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1 Introduction 

The notion of "time", in general relativity, is many-sided [I, 2, 3]. 
General relativity is invariant with respect to general coordinate transformations in

cluding the reparametrizations of the "initial time-coordinate" t f--t t' = t'(t). 
The Einstein observer, in GR, measures the proper time as the invariant geometrical 

interval. · 
The Hamiltonian reduction [1] of cosmological models inspired by GR (1, 2, 3] reveals 

the internal dynamical "parameter of evolution " of the Dirac invariant secto~ of physical 
variables [4, 5, 6, 7, 8]. In cosmological models this "evolution parameter" is the c~smic 
scale variable, and the relation between an invariant geometrical interval and dynamical 
"evolution parameter" (the "proper time" dynamics) describes data of the observational 
cosmology (the red shift and Hubble law). 

In this paper we would like to generalize the Hamiltonian reduction with internal 
evolution parameter to the case of field theories of gravity. 

For researching the problem of "time" in a theory with the general coordinate trans
formations [1], one conventionally uses [9, 10] the Dirac-ADM parametrization of the 
metric [11] and the Lichnerowicz conformal invariant variables (12] constructed with the 
help of the scale factor (i.e. the determinant of the space metric). 

The Dirac-ADM parametrization is the invariant under the group of kinemetric trans
formations. The ·latter contains the global subgroup of the reparameterization of time 
t f--t t' = t'(t). The Hamiltonian reduction of such the time-reparametrization invariant 
mechanical systems is accompanied by the conversion of one of the initial dynamical vari
ables into parameter of evolution of the corresponding reduced systems. York and Kuchar 
[9, 10] pointed out that such variable in GR (which is converted in the evolution parameter) 
can be proportional to the trace of the second form. 

In the contrast with [9, 10], we suppose that the second .form can be decomposed on 
both global excitation and local one. · 

The ADM-metric and the Lichnerowicz conformal invariant variables allow us (13, 14] 
to extract this evolution parameter of the reduced system, in GR, as the global component 
of the scale factor. . 

The main difficulty of the Hamiltonian reduction in GR is the necessity of separation 
of parameters of general coordinate transformations from invariant physical variables and 
from quantities including the parameter of evolution and proper time. 

Recently, this separation was fulfilled in the cosmological Friedmann models [7, 8] 
with the use of the Levi-Civita canonical transformation (15, 16, 17], which allows o_ne 
to establish direct relations between the Dirac observables' of the generalized Hamiltonian 
approach and the Friedmann ones in the observational cosmology (the red shift and the 
Hubble law) expressed in t~rms of the proper time. · 

It has been shown that in this way one can construct the normalizable wave function 
of the Universe so that the variation of this function under the proper time leads to the 
"red shift" measu·red in observational cosmology [8]. 

We show that the Hamiltonian reduction of GR distinguishes the conformal time as 
more preferable than the proper time from the point of view of the correspondence principle 
and causality (18]. The usage of the conformal time (instead of the proper one) as a 
measurable interval can be argued in the conformal unified tbeary (CUT) [19, 20] based 
on the standard model.of fundamental interactions where the Higgs potential is changed 
by the Penrose-Chernico,v-Tagirov Lagrangian for a scalar field [21]. 

The coritent o(the paper is the following. In Section 2, we use a model of classical 
mechanics with the time reparametrization invariance to introduce definitions of all times 

~
-[~~·-:. ,~., ., ....... I 

• .J ..,, ·'".,. ·l_ •• ~.l i., ••• a!ji ~ 
f'f•l''j.·'"''J"t' J1 ,., ...... .,fi.~•:"t ·"" Ill c ... -'···'~·:···. ~_r.. .... "'""'""'.t'" 1'. 

~ 5t1SH!,!0TSH.~-\ t 
~~ ~.--



used in the extended and reduced Hamiltonian systems. Section 3 is devoted. to special 
relativity to emphasize the main features of relativistic systems with the frame of reference 
of an observer. In Section 4, we consider the Friedmann cosmological models of expanding 
Universe to find the relation between the evolution parameter in'the reduced Hamiltonian 
system and the proper time of the Einstein-Friedmann observer. In Section 5, a dynamical 
parameter of evolution is introduced in GRas the global component of the space metric, and 
an equation for the proper time in terms of this dynamical parameter is derived. Section 
6 is devoted to the construction of conformal invariant theory of fundamental interactions 
to analyze similar dynamics of the proper time in this theory. 

2 Classical mechanics •' 

We consider a reparametrization invariant form of classical mechanics system 

12 ( ) • 
wE[p;,q;;po,qo!t,N] =I dt -patio+ ~Pitii- NHs(qo,po,q;,p;) > 

where 
Hs(qo,po,q;,p;) = [-po + H(p;, q;}] 

is the extended Hamiltonian. 
The action (1) was constructed from 

· qo(2) 

R J [ dq; ] W [p;,q;lqo] = dqo ~Pidqo- H(p;,q;) 

qo(l) ' 

(1) 

(2) 

(3) 

by the introduction of a "superfluous" pair of canonical variables (p0 , q0) and the Lagrange 
factor (N). 

The reduction of the extended system (1) to (3) means the explicit solution of the 
equations for "superfluous" canonical variables and the Lagrange factor 

ow 
oN = 0 =* -Po+ H(p;, q;) = 0, 

ow -.---- = 0 =? Po = 0, 
uqo 

ow 
opo = 0 =? dqo = N dt := dT. 

