e pr T S e
H= ———f+66—g-+ E’R-l-'HA; (’HA‘= EPE\-FZF-‘_;F'J) R
isrthe Hamiltonian densij;yf R is‘ra three-dimgnsional curv@ture - :

R =RO(g) + sa—172A51/2; Aa= 3.'(gfj6j&)v, - (38)
S is the Sﬁrfécé tefrﬁs of the Hilbért ’::uk:ﬁ(k)n (33), ‘PA,kP;,,'P., aré’}trljle cénonicai <mome.3ntak,
and e :

- ‘ R : 2 B - ’ N - = 2 c
Dot = 85a — 04(N*a) + 380k N* , Dogf; = dogls = ViN; = ViNi+ 3095N SCD)

- DoAi = Bod; — iAo+ FyN? - (40
are the quantities invariant (together with the factor dt) under the kinemetric transforma-’
tions [13] = ST o : ~

£t =) =k - :p"‘ =z, z',2%2%), N = N'.. : (41)
In this théory we also have three “times”: °
M) The invariance of the theory (37) under transformations (41) (in accordance with our--
analysis of the problem in:the previous Sections) means that the “mathematical time” ¢ is

not observable.
7



L) The invariant “Lagrange time” defined by the Lagrangeirfac‘t(')r N,
dT.(z,t) = N.(z,t)dt ' " (42)

S(}incides with the measurable proper time in ADM parametrizati/dn (34) within th;e factor
afp:
dT(z, t)= ds|gz=o = E_(M_ (43)
D) .The dynamical parameter of evolution of the reduced physical sect;)r as “supérﬂuous”
vatiable of the f.sxtended system (37) - a generalization of scale factor ag in cosmology.
For. the choice of the “superfluous” variable.in GR we use’ the results of papers [13]
where it has been shown that the space scale a(Z,t) contains the global factor (ao(t))

i(z,1) = ag(t)A(z, 1) : (44)

which depends (?nly on time and it does not convert into a constant with any choice of the
reference frame in the class of kinemetric transformations, where we impose the constraint

/ BrA(z, t)w =0 - (45)

which diagonalizes the kinetic term of the action (37).

The new variables (44) require the corresponding momenta P, and Py. We define
decomposition of P, over the new momenta Fy and P, ) |

. A . : ’
a = — —_ . 3 -
ot POchd"z—fvi’ </ &*zA(z,t) P\ = 0), . (46)

so that to get the conventional canonical structure for the new variables:
I3 3 _ _ . _ _ ‘ :
/ &z(P,Doa) = a, / P2, + g / 2P, DA % 40P, + / PzPDoX.  (47)

The substitution of (46) into the Hamiltoni i | »
onian part of the actio: 7) e «
fluous” momentum torpn . p Hheact n (3) ext'racts the “super-

2 ~1
CoNPE=r} | [ il R [@=n.rp '
/ PR a4 [denat, (48)

Finally, the extended actjon (37) acquires the structure of the,éxtended cosmological model

(14)

WE[P,, f; Py, aolt] = }’dt([jd?z ) P,Dng—izoPo

I=9c:A,A .
: : o (49)
p2 -1 . X
+3 [ 2] - fd"’ch'Hp) A
Where HF is the Hamiltonjan H without the “superfluous” momentum part: -
.— 1 P/\z PyZ R ‘2,\2‘ - ) S )
’HF—E[—T-FGF +‘1.0FR'?'7‘{A-7 7 o (50)

For simplicity we neglect the space-surface term.

