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§ 1. Introduction 

The quasipotential approach (QPA)/ 1-3/ is a very important 

tool i'or solving a number of physical problem:/ 4~ The geometri­

cal properties of the quasipotential equations (QPE) deduced in 

121, made it possible to apply to them the technique of there-

lativistic Fourier trans.J.·ormation and to introduce the nobon o:f 

the relativistic con.figurational space/51. Here a scheme has been 

developed in many respects analogous to quantum mechanic/5- 11 1. 

The aim of this paper is to give a detailed analysis o.L· a 

version of QPA in which the main role .Ls played by the rapidity, 

the dynamical variable, canonically conjugated to the relativis-

tic relatjve distance. 

Let us now consider in more detail the eeometrlcal proper­

ties o.f QPE deduced in/2/. 1'he equat .; ons ror the rc lati ·,rj st, c 

Lwo-part cle amplitude /l(f,ij}anrl the w::wc _\meL on 1/f{fJ .. } have 

the j_·orm: 

fl(p,{J=-1/Jr V(,O, {Jj)+ (2j,-;~f V{jl-;K; 4JG'l (K)/I(K~fJdf?K J ( 1.1) 

Vf (p/=(C~fJ'1;Jr-Jt/)-f-/1ffrp~(PJ.}Vr;/K~·E,J'/f(K)d.QK/ (1.2) 

where 
f 

C't(K)= 24 -2£K . -

3 

( 1. 3) 



These equations have "absolute character" in respect to the geo­

metry of the momentum space*>, i.e.,by form they do not differ 

from the nonrelativistic Lippmann-Schwinger equations. 

Equations (1.1) and (1.2) can be gotten from the correspond­

ing nonrelativistic equations replacing in the latter nonrelativis­

tic (Euclidean) expressions for energy, volume element, etc., by 

their relativistic (noneuclidean) analogs/8/: 

... 2 

r - q_ -- r- - ·~1 cz - 2 c 2 - Vfj."+., , 

dJ?K = dK - c12K= t;!K , 
'2-1-1?2 

~(p""' -{J ~ J(;i'r-Ji) = (:t+)J2cf'(p~-&/. (1.5) 

~ ...... The connection between the quasipotential amplitude n(p,~jand 

a differential cross-section of the elastic scattering has the 
form/5/: 

do= //lr~ ..... 1,1 2 
d (.(/ lj> I ? I 1 (1.6) 

which coincides with the normalization condition of the nonrela­

tivistic amplitude of the elastic scattering. In case of a real 

quasipotential from (1.1) the unitarity condition follows: 
.... 

L /1/ ....... ) /'tl]/1 ........ //-If ..... -> _/ 
tn nrp,tz = 72i7 (/;, K) (K, t-)q aJK. ( 1. 7) 

The transition to the relativistic r- -space is performed by 

means of the expansion in the matrix elements of Lorentz group 

representations/51 (relativistic Fourier transformation) 

*) In equati~ns (1.1) and (1.2) the integration is carried 
out over the Lobachevskyj9 -space, realised on the upper sheet of 
the hyperboloid 

P/-Pe-=m 2c 2 
(1.4) 

(the mass shell of a particle with mass n7 ), In the following 
we use the system of units, in which h=C=m:::.i. 

4 

-.1-i? 
( (f~ fJz(cA.Jt -(tttt;JsA X,) 

1 

..... _, -L _. ./ }r _, z =- ut., q{_ ;r1 = Ez , nsn,A ~ -=-?. 