(4) 

(5) 

(6) 

Equation (4) is a constraint; eq. (5), is the conservation law; and eq. (6) establishes the 
relation 'between the evolution parameter of the reduced system (3) and the "Lagrange 
time", which can be defined for any time reparametrization invariant theory with the use 
of the Lagrange factor 

dT= Ndt. (7) 

The "Lagrange time" is invariant (T(t') = T(t))~ 
In the considered case, these two times, q0 and T, are equal to each other due to the 

equation for "superfluous" momenta. However, in the following, we shall mainly consider 
opposite cases. 

· Here, we would like to emphasize that any time reparametrization invariant theory 
, contains three times: . 
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M) the "mathematical time'! (t) (with a zero conjugate Hamiltonian (4) as a co~straint), 
this tim~ is not observ~ble, · ' · · · ' . . . . 
L) the "Lagrange time" T, (7) constructed with the help of the Lagrange factor, 
D) the dynamical "parameter of evolution" of the corresponding reduced system (3), which 
coincides in this case with the "superfluous" variable (qo). 

The last two times are connected by the equation of motion for the "superfluous" 
mome~um. · 

3 Relativistic mechanics 
Let us consider the relativistic mechanics with the' extended action 

t2 --

ivE[p;,q;;po,qo!t,N] = j dt (-patio+ :EP;ti;- ~[-p5+P~ +m2
]). (8) 

t, • 

In this theory, one usually solves the constraint -P5 + p; +. m 2 = 0 with respect to the 
momentum with negative sign in the extended Hamiltonian. As a result we get 

ow ~ 
oN =0 '* (po)±=±yp;+m2, 

' (9) 

so that the conjugate (superfluous) variable converts into the evolution parameter of the 
corresponded. redu'ced systems described by the actions: 

, qo(2) [ . . ] 

w{J,J (p;, q;l~o] = f dqo ~ Pitii =f ,jp; +m2 
• 

qo(l) 1 

(10) 

The latter correspond to two solutions of the constraint. 
The variation of action (8) with respect to the "superfluous". momentum Po gives 

, -·. . . , . • . qo 

oW dqo Po : 'j · .m · 8 = -y + N- = 0,::? T(qo)± = ± dqo ~· (ll) 
Po t m o yP;+m2 

On the solutions of the equations of motion (ll) represents Lorentz transformation of 
the proper time q0 of a particle into the proper time'T of an observer: T = qoV1 :- v2

• 

In this theory we have again three times: · . . 
M) the "mathematical time" (t) (wit~ a zero conjugate Hamiltonian as a constraint),.this 
time is not observable, . . ' ' 
L) the "Lagrange time" T constructed with the help of the Lagrang~ factor and 'given by 
(ll); this time coincides with the pr(Jper time of an observer, 
D) the dynamical "parameter Ol evolution". of the corresponding reduced system (10), 
which coincides with the proper time of a particle. · 

In contrast with the mechanical system considered above, the evolution parameter (D) 
differs from the "Lagrange time" (L} which coincides with proper time of the Einstein
Poincare observer. The latter is defined as the measurable time interval in SR. 
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4 Classical and quantum cosmological models 

We consider the cosmological model inspired by the Einstein-Hilbert action with an elec
tromagnetic field [2, 3, 5, 6, 7, 8] 

W = rJ:IxFg ---Mp1 - -Fp~(A)F~"~(A) . I [ (4lR(g) 2 I ] 
16rr 4 (12) 

If we substitute the Friedmann-Robertson-Walker (FRW) metric with an interval 

ds
2 = gp~dx~"dx~ = a~(t)[NJdt2 - -y[idxidxi]; (J) R(-yc) = 6; 

. ro (13) 

into the action, this system reduces to the s;t of oscillators. It is described by the action 
in the Hamiltonian form [6, 8] 

wE [pf>qj;po, ao,lt, Nc] = J dt (-polio+ ~ft(Poao) + LPd- Nc [-~5 + h2 (ao) ]) , 
t, f 

where (14) 

2 ka5 
h (ao) = --2 + HM(PI> /}, • (15) 

ro 

the variable a0 is the scale factor of metric (13}, k =+I, 0,-1 stands for the closed, flat and 
open space with the three-dimensional curvature (6kr02). We kept also the time-surface 
term which follows from the initial Hilbert action [6]. 

The equation of motion for the matter "field" corresponds to the conservation law 

d 
djHM(PI> f)= 0. (16) 

Let us consider the status of different times (M, L, D) in the theory. 
M) The main peculiarity of the considered system (12) is the invaria!Jce with respect to 
reparametrizations of the initial time 

t >-t t' = t'(t). (17) 

This invariance leads to the energy constraint and points out that the initial time t is not 
observable. 

L) The "Lagrange time" IF of the extended system (14) coincides with conformal time 11 [8] 
of the Einstein-Friedmann observer who moves together with the Universe and measures 
the "JJ_roper time" interval dsldx=O 

dtF =: aoNcdt = aod1J. (18) 

D) The reduction of the extended system (14) by resolving the constraint Br;;. = 0 with 
respect to the momentum with negative sign in the extended Hamiltonian distinguishes 
the scale factor as the dynamical parameter of evolution of the reduced system [5, 2, 3, 6]. 