P ‘ 8

5.2  Reduction -

Now we can eliminate the “superflucus” variables ag, Py resolving the constraint

‘ W B ' A? <
/d:’z!\\/cm::' 0= TO = (/ d3ch'Hp) (/‘d%i) (51)

with respect to the momentum Fp. This equation has two solutions that correspond to
two reduced systems with the actions o

e g, 2]
WE(Py, flag) = / dﬂo[ > PiDaf ﬂF(/ du’Nf”Fr)' (/ da’i) )] 52)

ae(1) I=2gc.4

“with the parameter of evolution ap, where

Dof =1L o - (53)
is the covariant derivative with the new shift vector N!‘ and vector field A, which differ
from the old ones, in (39), by the factor (ag)~!. :

The local equations of motion of systems (52) reproduce the invariant sector of the
initial extended system and determine the evolution of all variables (P, f} with respect to

the parameter ag _ .
- (Pr(z0), [(z,0),..) o (Pf(?va'o)»f(r,ao)',-'--)- R )

The actions (52) are invariant under the transformations Nc(z;l) — N!I=[()N. lnother
words, the lapse function ‘Nc(z,t) can be determined up 1o the global factor depending on

time:

N =NONED. )

This meaxis that the reduced sysicm looses the. global part of -the lapse function which
forms the global time of an observer ' AT . T

S Nodt=dn; () =n(t)) (56)
like the reduced action of the cosinological model lost the lapse function which forms the
conformal time of the Friedmann observer of the evolution of the Universe considered in
the previous Section). o )

We call quantity (56) the global’conformal time. We can'define the global lapse function
No(t) using the second integral in'eq. (51) o L

e Cotara e oA e g 7'7 i ~ :
S S T e Bror 2 o : : E . i
ST /d Nowme o o

where_ld';xs ‘the ct_)ristany‘t;vvhichk can beé choson ‘so that N(z;t) and A(r,7) inthe Newton
approximation have the form : B R :

‘v_/,\:f(z,l)’-;-:fl;-l-lsﬁj(f)"*""; : 7‘A(£-;i):;ki(]v+5:\(x)-;...‘ ey

. w.where 85, 8x(z) are the potentials of the Newton gravity. - -




5.3 The proper time dynamics

To research the evolution-of the system with respect to the global conformal time of an
-observer (56) we shall use the short notation

/d%NJ{F = lgNohz(ao) =IlyNg [_g +h%+ a(,r-?} , (59)

where k and T2 correspond to the kinetic and potentlal parts ofthe gravrton Hamlltoman
in eq. (00) h% is the electromagnetic Hamiltonian.- : :
The equations -for_superfluous variables Py, ag and global lapse functlon (wluch are B
omitted by the reduced actlon (52)) have the form : . : :
o

6WE—0=>P’—1~dh2(a) (f’—d’f)k"‘“ i (fill
Sag. T 0T Pdgg 1HOD Tdnlh RS
' SWE B o
R T e S
These equatrons lead to the conservatlon law B
: : k2 ) T <
..( Lo ey -0 o

and to the Fnedmann like' evolutxon of global conformal tlme of an vbserver (56)

a0

;m)(au = i’:r/ st

olutron ofthe reduced system of ¢ equatlons
g (54) as functions of the parameter of evolution ag’-To get th1s equatrons, we should change
" in'eq. (52); Ne.by M(z,t).(as we discussed above). - B g
The conservatlon law (63) allows us to verlfy that the red shlft and the Hubble law for
_our observer+:’; .

The mtegral (64) can be computed fwe know

reproduce the evolutlon of the Umverse in the standard cosmologlcal models (with the
FRW metrics); if we suppose the domlnance of the kinetic part of the Hamlltonlan or the
potential one; in accordance with the ao‘dependence of.this Hamrltonran ; :
i In.the first case (k2 #£0;hp =T ~1'=0), we get the Misner anrsotroplc model [5], in’
the second case, the Universe filled with radiation (k3 =0;hgp #0;T! # 0). In both the .
cases, the quantities (k4; hp, T’ l) play the role of conserved lntegrals of motlon WlllCll are
constants on: solutxons of the local equatlons ’ ; - : .
The Lagrange trme drﬂ‘erentral (42) is T

(66)

" In the quantum theory, the 1ntegrals of motron become‘conserved quantum numbers (m
acrordance wrth the correspondence prmcxple) Each term of the spectral decomposrtlon

10

S ﬁelds respectlvely

of the wave function over quantum numbers can be expressed in terms of the proper time
of an observer to d1stmgu1sh “in” and “out” states of the Universe and anti-Universe with
the corresponding Hubble laws (87)