(1.8) 

( 1. 9) 

J.i'or example, the Green function Ctz- in the configurational r­
representation has the forM 

C'l (t~ f"/=(;71).1 f{ ( K: '£'JC'I (K)t fx: t)d.f?K (1.10) 

and satisfies the equation 

( Ho- 2chX'~-)C~ (t~ f/= -ofz.._._ z--'J, (1.11) 

where flo is the differential-difference operator (free Hamilto­

nian) with the step, equal to the Compton wave length of the 

particle 1t-4c: 

u =!!chi£_ t-2j_sltiii. _ll8,'f>e.x.n(t"a) 
T7o .}t_ z. az zz .,., aa · (1.12) 

The equation for the wave function in the relativistic z -space/5/ 

{ /10 -2 Et + V ('2 1 Ej.J} 'If_(~}=(} (1.13) 

as well as {1,1) and (1.2), do not differ by form from the Schro-

dinger equation, 

It was shown (see review/6/) that relativistic differential-

difference equations in the important cases of the Coulomb and 

oscillator potentials, as well as for the square well,were exaotly 

solved in full analogy with quantum mechanics. The scattering 

theory in the relativistic configurational space is also in full 

analogy with the quantum-mechanical scattering theory. 

The only serious difficulty in this scheme is connected with 

the peculiar formulation of the boundary conditions in the diffe­

rential-difference case. In particular, it very complicates the 

investigation of analytical properties of the wave function and 
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scattering amplitude in the complex plane of angular momentum ~ 

and energy E'? , although the dependence of the operatorh'on these 
0 

variables is the same as in the nonrelativiatic case. 

We will demonstrate that there exists a version of QPA which 

also has absolute character in respect to the geometry of the mo­

mentum space, but is free from the above mentioned difficulties 

(analysis of the boundary conditions is given in §J). 

Let us write nonrelativistic operator of the kinetic energy 

in the form: ~ 2. 

~ - I E~ = 2 - (1.14) 

where S' (fj,, 0) is the distance between the point with coordinates 
-+ 
~ and the origin in nonrelativistic three-dimensional Euclidean 

momentum space. 

Using eq.{1.14) the Lippmann-schwinger equation has the form 

-. _, 1._ I/. -+ _, 1 f VfP-iiJ/I(K-: iJd 21< ( 1 15) IJ(p,fj)= -~ff v(p, fj) f-(c.7rJ3 S2fj, tJ) -S2(K,0)1-lc • • 

Now we pass to the relativistic equation (see (1.5)) replacing the 

nonrelativistic (Euclidean) quantities by the relativistic (non­

euclidean) ones. However, when transforming Green's function, we 

do not now replace the expression for the energy, but pass from 

formula ( 1.14) for the distance in the Euclidean p -space to the 

expression for the distance in Lobachevsky fJ -space: 

S (fj, o) = q-z -- Xtz. = t'n (4. -1-~E$2-.1)_ (1.16) 

The quantity )(~ , taken now instead of the energy ~~ , 

is also called "rapidity". The relativistic equation fo1· A~~) 

has now the form*): 

*) This equation was first postulated in/5/. About the 
quasipotential V(P: 4; £,1..} see §2. 
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flt-.-;--LVr"'~ ... £) L & JVfP~KiE,)/IfK~fJciJ?~e <1• 17 > 
1 p, lJ - /t7r {(J, ~' ~ + (br):~ .skX<J- ~ z. - .XI< e .,_ ic 

The new quasipotential Green function 

p.r;. (K).:s~ ~/-.h2 +iE- (1.18) 

has a pole on the energy shell £/'(: 4 as other quasipotential Green 

functions, and its discontinuity ensures the fulfilment of the 

two-particle unitarity condition (1.7). 

Since in the following rapiditiee ){1 will play the key role, 

let us pay attention to the following facts. The relativistic re­

lative distance ;- and rapidity ~ are canonically conjugated 

variables in the sense of Fourier analysis on the Lorentz group/5/ 

(see also/ 12 • 13/). The analysis of many properties of QPE is es­

sentially simplified, if it is based on the properties of physical 

quantities, as functions of the rapidity/5-9/. Invariant inclusive 

cross-sections of many-particle processes at high energies are 

simple functions of the rapidity. Recently an interesting attempt 

was made in ref./ 14/ to analyse this fact on the basis of the 

relativistic Fourier analysis. In papers/ 151, the apparatus deve­

loped in/5-9/ was succesfully applied in the study of the proper­

ties of the hadron wave function in the parton model~ 

Therefore, there is a number of evidences that the rapidity 

is an adequate dynamical variable in the relativistic region. 