The constraint 

has two solutions 

2 
_Po +h2 = 0 

4 

(Po)±= ±2h 

(19) 

(20) 

-I 

that correspond to two actions of the reduced system (like in· relati\·istir mf:'chanirs con
sidered in Sf:'ction 3). The substitution of (20) into eq. (1-1) leads to tlw action 

ao(2) [ ] 

w:f[pJ,flao]= I dau LPJ:~o=t=2h±d~o(aoh) 
ao(l) f 

(21) 

with the evolution parameter a0 • 

\Ve can sec the equation of motion" for "superfluous" 
system (14) 

momentum ]Jo of tlw ext<>"nded 

8W dao dao 1 - = 0 => Po = 2-- = 2- = 2a 
8po Ndt dTJ 

(22) 

(together with constraint (20)) establishes the relation between the conformal and proper 
times (18) of the observer and theev'~lution parameter a0 ;(similar to (6) and (11)) 

TJ± = ±] dah- 1
: 

0 

dtF = ao(TJ)dTJ. 

Those times can be calculated for concrete values of the integral of motion 

liM= Ec. 

(2:1) 

(2-1) 

Equation (23) presents the Friedmann law [22] of the evolution of "prop!'r tina'" with 
respect to the "parameter of evolution" a0 • 

The extended system describes the dynamic.< of the "proper limen of au ob,,nTa with 
respect to the evolution paromcter. 

This proper time dynamics of a'i! observer of the Universe wa.~ us!'d by Fri!'dmann [22] 
to describe expansion of Universe. This expansion is connect!'d with thP llubbl!' law 

ao(tF- D) 
Z = ( ) - I~ Dlluub(tp) + ... 

·ao tp _ · . 
(25) 

where Huub(tp) is the Hubble parameter and iJ is the distinre b!'twe<'n Earth l111d th<' 
cosmic object radiating photoris. , , , 

To reproduce this proper time dynamics· thl'·variation principl<' appliPd to' till' rPdun•d 
system (21)should be added by the convention about me~urable limP of an ohsNYI'r (Ill). 

In particular; to get dired..relation tothe observational cosmolog~' (2:>) ofthP \\"hPPIPr
DeWitt [23] wave function based on th? quan.turn ·constraint 

. - - . 

,:[ fi2 . '] . / .(. • d .) 
. ,; - 4° + h2 ll1wvw(aulf) = 0; Po= -:--d . 

• t: __ · , . t n0 ·-: L. - ,.. . ,· -_ .. ·-: : 

(2!i) 

equation' (26) should be added by tlJe ~OllVention of an observer about I hi' llH'aStirahh• tim<' 
interval (18). In this context, it has been shown [8] that thPr<' a-r!' thP LP~i-Ci\·ita typP 
canm1ical.transformations: [15] of -"supcrfiiwus" variables · · · · 

(Po, ao) -:t (II, 11) 

for which the ro-nst'raint (lll) beco~n!'s linear 

-II+ 11,., = 0. (:!1) 
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The conformal time of the observer coincides with the evolution parameter, and the new 
reduced action completely coincides with the conventional quantum field theory action of 
matter fields in the flat space 

~(2) [ ] 
Wf(pf, fi7J] = J d7] L PJ% 'fHM(PJ,f) . 

~(1) I 
(:.!8) 

In this case, the WDW equation (26) of the new extended system coincides with the 
Schri:idinger equation of the reduced system (refft) 

d . 
±-:--d W±(7Jif} = HMW±(7JIJ). 

t 7] (29) 

\Ve can get the spectral decomposition of the wave function of Universe and anti-Universe 
over "in" and "out" solutions and eigenfunctions of the operator HM with the quantum 
eigenvalues E (HM <Elf>= E <Elf>) ' 

[ 
. - (+) ( ) . - (+) ( ) ] 

>l1+(7J+If) = "£ e'WE <~+)<Elf> 0(7J+)a11;,) + e-•Ws <~+)<Elf>* 0(-7J+)a
1
;ut) 

E . . . . 
' ~~ 

1IJ_(7J-If} = "£ (e;w1-l<~-l <Elf> 0(7J-)I{;,!t) + e-iW1-l<~-l <Elf>* 0(-7J-)fi~1;.~], 
E 

wh~re w~±) (7]) is the ~nergy part of the reduced actions (21) [6,' 8] 
(31) ' 

ao(2) 

W~±)(7J±) = 'f f dao [2h- d~o (aoh)J := E7J-J;··. 
ao(l) ' · 

' (32) 

. a~:f")), a~-)t) are operators oCcreation,and annihilation.of-the Universe (>ll+) with··the 

co~nform:lu time 7J(+) and jj~~~ 1 Pf;,!t) are the ones f~r ~h~ a~ti7U:niv10rse (>ll-) with the 
conformal time 7J(-) (23).' ·· '' · · · " · . . . · .· 

If we recall the convention ( 18) of an observer and variate' the Wave'function {30) with 
respect to the proper time tF, we get .the red shift energy E/aoforining' the Hubble law. 
This wave function has simple interpretation, the same time of evohltion 'a.S in the classical 
theory, and bPars direct relation to the Observable nid shift. 

We have got the renormalizable function of the Universe,~ we ex~luded the superfluous 
variables from the set of variables of the reduced system. 

,To obtain this clear quantum theory, we should use the Einstein-Hilbert action (12), 
conformal invariant observable.S, and the Levi-Civita prescription for the Hamiltonian re
duction, which leads to the conventional matter field theory in the flatspace with the 
conformal tirrie 'of an observer.· . . . 

One ca~ ·say that the Hamiltonian reduction ,reveals the preference of the conformal .. 
time from the point of view of the principle of correspondence with quantum field theory 
in the flat space (28) (8]. 