Attempts [8] to include an observer into the reduced scheme (by the Lev1—C1v1ta canon-
ical transformation [15; 16, 17] of the extended system variables to the new ones for which
the new- “superfluous” variable coincides with the proper tlme) show that the conformal
time and space observables are more preferable than: proper time and space.:The confor-
mal time leads, in the flat space limit, to the quantum field theory action [6] and does not
violate causality [18] (in contrast with the.proper one). The conformal space interval does
not contain singularity at the beginning of time [6, 7, 8]. In the next Section we try to
remove these defects changing only the conventlon of mea.surable 1ntervals and keeping the
phys1cs of the reduced system unv1olated

6 Conformal Un1ﬁed Theory (CUT)

6.1 The formulatlon of the theory

Our observer in his (3+1) parametrlzatlon of ‘metric ‘can see that the Emsteln Hilbert
theory, in terms of the Lichnerowicz conformal invariant variables (35), completely coincides
with the conformal invariant theory.of the Penrose—Chernlcov—Taglrov (PCT) scalar field
w1th the action (except the s1gn)

\/_ —R(4)(y)+<1>3 (\/_ 3“<I>)] (67)

1f we express th1s actlon also in terms of the L1chnerow1cz conformal 1nvar1ant varlables

4—II.¢J(3’I"""<I> y,[—lly(‘”ll ‘/3guu,\/—y N (68)

From (67) we get the actlon T

- WPCT[%,y )= /d4 [ (pCR(4)(yC) "l“Pca (N au(pc):l T (69)

whlch c01nc1des wrth the Elnstem action (36) if we repla.ce a w1th pc. However, in contrast
with the Einstein theory, the observables in PCT theory are conformal-lnvanant quantltles
in partlcular an observer measures the conformal mva.rlanl. 1nterval

(ds)2 gm, z.“dz = det2 - (3)cdz’dzJ : ‘ (70)

with'the conformal tlme r] and the conserved volume of the conformal mvanant space (as

o =1. "
Followrng refs [24 19 20 25], we can 1dent1fy the PCT-scalar ﬁeld w1th the modulus of

,the Higgs dublet and add the matter fields as the conformal mva.rlant part of the standard :

model (SM) for strong and electroweak interactions w1th the a.ctlon
WSM[m,n Vil = [ & d'z (£5 + N el + 7B - aebd) @

where ESM is the scalar ﬁeld free part of SM expr%sed in. terms of the conformal invariant
varlables of the type of (68) [20], B and F are, tlle mass terms ‘of the boson and fermion -

B=DuDW P G bhe
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| 'I‘;heyca.ln be e'xprcxsscd kin terms of the physical fields (V?,%2), in rhe unitary gauge,
o et . B= Vp}“,uvp cF= J)PX‘GH'IIZ . ' ; (73)

’ nrch a.psorb the angular components (n) of scalar fields (here Yij, X.p are the matrices
w

f coupling constants).
0 .W:ha,ve introduced the rescaled scalar field @y,

PHe = XPe (74)

in order to ensure a correspondence with ordina.ry SM notation. The rescaling .fa.ct'or xl
must be regarded as a new coupling constant which coordinates weak and gra.vrt.atxonaf
scales [19]. (The value of x is very small number of order of —l'L where m.,, is the mass o

k boson W.
Wea.The conforn)la.lly invariant unified theory (CUT) of all fundamental interactions

WOUT[$,, VP, 4P, g = WFPCT[4,, g] + WSM[g,, VP, yP, gc] (75)

does not contain, in the Lagrangian, any dimensional parameters.