§ 2. Connection with Other Relativistic Equations 

Let us consider the complex plane of the variable J( . Energy 

and momentum (1.9) are periodic functions (with the period 2~i) 

of the rapidity along the pure imaginary direction in ~ -plane. 

Thekernel of the relativistic Fourier transformation, however, 

does not possess this property of periodicity. Dealing with this 
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transformation, one should consider different quantities as func­

tions of the rapidity in the whole complex }( -plane. For instan­

ce, for calculating the integral (1.10)one has to use the 

Jordan's lemma, closing contour of the infinite radius in the up­

per, or lower, half-plane X , depending on the sign of the dif­

ference ? - 'Z '. 

The mapping (1.16) is the infinite-sheet one. Only two sheets 

of the infinite-sheet Riemann surface, corresponding to the strips 

O<Im;f<ff, -.7r<Im.X<(} <2.1> 

have nonrelativistic analogs: the physical :Ym ff > 0 and the 

nonphysical :Jm vE" < 0 sheets. 

The Bethe-Balpeter equation and infinite set of quasipoten­

tial equations/161 have the dependence only on ~7 and,$hfi. 

Prom the point of view of complex rapidities, for its studying 

the principal branch of logarithm is sufficient. We have no rea­

son, however, to require QPE Green function to be f!.:n:i -periodic 

function of the rapidity. To satiety the main requirement of the 

two-particle relativistic unitarity, it is sufficient for the 

Green function to have only one pole in the upper J( semiplane. 

An infinite chain of poles, corresponding to the periodic depen­

dence, does not contribute to the unitarity condition. 

Let us study the connection between equations (1.17) and 

(1.1). We use the relation 

c'J (K)= Z.(ch_x/-ch.XK +-i£) :-six, [ c:t/z 
_ ~ XK +--/i + l e j = /J 'I ( K) + .Q 't- ( K) J 

where 

xK-x,.-ic _ 
2 

(2.2) 

__ ..:t__ XK -x, _ XK+-x,. 
2 3

> 
0<> ~ 

Q9(K)- S'hJ'i J;:tfr~-~)e-1{2n-n)2 (.XKf-X'tJ2--~o(P!m • 

8 

Thus, we have represented the Green function G'/.(1<) of' equa­

tion (1.1) as the sum of two terms, the Green functionfj
1
JK) of 

equation ( 1.17) and the quantity Q'l- {K). The latter contains the 

whole infinite chain of "extra",(i.e.,not contributing to the 

elastic unitarity), poles in the complex .X -plane. 

Let us clarify the connection between quasipotentials ~ 
A 

and V' in equations (1.1) and (1.17). We write both equations in 

the symbolic form 

II = -/{;. V + /f7rJ3 V c 17, (2.4a) 

" " 
f!:: -~~ v +r~J3 v~ ll. (2.4b) 

Transforming eq.(2.4a) 

11:: - 9~ V +r/-iiJ:J V,jh' +/hJ3 VS?/1, (2.5) 

we come to the conclusion, that eq. (2.4a) is equivalent to (2.4b), 
A 

if V and V are connected as follows 
" " V = V + rfm3 VJ?V. (2.6) 

It is evident, that the Born approximations in (2.4a) and (2.4b) 

coincide with each other. 

Let us pass to the connection of equation (1.17) with the 

Bethe-Salpeter equation: 

T(pl,fJ2; Pt;p;) ~k(PI,jJ2;p1~P/) -f 

(2.7) 

+]l((p1,jJ2 j§t-K,f -K}C(qK) Trf+-~-f -~S-p~:;;./)ci~K, 
where P= p ~ + p 2 • In the c .m. system P = (2 ch .X,~ 17} 