6 
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5 General relativity 

5.1 Variables 
The purpose of the present paper is to analyze the problem of "proper time"· dynamics in 
the exact Einstein-Hilbert~Maxwell theory 

wE(g,A) = J d4xF9 [-fL:<4>R- ~FI',(A)F~'v(A)]; (fL = MPI\ff) I (33) 

where Mp/ is the Planck mass. 
The initial points of our analysis are the (3 + 1) foliation of the four-dimensional man-

ifold (11] 
(ds)2 = 91'vdx~'dxv = N 2dt2 - g~JlJxiJxi ; (dxi = dxi + Nidt) 

and the Lichnerowicz conformal invariant variables (12] 

Nc = llg!3lii- 1
/

6N; 9'/j = llg!3)11-l/3g!~l. 
1J I 

(ligcll = 1); a= 1LIIY<3ljjlt6 

(34) 

(35) 

which are convenient for studying the problem of initial data (1, 9, 10] and the Hamiltonian 

dynamics. 
With this notation the action (33) reads 

W[~.oc.Al = j d4 x [ -Nc ~ R<4l(gc) + a&~'(Nc&11a)- ~F~'~(A)F~'v(A)]. (36) 

In the first order formalism, the action (33) in terms of the variables (34), (35) has the 

form 
' 

wE= [PA.A;Pg,gc,t'a,alt] = 7 dt J d3x ['"£' PjDof- PaDoa- Nc1l+S] I (37) 
t

1
. f=g,A · 

where . ~2 . 2 2 . I 

p P9 a - ( I 2 1 ··) 1l=-f+6~2 +6R+1lA; 1lA=2PA+4F;iF'
1 

is the Hamiltonian density, R is a three-dimensional curvature 

R = R<3l(g'fi) + 8a-112 f).a112
; M = &;(g~i&ia), (38) 

S is the surface terms of the Hilbert action (33), PA, P9 , Pa are the canonical momenta, 

and 
2 2 

Doa =&ria- &k(Nka) + 3a&kNk, Dog'fi = &og'fi- 'V;Nj- 'VjN; + 3&kg'fiNk (39) 

DoA; = &oA;- &;Ao + F;jNi (40) 

are the quantities invariant (together with the factor dt) under the kinemetric transforma~ 

tions (13] 
t -t t'=t'(t);x~ -t x'k=x'k(t,xl,x2 ,x3 ),N:-t N'... (41) 

In this theory we also have three "times": 
M) The invariance of the theory (37) under transformations (41) (in accordance with our 
analysis of the problem in the previous Sections) means that the "mathematical time" t is 

not observable. 
7 



L) The invariant "Lagrange time" defined by the Lagrange factor Nc 

dTc(x, t) = Nc(x, t)dt (42) 

coincides with the measurable proper time in ADM parametrization (34) within the factor 
afp.: 

dT( ) _ d I _ ii(x, t)dTc(x, t) ( ) 
X 1 t - S dx=O- • 43 

p. . 
D) The dynamical parameter of evolution of the reduced physical sector as "superfluous" 
variable of the extended system (37) - a generalization of scale factor a

0 
in cosmology. 

For the choice of the "superfluous" variable in GR we use· the results of papers [13] 
where it has been shown that the space scale a(!c, t) contains the global factor (a

0
(t)) 

ii(x, t) = ao(t)>.(x, t) (44) 

which depends only on time and it does not convert into a constant with any choice of the 
·reference frame in the class of kinemetric transformations, where we impose the constraint 

j d3x>.(x, t) Do~x, t) = 0 
c 

which diagonalizes the kinetic term of the action (37). 
The new variables (44) require the corresponding momenta P

0 
and 

decomposition of Pa over the new momenta P
0 

and P>. 

P >. . A+ D ).2 I P. =- roN Id3x-a aa c Nc 
(j d3x>.(x, t)P>. = 0), 

so that to get the conventional canonical structure for the new variables: 

(45) 

P>.. We define 

(46) 

f . 3 - - • J 3 - J 3 - de{ • J 3 d x(PaDoa) = ao d xPa>. +au d xPaDo>. = auPo + d xP>.Du>.. (47) 

The substitution of ( 46) into the Hamiltonian part of the action (37) extracts the "super
fluous" momentum term"· 

3 -2 2 . 3 >. 1 . 3 2 [ 2] -1 J d xNcPa = Po J d X Nc + a~ J d xNcP;.. (48) 

Finally, the extended action (37) acquires the structure of the extended cosmological model 
(1~ . . 

WE[PJ,f;Po,aolt] = f dt ([I d3x L: PJDof]- ii.oPo 
l1 /=gc,A,), 

(49) 

+!f- [I d3
x ~:r

1 

- fd3xNc1lF), 

where 1lp is the Hamiltonian 1l without the "superfluous" momentum part: 

· 1 [ P} Pff] 2 >.2 -1lp=- --+6- +a0 -R+1lA. a2 4 ).2 6 
0 . 

(50) 

For simplicity we neglect the space-surface term. 
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5.2 Reduction 

Now we can eliminate the "superfluous" variables a0 , Po resolving the constraint 

ow p,2 · ). ( >. 2 ) I d3
xNc oNe = 0 => f = (/ d3

xNc1lF fa3
x Sc (51) 

with respect to the momentum P0 • This equation has two solutions that correspond to 
two reduced systems with the actions · 

ao(2) [ · . 1/2 ( ).2) 1/2 ] 

Wi
1
(PJ,flau)==a

0

Ldao f=E"APJDaf=F(jd
3
xNc1lF) Jd3

.rSc ) (52) 

·with the parameter of evolution au, where 

Daf == /~of 
au 

(5:!) 

is the covariant derivative with the new shift vector Nk and vector field .4
1
,, which differ 

from the old ones, in (39}, by the factor (ii.0)-1 • 

The local equations of motion of systems (52) reproduce the invariant sector oft hP 
initial extended system and determine the evolution of all variables (P1, f) with n•stwct to 
the parameter au . 