6.2 Reduction

We can apply, to CUT, the analysis of the notions of “times ” in the previous ?ec;lonst.ric

The scalar field in CUT acquires the feature of the scale factor componen dof methe
with the negative kinetic energy and the evolution parameter gg can be extracted from
scalar field. It is convenient to use for globa.l component the denotations

eelet) = poltlale, ) N=NoON(z,t) (76)

so that the expression for the extended action has the form

17 . P
WOUT (P, f; By, golt) = / ( / &z 3 PyDof — Poo— No [ it H][‘Po]])
L ’

=a,gc,F
f=a,9:,Fspm (77)
where Fgpy is the set of the SM ﬁelds, ‘ |
e s a
Hj[po] = /dsINH(P/,L ¥o) = hZ‘UT(‘PO)VO: Vo= /d T— (78)

is the Hamiltonjan of the local degrees of freedom, the Newton perturbation theory for
‘a, N begins from unit (a=14::.; N '=1+...), (the time-surface term is omitted).
The reduction means that we consider the extended a.cAtlon (77) onto the constramt

JL =0. = (Po)i =42 VOH]- ) . (79)
The reduced action
wa=po(t2) . 7 ) »
WE(Py, flgo) = dcpo‘{'(/,dszZPwaf F2/Voll; - (80)
‘ ¢1‘=jpo(ln) R o B

is completed by the proper time dynamics.

'
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_(cosmologlcal global) a.nd sma]l (ldboratorv - loml) pdrl\

6.3 The proper time dynamics

The equations cf global dynamics (which are omitted: by the reduced action (80)) have Lhe

form_ swE. o ‘
=0= (PO):t = iZVohcur(w) (81)
JN
SWE d ., , d - ’
3o S0 ,Pé = ‘.’oahcur(w), (f = d—q'f)' S (82)
SWE doo\ - (Po)s ) _
oh 0= (dﬂ ) Wy = :i:hCUT(%) - (83)

where the effective Ha.mlltoma.n densnty functrona.l has the l'orm

,k N .
hCUT =—5+ hR +I‘1- 9’0 + I‘BZS@O + AS«o Voo (84)

in correspondence with the new terms in the CUT action:

These equations lead to the Friedmann-like evolutlon of g]obal conformdl time of an
observer

(o) = / debghr(e), (#5)
0 . i
and to the conserva.tlon law -+
(kz) S .
oot + (h3)’ +(I‘F)‘P0+(F )<Po +(A) =0 , (86)

The red shift and the Hubble law in the conl'ormal time version

‘Z(Dc)?‘% 1 Dcllnui,; . “ i = (7]) (Zla«u( ). (87)
reflects the alteration of size of atoms i in“the process of evolut|on of massos '[2() 8].

"In the dependence on the value of @, there is dominance of the kinetic or the potential
pa.rt of the Hamiltonian (84), (86) and. different stages of evolution of the Universe (85) can
appear: amsotroplc (k%-# 0). and radiation (b% # 0) (at the b(\gmmng of lho Anl\(‘r\(‘)
dust (g} #; T'3?) and De-Sitter A #0 (at the prcsent trmc)

“In perturbatron theory, the factor a(z,t) =" (146, ) r(\pres(\ms ‘the polon!ml of the
Newton gravity (6 )- Therefore, the Higgs-1’CT field, in this model, has i no particle-like
excitations (as it was predicted in paper [19]). Let us show that-the scalar ficld as a function

“of the proper tlme (77) (85) glves the Newton couplmg constdnt dl pr(‘son! hme 1/(;. )

6 4 Cosmlc Hrggs vacuum =

Let us show that'valye of the scdlar hcld in Cl’l is dot('rmmod hy lh(‘ pr(‘\(‘nl state of the
Universe with obst‘rvatlonal density of matter Pin d.l]d the Nubble parameter .