The two-particle propagator C(f} K} has the form 

C(P, K)=r~:Jrl'f {rr.f +KJ2-m 2-~-i.clf(~ -KJ2 -m 2t-le7}. <2 .a> 

9 



One of the ways of transition from the four-dimensional 

equation (2.7) to the three-dimensional QFE is to replace the 

Green function C(P, K} by "dispersion type" integral E{P,K} provid­

ing two-particle unitarity 

00 

C( P, K)- E (P, K) = -(;:n-)3 f -"'~~:<: j rs: s) X 
1m 2 

X V (+(f' +K) ZJ {~.)(-f' -k), (2.9) 

where 
(f-) v (K) = f} (KD)J (K 2-m e) 

1 (2.10) 

P 2 / "2 '- ./S-'_ 
S'= , ,s' =P 1 p- 2ii71Xv ~ 

and the quantity~(JG~)satisfies the only condition 

./(s7sJ =1. (2.11) 

If instead of (2.9) one uses expression*) 
0'0 d / 

A L J X (1-J ' ('f") ' l 
f}(f/K)=-(2~)3 0 _x"!-.792-i£. Z) (Lj-+K}l)(f-I<J, (2.12) 

where _)'~ fn(/j7 +/~'-i} , then in the c.m. system 

A - 1 f(KO) fJ (f;xJ-/f{271p ch2;r9- fJrtfK). (2.13) 

Substituting (2.13) into equation (2.7) and passing to~the 

amplitude fl 151, we. derive eq. ( 1.17). Connection between V and 

the Bethe-Salpeter kernel f( has the form: 
/\ " 
V=I<~I<(G -j)V. (2.14) 

*) It can be shown, that dispersion integrals in the_;( -
plane are just of type (2.12). Analytic properties of the solu­
tions of equation (1.17) in ;t- and C? -planes will be descri­
bed elsewhere. We note that analytical properties of the amplitude 
in the variable w = f +fir tn (v r yvz -1 ), v-= Eta& , similar 

to X , have been studied in ref ./17 I. 
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§ 3. The Bguation for the Wave Function in the 

Configurational Space 

We shall introduce the wave function 1f~ ( p) in the conti­

nuous spectrum: .. ~, 

11/ ... _..Jrt_.. .... , ,, a /l(P~'J~ 
Tlj (p'}= (27i) OtPl-l'J.;-.,:hSH9 _x 2- X 2+if. 

'II/ ... lJ. p 
Equation for 'f't fp~ has the form 

(3.1) 

,,, ~ .JJ'... .... .L _x fvtp""'.~·E,J?/;(!1)d.J?K 
n;Jp)=(2!1r)o(pt-}'JJ+rmJ's~ Yi2_ .Xpz +l£ (3.2) 

Making in (3.2) relativistic Fourier transformation, we arrive at 

the Schrodinger equation for the wave function ~ (t~) 

~ (z) = if;rl3f l r,o~ z/ ~ f,P~Jd!}o o.3> 
in the rel.ativistic configurational Z -representation: 

~ rr) = t ('J~ z} _,.Jit- (2~ z/ 1/fz--~/ ~ (-i!Jdz' o.4> 
The Green function j 7{i;ljis given by the expressions 

,!- ....... f" ~~ ->1 
-i ... / - L Ye J ~ ( K, z) c; c K' 'l d .QK = 

9 't ( ?, 2 ~-(2n.P s/J~z_ J; 2 - JK2 +i. l. 
&<:> 

=/.;Jr"l-'l" L (2f+1)fJ1e(2,'?1Pe (ilr/J, 0 . 5 ) 
l=O 

where Jte (2, '?/is the partial Green function (see Appendix A) 

c><> * 
( -'~- g_ Xe J Se(77YK)S, ('l: x~) d'..X. = 

fl.?e "/, 7 / - ..7r SJ;"X'I o _.X9 2 - .X K '2 + l E. K 

= - :;/~") {&(2-?/e/'h,:J;JS'etz: :J?) f- & (?- '- ~J~ 
(3.6) 

r'' / ,J /'-F.t~rer-~J 
.xee (?:/~)S'e~X,)y/ yt(?.J=(-1) (- z;le.,.:tJ • 

(.A) 
and ~ is the eo-called generalized power. 