(PJ(x, t), f(x, t), .. . ) -t (PJ(x, ao), f(x, ao), .. . ). (5·1) 

The actions (52} are invariant under the transformations Nc(x, t) -t N: == f(t)Sc. In ot hN 
words, the lapse function Nc(x, t) can be determined up to the global factor dPpPnding on 
time: 

Nc(x, t) == No(t)N(x, 1). (55). 

This means that the reduced system looses the global part. of the laps(' function whirh 
forms the global time of an observer 

N0~t = dT]; (iJ(t') == TJ(t)) (56) 

like the reduced action of the cosmological model lost the lapse function \dtich forms tlw 
conformal time of the Friedmann observer of the evolution of the llniversP wnsidPn•d in 
theprevious Section). . . 

We call quantity (56) the global·~onformal time.' We can definp t.hP )!;loballapsP function 
N0 (t) using the second integral in eq. (51) · 

Jd3 >.
2 

<kf _lo_ ("-) 
x Nc - No(t)' '" 

where /01~ the. constantwhich c~n be chosen so that N(x,l) and >.(.r,l) in thP :'\pwton 
appro~imation have the form 

. f.l(x, t) = 1 + ON(x) + ... ; A-(;,t) = JL(I + o_,(.r) + ... (i"•S) 
\, 

. whereON, &;.(x) are the potentials of the Newton gravity. 
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5.3 The prope~ time dynamics 

To research the evolution of the system with respect to the global conformal time of an 
observer (56), we shall use the short notation . ' · 

J 3 . : . 2 . rk~ 2 ; -2J d xNc1lF == loNoh (ao) =: loNo aa + hR + aor , (59) 

where k~ and r-2 correspond t~ the kinetic a~d potential p~~ts ofth~ graviton flamiltonian 
in eq. (50), hh is the electromagnetic Hamiltonian. 

The equations forsuperfluous variables Po, a0 and global lapse function (which arc 
omitted bi the reduced action (52)) have the form 

'. ,,.l 

oWE 
No oNe = 0 => (Po)± = ±2loh(a0 ), 

owE d 2 
-,- = 0 => Po= lo-h (ao); 
vao · dao · 

oWE I Po -- = 0 => a0 = ·-. 
oPo 2lo 

These equations lead to the conser~tion law 

(!' = .:!_f)' 
dTf. 

(k~)' + (hh)'+ a~(r-2Y ~- ~·. 
ao . 

and to the Fried mann-like evolution of gl~bal conformal ti~e ofar1'6bserver (56) 

, . ~ . ,'":ao '· :. , . 

77(±J(ao) "7 ±jdah"' 1 (~k 
0 

(60) 

(61) 

(62) 

(63) 

(64)' 
,,,·r 

The integral (64) can be co~puted, If we kriow' a s·~lution of the reduced system ~f equations 
(54) as functions of the parameter ofevolution a0 . To get this eqii~tions, ~~should change,· .. 
in eq. (52), Nc by N(x,t) (as we discussed above). · . · · ,,' . · ·· ' 

The conservation law (63) allows us to verifythat the ~ed shift and the Hubble law for 
our observer · '' 

, ... :.;: '· ·.. a(tF): 1 · '; .. , '·" .. (· .·; ::,'.j . .,.·· '· ··)', 
.Z(D)=_1,_, ,m-l=D.·Ho+: .. ;·· ' tF(1J)~ 0 dTJ~a~~7J')·.~ (65)' 

reproduce the' ~volution 'ilf th~ Ulllv~:se in the st~~d~;d cosm~logicai models (with the} 
FRW metrics); if we suppose the dominance of the kinetic. part of the Hamiltonian or the 
potential one, in accordance with the a0~dependence of this Hamiltonian.' . 

. ln. the first case (k~ i= 0, hR =T- 1~;=. 0),' we get the Misner anisotropic model (5]; in 
the second case, the Universe filled with radiation (k~ = 0; hR i= 0; r-t # 0). In both .the . 
cases, the quantities (kA, hR, r;-:1 );'play the role of conserved integrals of motion._which".ire' 
constants on: solutions of the loc.al equations. '·. · ... .- ' · ' ; /;' · :: ... 

The "Lagrange time" differential (42) is · 

· dTc(x, t) = N(x_; TJ)dTJ. (66) 

In the quaritum theory, the integr~l~ of motion become i:onse;ved q~antum mtmbers (in 
accordance .with. the correspondence principle) .. Each term of the spectral decomposition . ' 
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of the wave function over quantum numbers can be expressed in terms of the proper time 
of an observer to distinguish "in" and "out" states of the Universe and anti-Universe. with 
the corresponding Hubble laws (87). 