For an observer, who is living in the Universe, a staie of “vacunm™ is thie’ State of the
Universe at present time: IUmvrrsr’ >= |Lab.vaeuum >, as hh unlf'(‘(l llwor\ pr('
dcscnbe both observational cosmology and any laboratory oxporunonls

JIn correspondence with this definition, the Hamiltomian (18) mn bo

tends to

splitinto the large

”/[990] = PUnVo + (”/ = pun Vu) = /’l'n(‘p’())vu + ", (8N)

3t




’where the global part of the Hamiltonian pyn(¢0)Vo can: be deﬁ“ﬁ‘f‘ as tl?e *Universe”

averaging . .
8 < Universe|H¢|Universe >= pynVo, : (89)

so that the “Universe” averaging of the local part of Hamiltonian (88) is equal to zero
< Universe|Hy|Universe >= 0. (90)

Let us suppose that the local dynamics (Hr) can be neglected if we consider the cos-
mological sector of the proper time dynamics (60), (61), (62)

swE = 2Woy/ 5£~2v¢——+~l@—+o(i) (91)
3N, =0. = po =2Voy/pun+ Ve = Vo pUn - N Vo

8Py dn /4 a Vo

The evolution of the proper time of an observer with respect to the evolution parameter .

o determines the Hubble “constantf’

1 dp(no) _ Voun(va) 93
HHub_%(flo) de @olmo) 9

The last equality follows from eq.(92) and gives the relation between the present-day value
of scalar field and the cosmological observatrions:

9’(7] = 7’0) = HHub(’IO) .
If pyn = per, where ) : ' ) o
: ' _ 3HE  Mpy , v (95)
Por = =g " :

as it is expected in the observational cosmology. The substitution of (95;) into (94) leads
to the value of scalar field .. ... . s

@(n=10) =:MP1\/—83;1’ . | I '(96)’

what corresponds to the Newton law of gravity.-

6.5 The dust Universe L
" The pfeseﬁt-day Universe is filled ivn by. matter with’the equation of sta.tf': of !;he .dust at
rest. This means the “vacuum” averaging of the mass term in the SM Hamiltonian is equal
" to the mass of the Universe Mp, while other terms can be ngglec‘Lgd_: L

_ . . odel \
puaVo = wo(n) < Univ.| /-dszNaybaXaﬁl/Jﬂ'U"w- >= Mp = wo(n) < mb >7 VO( (97)

where < ny > Vis the conserved integ’ral of motion’.w In this case,rthe proper’time dynamics

is described by eq. (92) with the density .

pualpo) =po <> = pe<m . - (98)

dn
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- : 1 .
6WD=0.:> (%{) =4 Hy pun+%=\/m+o(vo>. (92)
(] .

We get the evolution law for a scalar field

2 -

polm) =T <m> (99)
and the Hubble parameter Hpry(n)
H = —— =, 100
Hub .(PO dr] 7 ( : )
The barion density
. - R X . 3 3H2 M2 -
b = Sopun;- (pun = ’g‘; ) (101)

is estimated from experimental data on luminous matter (0 = 0.01), the flat rotation
curves of spiral galaxies (2 = 0.1) and others data [27]. (0.1 < 9 <-2).

We should also take into account that these observations reflect the density at the time
of radiation of a light from cosmic objects Q(no — distance/c) which was less than at the
present-day density Q(no) = Q¢ due'to increasing mass of matter. This effect of retardation
can be roughly estimated by the averaging of Q(n — distance/¢) over distances (or proper
time) I '

7082

) -

Of dnf(n)
For the dust stage the coefficient of the increaseis 04 =3 Finally, we get the ljelé:tiqn ny
the cosmic value of the Planck “constant” and the GRone “~% = T e

Pn=m) fr e—— T
‘ e (MR 3 _UV’YQO("VW),/,, = wo, N TP (103),
where h=04— lis obs‘éfva.tibqé.l ch‘)’lifrids‘_ fdrjﬁe Hubbyblé' /pa:;éigc_étéxrg R e
‘From data on Qg we can estimate wo: wp = 0.04 (luminous matter), wo = 0.4 (flat,

rotation curves of spiral galaxies), and 0.4 < Q<9 (Qt_h.é‘rg data [27]) for lower values of
ho(h==0.4), e T e T R R TR

v= (102)

6.6 .The local field theory, .. - L : _
As'We have seen in cosmological models there is a Levi-Civita canonical transformation to..
new variables for, which the “Lagrange time” coincides with the evolution parameter and
the extended system converts into a conventional field theory. In general case it is difficult. .
to find the exact form of this LC transformation. However we can: proof the equivalence -
of "our”}:educed system with conventional field theory with meésuré.ble -conformal time.in

next ‘order of the expansion in Vy .- the inverse volume of the system . .