{A) 
The definition of ~ as well as relativistic free wave functions 
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by form from the corresponding Green function of the Schrodinger 

equation. The distinction is only in free solutions. Let us em­

phasize that eq.(3.6) comprises the usual step ~ -function 

z < o, (3.21) 8(7.) = ( (}1 
~ >{} 

while partial Green function of equation (1.1) in the relativistic ...... 
r -space contains "smeared" & -function 

+oo izz 
"' 1 J e d~ 8(zJ:::.: 2~i. _ _, e :e_t-il ' (3.22) 

and that results in the difference character of the operator 

(1.12) and difficulties in the formulation of boundary conditions. 

For equations (1.17) and (3.2), as well as equivalent equa­

tions (3.13) and (3.17), the situation is essentially different. 

Here we deal with differential equations of the second order. 

To determine its solutions it is necessary to put two boundary 

condi tiona (at Z-+ 0 and Z ~ <><> ) • We write down these 

condi tiona taking into account that ,fe (?, Y,)-=-IJand assuming that po­
t~-

tentials V(z.) are the short-range ones. 

For the scattering ()"f. d:! 0) 
4

• 

"(X. 2 - -?L!:- ' 
(/', 8 {Z) ~ sia (~ z- ~e)+ lie (~)B t. ,. 

2 
/ (3.23) 

~ 'l-H><> 

For the bound states Jt = i ('t ( /) < (' 'J < ::-) 

E'J. = CO$ tt ~ (3.24) 

(L) - (,_ 2 
1 '1-e (?.} ""'-- e 

(3.25) 

The boundary condition at the origin in both cases is the 

same 

S,e (0) = 0. (3.26) 
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§ 4. Some Simple Potentials 

For I!= (} equation ( 3.17) has the form 

d 
2

5'io(~) + 7o z Y;{>(-z.} = 4r {/(1-) Y;of-z). 
dz 2 , r Sa"'t 

(4.1) 

We consider the square we11/6/ 

V(i}= -8(R-?.)Vo (4.2) 

For the bound states (see (3.24)) we obtain the discrete spectrum 

of the rapidities from the transcendental equation 

( 't + o (("'} cfj (R6/(~}) = 0, (4.3) 

where 

6 (('~-} = (-('l- 2 + t'~- Vo/si11(1 (4.4) 

Note, that the behaviour of the wave function 9jo(2}~Sth~2 

inside well is different depending on the sign of the expression 

under square root in (4.4). 

In the continuous spectrum we obtain the following expres­

sion for the scattering phase 

t50 (,X'~-J = -YttR +akef;;{o;:r.>ct;;_(RCF(.X'~-))_]_ c4•5> 

For the attractive Cou~omb potential 

V('lJ =- 'l'~h.x~ ' o( > o, (4.6) 

corresponding to the massless scalar particle exchange, the wave 

function of the discrete spectrum has the form 

Cf
17

('l/ =o((~~n).1/~e-Ztntp(L-/7-' 2-' 21:f,.)_ (4.7) 

The energy spectrum is given by formula (cf./7/) 

E = (i.~ Jt -~2/n z 
17 2 ' 

(4.8) 

n = :1, 2" ,. • 
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From the asymptotic behaviour of the wave function of the 

continuous spectrum 
;7r.L. • -h .. l': 

( ") ff y, ?shU,! rr _ f={_ 1/ ~A/: io<. " "?I L Cfr;o < =V~"'rLe II r:i sh2X,I!e y--/frl-slt.?X, 7L,cl7JJ}4·9) 

which is given by formula 

~P(~) ~ ~stil(~~ "s'iz/'. t-,t?~z_+d;,f~J) 
~->c-o 1- , 

(4.10) 

we obtain the expression for the matrix element of the~-matrix 

r (X.) _ ziJ:JX-t)_ r(t - iot/snZX9 } 

,.,. 
0 'I - e - r(t +ioC/shZAt) (4• 11 ) 