Attempts (8] to include an observer into the reduced scheme (by the Levi-Civita canon
ical transformation [15; 16, 17] of the extended system variables to the new ones for which 
the new "superfluous" variable coincides with the proper time) show that the conformal 
time and space observables are more preferable than proper time and space. The confor
mal time Ieads, in the flat space limit, to the quantum field theory action [6] and does not 
violate causality [18] (in contrast with the.proper one). The conformal space interval does 
not contain singularity at the beginning of time .[6, 7, 8]. In the next Section we try to 
remove these defects changing only the convention of measurable intervals and keeping the 
physics of the reduced system unviolated. 

6 Conformal Unified· Theory {CUT) 

6.1 The formulation of the theory 
-- I 

Our observer in his (3+1) parametrization of metric can see that the Einstein-Hilbert 
theory, in terms of the Lichnerowicz conformal invariant variables (35), completely coincides 
with the conformal invariant theory of the Penrose-Chernicov-Tagirov (PCT) scalar field 
with the action (except the sign) 

• w""' 1~, ,j'" f.r; [c,;::o:~ n.'•J IYJ H&, 1 ;;:,.wo l] (67) 

if we express this a~tion also in term~ of the Lichner~wicz conformal invariant variables: 

'Pc ~ llg<
3JWi6 .p; g£~ = lli3>il:o 113Y~<v ;·:Fii= Nc. (68) 

From {67) we getthe action 

. PCT · .:.;_ 4 · 'Pc · (4) c . . I' J [ 2 ' ' ] 
W_ f'Pc,gc]- dx -Ncr;~.(g)+'Pc81'(Nc8cpc), (69) 

' . . ~ . 

which.coincides with. the Einstein action {36) if we replace a with'Pc· However, in contrast 
with the Einstein theory, the observables in PCT theory are conformal-invaria~tquantities, 
in particular, an obser'ver measures theconformal invariant interval 

,• ' • • ' > -' •,' ,• r ' 

(,ds)2 = gc dxfd'xv ~ N 2dt2 ~g·. (~l~Jxid_.vxj 
·. C JJV ·"- C lJ . (70) 

\vith'the confo;m~l time Tf'and the ~onsei,vedvol~m~ of.the.conf~r~al in~ariant space (as 
IIYU)~II:-;=1):. '.· . : .. · .; ..• ~··· .: ' . ' •..•.. ·.·. •.. . . ... _, ... 

Following refs. [24; 19, 20, 25], we can identify the PCT-scalar field with the modulus of 
the Higgs dublet and add the matter fields as the conform~! invariant part of the standard· 
model (SM) for strong and ele~t'row~ak inter~ctioris with the action .- - .· . . . 

W
5
M[¢'Hc, n, v, 1/J,gc] =I d4

x (.cgM + Nc[-'PHcF + 'PiicB- AcpkJ)' (71) 

where _cgM is ;he scalar field free part of S1-f: ~xbressed in terms of the conformal invariant 
variables of the type of (68) [20], B and F are .the mass terms 'of the boson and fermion 
fields respectively: · 

. B =Dn(Dn)*; F' = (1hn)'I/JR + h.c. (72) 
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They can be expressed in terms of the physical fields (V[, '¢~).in the unitary gauge, 

B = V[Y;i VJ; F = ;fi~Xap'¢~ (73) 

which absorb the angular components (n) of scalar fields (here Y;j, Xafl are the matrices 
of coupling constants). 

We have introduced the rescaled scalar field 'PHc 

'PHc = X'Pc (74) 

in order to ensure a correspondence with ordinary SM notation. The rescaling factor X 
must be regarded as a new coupling const~nt which coordinates weak and gravitational 
scales [19]. (The value of X is very small number of order of~ where m.w is the mass of 
weak boson W.) 

The conformally invariant unified theory (CUT) ofall fundamental interactions 

wCUT[<Pc, VP,'¢P,gc] = wPCT[cf>c.Yc]+ wsM[c/>c, VP,'¢P,gc] (75) 

does not contain, in the Lagrangian, any dimensional parameters. 

6.2 Reduction 

We can apply, to CUT, the analysis of the notions of "times" in the previous Sections. 
The scalar field in CUT acquires the feature of the scale factor component of metric 

with the negative kinetic energy and the evolution parameter a0 can be extracted from the 
scalar field. It is convenient to use for global component the denotations 

'Pc(x, t) = <po(t)a(x, t); N = No(t)N(x, t) (76) 

so that the expression for the extended action has the form 

wCUT (Pf, /;Po, 'Po!t) = J (! d3
x - L PjDof- Po<Po- No [-.:to + HJ['Pol]) dt, 

h J-a,gc,FsM 

where FsM is the set of the SM fields, 

HJ['Po] = j d3xN1i(PJ, J, <po) :::;:. hbuT('Po)Vo, 
a2 

Vo= j d3x N 

(77) 

(78) 

is the Hamiltonian of the local degrees of freedom, the Newton perturbation theory for 
a,N begins from unit (a= 1 + ... , N = 1 +.: .), (the time-surface term is omitted). 

The reduction means that we consider the extended action (77) onto the constraint 

oWE . 
oNo = 0. =? (Po)±= ±2JVoHJ. (79) 

The reduced action 

Wf(PJ,/Icpo) = "'•7o(t,)dcpo { (Id3x LPJD..,J) 'f 2JVoHj} 

'PI ='Po(tt) f 
(80) 

is completed by the proper time dynamics. 
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6.3 The proper· time dynamics 

The equations cf global dynamics (which arc omitted· by the reduced action (80)) have the 
form 

oWE 
oNo = 0 =? {Po)±= ±2VohcuT('Po), (81) 

oWE nt d 
2 

, d 
-0- = 0 =? •o = VodhcuT('Po); (I = d /), 

'Po . • 'Po TJ 

oWE (dcpo) · (Po)± · 
oPo = 0 =? d;J ± = 2Vo = ±hcuT('Po), 

where the effective Hamiltonian density functional has the form 

2 k~ 2 2 -2 2 . . 1 
hcuT = ~ + hn + JlF'PO + r B 'Po + Acpo ' 'Po 

(82) 

(83) 

(8·1) 

in correspondence with the new terms in the CUT action .. 