_The next order of the decomposition of (80). over. V571, déﬁnes,th_e ac‘tioh'f'dr‘.ioéai
excitations' e : g ; T S
O _ o [ D0 o N
Podipo = 2Vor/ pun(@o)d@o + Hy (@0 -——_—-}—o(—) et o (104)
Pt e e o) o
wl{e;e Pun(tpo) 1s ».dgte:nhi‘p‘éd by the global equation (93),and " ;.%o : : :
g e
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: i ion (80) in the loWésf'order in V(,"1 (91)
i dance with eq.(92). The reduced action (80) in ) in |
;:nasaflcx:rfo?m of conventional field theory without the global time-reparametrization group

mmetry _ _ .
i Wiy (pr, f1@o) = W (@0) + Wi (v, f120) (106)

W (ps, fl#0) -—-’!drz (/d"z %:P/an.—HL(P/»ﬂ‘ﬁ('l)))- (107)

Really, an observer is using the action for description of laboratory experiments in a very
small i’nterva.l of time in the comparison with the lifetime of the Universe ng

o
m=m-&m=mn+§; {0, ~ (108)

a.nii induring this time-interval g(n) can be considered as the constant

. N 3 5 N
wo(to + ) & po(m0) = Mpyf - _ (109)
I;l t;his case we got the o—model version of the standard model [19].

7" Conclusion

In the paper we discussed the status of measurable interval of !;ime — “proper tim.e” m'the
scheme of the Hamiltonian reduction of GR and conformal unified theory (CUT) invariant
i eneral coordinate transformations. = )
wn}’ll‘ll-::pi(;c\:a.:(i)aice means that GR and CUT represent an extended syste‘ms (ES) _th'h
constraints and “superfluous” variables. To separate the physical sector of invariant vari-
ables and observables from parameters of general coordinate tra:nsformatlons, one needs the
procedure of the Ha.miltoniar'lkredu‘ction which leads to an equivalent unconstra.m.t system

where one of “superfluous” variables becomes the dynamiczf.l para.meten: of evo!utlon_. »

- We'have pointed out this “superfluous” variable for considered the.ones (which cqnve‘:rts
into the evolution parameter of the reduced system) using the experience of cosmological
models and the Lichnerowich conformal invariant variables. .

The dynamics of proper time of an observer with respect to the evolutlon”pa.ra.m(.eter
of the reduced system is described by the equatior} of ES fgr the “superﬂuous canonical
momentum. ‘ ) ’ )

~Just this “superfluous” equation of ES ‘determines the':“red shift” and Hubble law in-

cosmological models, GR, and CUT. To reproduce the Hubble law in quantum theory, the

- reduced scheme of quantization of GR and cosmology should be added by the convention of.

- an observer about measurable time interval. Normalizability of a wave function is achieved
by removing the “superfluous” variable from the set of variablgg of the reducefi system.
--From the point of view of the principles of causality and correspondence-with the field
theory in the flat space the considered Ha.miklponia.n’ reduction of GR prefers to treat the
conformal time as measurable. L )

We formulated the conformal invariant theory of fundamental interactions where an_

observer measures the conformal time and space intervals. This theory unifies gravit?.tion
with the standard model for strong and electroweak interactions and has no any dimensu.)r}al
parameters in the Lagrangian. In fact, in practice; only the ratios of dime1351onal <.]ua.nt1t1es
are the subject of experimental tests. Roughly speaking Pla.nck‘kmass is nothing -but a
multiplicity of the proton mass. S

e

16 -

= [13) l;crvﬁshirl VF.'N.,’Smjricllin:s‘ki V.

We described the mechanism of appearance of mass scale using as the example the
dust stage of the evolution of the Universe and have shown that the value of scalar field
at present time can be determined by the'cbsmological data: density of matter and the
Hubble constant expressed in terms of the Planck mass.”
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