We consider now the equation for a harmonic oscillator. In 

dimensional quantities it has the form 

/ li 2 d 2 

( -in clz 2 + ~w2?2 -mc"'.X~2J~o(~)=0. 
'Ne introduce the operators 

-~ ~ 
tJ = v -o/:#'_:_ c 
j/ 211 j 

" 7r:: -i d_ 
<Jf{.. = c~/ =-i/lr d' 

Jtw mcv cl~ 

r_ .!7l' o~ 1 = - L 
L ,/ j/..: 

as well as the creation and annihilation operators 

f 1(. . ) - 1 . . ) a =IF 5! -c~ , cz = v'z· ( 9 +-I. .70, 

[a_~ a''/=-:1. 

The initial equation can be written now as 

""2 _ -t ( "2 ..., 2') _ me 2 2 _ 2 w 
;r ~o - 2 .71' + ~ Yj.o - 5 U/ A2 7;o - .;t"j'. Tyo 

Because of the commutation relation (4.14b) and formula 
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(4.12) 

(4.13a) 

(4.13b) 

(t .13c) 

(4.14a) 

(4.14b) 

(4.15) 

Z z = a. -a. r - .f/2 (4.16) 
~ ~~ all excited ~ -states can be obtained from the ground state t

0 
: 

.. 2 
')-) 2 (p/0/ = ;}?. /D) (p /D) ( 7 ) 

.C. I O i- ,' o .I 4.1 a 

- {LJ {oJ 

a. To : O, (4.17b) 

by n -multiple action of the creation operator a f: 
-S!% 

(jJ/rljJ: (a f.)f(P,{o~'J) = lJ e <f>fn., .3/2 I tj, 2j (4.18) 
VriT 2 (2n.'/~r(n ·F~/2) 

The energy spectrum 

E, =£mc 2c/i(yZ~ (.:!n+3/2)J (4.19) 

in the nonrelativistic limit goes to the~ -states spectrum of 

the usual isotropic oscillator 

E11 -2mc 2 ~ #w(2n+3/z). (4.20) 

We also present the relation, connecting the 

root-mean-square deviations of the relativistic relative dis­

tance Ll-:z and the repidi ty A .X in the groWld state (cf / 12/) 

- 2 -)2 3 ;t-2. (tJ 'l) (L17 .; 9 m2c2 (4.21) 

The authors are very grateful to N.K.Atakishiyev, V.G.Kady­

shevsky. N.P.Klepikov, A.N.Kvinikhidze, S.Kavrodiev, V.A.Kat­

veev, M.Mateev, L.I.Ponomarev, A.N.Sissakian, N.B.Skachkov, 

L.A.Slepchenko and A.N.Tavkhelidze for numerous useful discus­
sions. 
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Appendix A 

(1,2) 6 
Using the connection between /{,(r,}jand~(l,x/ I, we write 

eq,(3.6) in the form 

0 (z z'i- ~ Yefz'Jr ro , rv/. /}7 
d ?e ' /- -sk~ -;z;;--L cfe (?, 2 ) -cfre r ?; Z '!!, (A.1) 

where 
(.f) {2) 

;; {I} (z, 2 ') --J E'e r:l ~) ee r~: ~) c/ A: 
re YS!- - J'k 2 ..._ t. c. K ' 

(A.2a) 

~) (2) / 
{} (2) ) - J ~ (?, AK) ee f-t, ;r,.,J cl;r. 
rille (?, c - _)'',/ - ;r,./ r-i E I<· (A.2b) 

The integrand in (A.2a) decreases in the upper half-plane 

JrK , the integrand in (A.2b) decreases in the upper half-plane 

when 2 > '<' 
1 

and in the lower half -plane when 2' < (' _..., These 

statements can be easily proved using the following repreeenta­
rt, 2 J 

tion for ee ('Z, h): 

(1,
2

; • I' :ti7X i:I'X ,;:.?X. 
e {? X)= r-':}____ P e . ;: //' -[1-iz :t-c·? e /.<A.3) e I ze(shX)~" 2 -! rc--, / / • 

From the representation (A.3) it also follows that integrande in 

(A.2a,b) have infinite chaine of 21!-order "kinematic" poles at 

the points )1;~: = t /:Jr/7 (n=1, 2, .. ). To exclude these poles, .JOt con­

tibuting to the unitarity condition (1.7), we define the integrals 

in (A.2a,b) as the contour integrals (see. fig.1). The integratic~ 

in (A. 2b) is carried out either over contour C , or over con-

e / / 
tour , depending on the sign of Z- t . Performing the in-

tegration by Causby theorem we obtain the expression (3.6). 