These equations lead to the Friedmann-like evolution· of global conformal time of an 
observer 

'PO 

q(cpo) = J dcphchT(cp), 
0 

(85) 

and to the conservation law 

(k~)' + (hh)' + (/l~·)'cpo + (r82)'cpo2 + (A)'c,?o4 = 0. 
'Po2 .. (86) 

The red shift and the Hubble law in the conformal time version 

· z(Dc) = 'Po(17o) 
.· 'Po(17o- De) - 1 ~ Dcllllubi liH;.b = . 1 d 

'Po(rJ) d7J <Po(rJ) (87) 

reflects the alteration of size of atoms in the process of evolution of tnass!'s [:/ri. 8). 
·In the dependence on the value of cp0 , there is dominance of the kinetic or t hP pot Pill ial 

part of the Hamiltonian (84), (8.6) and different stages of evolution ofthP liniv!'rs!' (85) can 
appear:. anisotropic (k~ =f 0) and radiation (hJ1 =f 0) (at the b<'ginning of thP lTuin·r~<'), 
dust (JtJ., =f; r'82

) and De-Sitter A =f 0 (at the present time). ·. . 
In perturbation theory, the factor a(x, t): = (1 + o.) represPnts thP poiC'IIt,ial of t hP 

Newton gravity (o.): Therefore, tqc lliggs-I'CT field, in this rno<l£'1, has no partid<'-lik<• 
excitations (as it. was predicted in paper [19)). Let us show that the scalar fiPid as a fuu.-tiou 
of the proper tiine (17) (85) gives the Newton coupling const~ntat pn·~<·nt timP ,,,;. 

6.4 .-Cosmic Higgs va~uum 

Let ~s show that value of the scalar field in CUT is deteniJim'<i by th<· prC'~<·nt ~tatp oft hP 
Uni~crse ~ith observational density of matter pu,. and thP IlubhiC' param<'t<'r 11u,.

1 
•• 

I•br.an·observer, wllo is living in the Universe, a state of "vacuum" i~ t II!• state• oft hP 
Universe at present time: !Univcr.~c >= !Lab. vacuum>. ·a~ his tinifiPd t h!'Or,v prPIPuds .to 
describe both observational cosmology-and any laboratory <'Xp('rimenls. 

.In correspondence with this definition, the llamiltomian (78)can bP split i11to t h .. larg .. 
(cosmological- global) and smalL (laboratory -local) parts · · 

IIJ['Po] =PUn Vo +(III- PUn Vo) = f'Un('Po)Vo + lh, 
(I<~) 
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where the global part of the Hamiltonian PUn(<r'o)Vo can be defined as the ·•lJniver~e" 

averaging 
< UniverseiHJIUniverse >== PunVo, (89) 

so that the "Universe" averaging of the local part of Hamiltonian (88) is equal to zero 

< Universe!HLIUniverse >== 0. (90) 

Let us suppose that the local dynamics (HL) can be neglected if we consider the cos
mological sector of the proper time dynamics (60), (61), (62) 

oWE r:IiZ HL ( I ) 
oNo == 0. =? Po== 2Fov PUn+ Vo:;; 2VoV'fiUn + vPUn + o Fo (91) 

oWE (drp0 ) (iif ~ ( 1 ) 
oPo == o. =? -;};] ± == ±V Vo == V Pun + Vo = V'PUn + o Fo . (92) 

The evolution of the proper time of an observer with respect to the evolution parameter 
rp0 determines the Hubble "constant" 

H __ 1_d<P('1o)-~ (93) 
Hub- <Po('7o) d'7o - <Po('7o) ·• 

The last equality follows from eq.(92) and gives the relation between the present-day value 
of scalar field and the cosmological observations: 

If PUn == Per. where 

<7'('7 ~ '7o) == VPUn('1o) 
HHub('1o) · 

3H'l£ubM~1 
Per= 

8rr 

(94) 

(95) 

as it is expected in the observational cosmology. The substitution of (95) into (94) leads 
to the value of scalar field 

{3 
<7>('7 = '7o) == Mpzvs;· 

what corresponds to the Newton l~w of gravity.· 

6.5 The dust Universe 

(96) 

The present-day Universe is filled in by matter with the equation of state of the doot at 
. rest. This means the "vacuum" averaging of the mass term in the SM Hamiltonian is equal 

to the mass of the Universe Mv, while other terms can be neglected: 

PunVo == rpri('7) < Univ.l Id3xN aibaXa{31/Jf31Univ.;: tJ! Mv = rpo('7) < nb > Fo, (97) 
v 

where < nb >. is the conserved integral of motion. In this case, the proper time dynamics 
is described by cq. (92) with the density 

Pun( 'Po)= 'Po< nb >; 
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drpo == V'Po < nb >
d'1 

(98) 

We get the evolution law for a scalar field 

'72 
'Po(7J) == 4 < nb > {99) 

and the Hubble parameter HHub('1) 

1 drpo == ~-
HHub == 'Po d7] 7] (100) 

The barion density 

Pb = noPun; ( 
· 3H2 2 

PUn== HubMPI) 
8rr (101) 

is estimated from experimental data on luminous matter (no == 0.01), the flat rotation 
curves of spiral galaxies (no== 0.1) and others data [27] (0.1 <no < 2). 

We should also take into account that these observations reflect the density at the time 
of radiation of a light from cosmic objects n(7Jo- distance/c) which was less than at the 
present-day density n(7Jo) =no due to increasing mass of matter. This effect ofretardation 
can be roughly estimated by the averaging ofn('7o- distance/c) over distances (or proper 
time) · · · ' 

= '7ono (102) 'Y '70 

I d11n(71) 
0 

For the dust stage the coefficient of the increase is 'Y = 3. Finally, we get the relation or' 
the cosmic value,of the Planck "constant" and the GRone · · -

<P(7J = 7Jo) . f87i". ·_ r;::n-- . 
(Mpz) . V ~ = y'Yno(exp)/h = w0 , (103) 

where h ='= 0.4+ 1 is observationaJ bou~ds for. the Hubble pa;ameter, _ 
From data on no we 'can eStimate w~: Wo = 0.04 (lumin-~us n'Iatter), Wo = 0.4 (flat, 

rotation curves of spiral galaxies), and 0.4 < n~ <9 (others data [27j) for lmver values of 
h (h = 0.4). . , . . . , . ' . •' " 

6.6. :.The .local field theory·,· 

As we have seen in cosmological m(}dels there is a Levi-Civita canonical transformation to,_ 
new variables for which the "Lagrange time" coincides with the evolu~ion parameter and 
the extended system converts into a co'b.ventional field theory. In general cas~ it is difficult 
to find the exact' form. of this LC tran~formation. However we can pr~ofth~ equiy;jence 
of our'r~duced system with conventional field theory \vith meas~~able ~onformal time in 
ne~t order of the expansion in V0-1~ the in~erse volume of the syste~ .. 

The next order of the decomposition of {80) over l'o-1 defines. the action for .local 
excitations . , : ... . ' , .. 

Podrpo ;;,· 2lirJ\/Pun(<Po)d<Po + HL(<Po) ~ +o (v;1 ), {104) 
.. Pun_ 'Po o 

where jiu':'(rpo) is determin-ed by the global equation (93), arid 

drpci ' 
VPUn(<Po) = d17o 

15 ._; 

(105) 



in accordance with eq.(92). The reduced action (80) in the lowest order in V0-
1 {91) 

has the form of conventional field theory without the global time-reparametrization group 
symmetry 

W{!J(PJ• firf>o) = W(~J(rf>o) + W{+J(PJ, flrf>o) 

w{+)(PJ· flrf>o) = 7 d7] (! d3
x LPJD.,J- HL(p" firf>(1J))). 

'11 ! 

(106) 

(107) 

Really, an observer is using the action for description of laboratory experiments in a very 
small interval of time in the comparison with the lifetime of t~e Universe 1/o 

,) 

1/t = 1/o - €; 1/2 = 1/0 + €; € ~ 1/o, (108) 
.· . 

and induring this time-interval 'f'o(7J) can be considered as the constant 

. ~· 
'f'o(T/o + €) p;;j 'f'o(7Jo) = Mp1y s;· (109) 

In this case we got the a-model version of the standard model [19]. 

7 Conclusion 

In the paper we discussed the status of measurable interval of time - "proper time" in the 
scheme of the Hamiltonian reduction of GRand conformal unified theory (CUT) invariant 
with respect to general coordinate transformations. 

This invariance means that GR and CUT represent an extended systems (ES) _with 
constraints and "superfluous" variables. To separate the physical sector of invariant vari
ables. and observables from parameters of general coordinate transformatimis, one needs the 
procedure of the Hamiltonian reduction which leads to an equivalent unconstraint system 
where one of "superfluous" variables becomes the dynamical parameter of evolution. 

. We 'have pointed out this "superfluous" variable' for considered theories (which converts 
into the evolution parameter of the reduced system) using the experience of cosmological 
models and the Lichnerowich conformal invariant variables. 

The dynamics of proper time of an observer with respect to the evolution parameter 
of the reduced system is described by the equation of ES for the "superfluous" canonical 
momentum. 

Just this "superfluous" equation of ES determines the "red shift" and Hubble law in 
cosmological models, GR, and CUT. To reproduce the Hubble law in quantum theory, the 
reduced scheme of quantization of GR alld cosmology should be added by the convention of 
an observer about measurable time interval. Normalizability of a wave function is achieved 
by removing the "superfluous" variable from the set'of variables ~f the reduced 'system. 

From the point of view of the principles of causality and correspondence·with the field 
theory in the flat space the considered Hamiltonian reduction of GR prefers to treat the 
conformal time as measurable. · 

We formulated the conformal invariant theory of fundamental interactions where an 
observer measures the conformal tinie and space intervals. This theory unifies gravitation. 
with the standard model for strong and electroweak interactions and has no any dimensional 
parameters in the Lagrangian. In fact, in practice; only the ratios of dimensional quantities 
are the subject of experimental tests. Roughly speaking Planck. mass is nothing but a 
multiplicity of the proton mass. 
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\Ve described the nll'chanism of appt'aranct' of mass scale using as til(' examplt' thP 
dust stage of till' evolution of the Universe and havp shown that the value of scalar field 
at present time can be determined by the cosmological data: density of matter and the 
Hubble constant expressed in terms of the Planck mass. 
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