Strictly speaking, our definitions are of model character, 

because we omit a certain quantity in the Fourier transform of 

the free Green function. The model satisfies all physical requi­

rements what is ita main justification. From equation (3.10) with 
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the Green function (3.6) for a real potential we obtain real 

scattering phase shifts. The wave function 1fe(2) eafiefiee the 

correct boundary conditions of the scattering theory in the re­

lativistic 'C -apace (3.23). 

Appendix B 

lie give another derivation of the equation (3,2) (cf/ 181), 

The wave function ~OO~~)of a system of two free particles 

with equal masses in the momentum representation obeys the equa­

tions 

fp / -m 
2
) '!'"( ,O:t, jJ2) = 0, 

(,o/ -m2J'I'(p1,P2) = 0. 

Passing to new variables Q and P by the formulas 

Q Q 
/)!I = p -f 2 ' p 2 = -p -f z , 

we write the system (A.1) in the form 

[(~ o~-p) 2 -m2}~(Q,p) =0/ 

[ (fj -,tJ} 2 -m 2] Y(rJ,,tJ) =0. 

(B.1) 

(B.2) 

(B.3) 

Taking the sum and difference of equations (B.3), we come 

to the equivalent pair of equations 

( ~
2 

+ p 
2
-m 2) if' ( Q, p) = 0, 

(B.4a) 

( Qp) ~ (Q,p) =0. 
(B.4b) 

~ ... -J ~ 

In the c.m. system Q:: 0 ·f~=-fJ2o:: P because of (B.4b) 

we have 

vra,;) =J'(fJo/1/QorlJ. (B.5) 
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For the class of states with positive energy taking account 

of (B.5), (B.4a) takes the form 

( Ef- - El') lf'Qo (pJ = 07 (B.6) 

where Q0 = 2£9_: 2/,,..../n---=-2+----=;=2 
7 

Ep =lfJ2 +tn 2 • 

Passing to the rapidities according to formulas (1.16), 
we have 

( ch ,X'~- - chJ?)>Vif;?)=~ 

or, equivalently 

2 ~;, (}'~:h) ~;,f~v;xv?f''J. fi/ =fJ. 
Using the relation 

.sh ~ = r(1 !i>t/71"}r(t+-i~/7r) ' 
we will write (B.B) in the form 

/1 (;x't, )/,) (Ate-~ '2) p<f ( /) =0, 
where 

11 !.~?, .fJ = 2j; rr1.-~- l. r:x'l -A'I'J/.7t)r(t1-ia~+-A'p)/.7!) 1 

(B. 7) 

(B. B) 

(B.9) 

(B.10) 

As /I(J'91 Ap) does not vanish for real rapidities, sr~satis­
fies the equation 

(Xr/ -;t;}) '19 (p~) =0. 
(B.11) 

Introducing the interaction into (B.11) according to the equation 

(X/ -x/)'fj//)= r/:Jl)3 !/x'~-f V(p~ i<;~)lfi fK-.Jd12K, <B.12) 

we arrive at equation (3.2) 
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0 I 2 t'A 

' I l'I )',..=)"t+it 
0 

I 0 ....... I 
)"K::-_r'J--lC ,.,-(..!Jt 

\ I .,_ 2i91 I 
\ '·I I 
\ 1.1 c, lc,. 

" I / '- ., / 
........... ' ........... . ----..J L--

Fig. 1. The contours C and C, in the complex )":. plane 

for integrals (A.2a,b)." 
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