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§ 1. Introduction

The quasipotential approach (QPA)/1_3/ is a very important
tocl for solving a number of physical problems/4{ The geometri-
cal properties of the quasipotential equations (QPE) deduced in
/2/, made it possible to apply to them the technique of the re-
lativigtic Fourier transiormation and to introduce the notion of
the relativistic configurational space/S/. Hlere a scheme has been
developed in many respects analogous to quantum mechanics/5_11/.

The aim of this paper is to give a detailed analysis ol a
version of QPA in which the main role is played by the rapidity,
the dynamical variable, canonically conjugated to the relativis-
tic relative diptance.

Let us now congider in more detail the geometrical proper-
ties of QPE deduced in/z/. The equations [or the rclativistic
lwo-particle amplitude /q/lé‘,g-')and the wave _unction V;(/J} have

the Jorm:

AlB3)=- V5, 4y 14 557 VPR 6 )Gy (I AR, F)ed Ruc (101D

U (3)=@n) 8 V318 # s Gy ) VG £ £,) % 0 Sk, (1.2
where

S AR
Gifkj- 2@-25;,#-[6 : (1.3)



These equations have "absolute character" in respect to the geo-
metry of the momentum space*), i.e«y by form they do not differ
from the nonrelativisgtic Lippmann-Schwinger equations.

Equations (1.1) and.(1.2) cen be gotten from the correspond-
ing nonrelativistic equations replacing in the latter nonrelativig-
tic (Buclidean) expressions for energy, volume element, etc., by

their relativistic (noneuclidean) analogs/s/:
2
-2 —_— _‘/"
Ez Tz £y = g1,
2 , _ dR
Qﬁg&'— dK —s Q(X%«-;iffigé »
5/ﬁ —é’} Y é‘co-’(_)i’/: ,/jf-p‘zé\/p_’—g"/_ (1.5)
The connection between the quasipotential amplitude }7Cﬁjfi/and

a differential crogss-section of the elastic scattering has the
form’ >/

d0 _ 2 /2

da = 1971 (1-6)
which coincides with the normalization condition of the nonrela-
tivietic amplitude of the elastic scattering. In case of a real

quasipotential from (1.1) the unitarity condition follows:

N
P /Q/f 3 > * o 1.7
LmApG) = 5o JAERIA R G ) dewre . (14D

The transition to the relativistic /~ -gpace is performed by
means of the expansion in the matrix elements of Lorentz group

representations/5/ (relativistic Fourier transformation )

*) In equations (1.1) and (1.2) the integration is carried
out over the Lobachevsky/9 —space, realised on the upper sheet of
the hyperboloid

2 > 2
A =Pt =mic? (1.4)
(the mass shell of a particle with mass /22 ), In the following
We use the system of units, in which =C=m=1

=1-lz

(7, 8)=(ch Xy ~ (i) sh 1y ),

(1.8)

- -
T2, chly=by, SAXG <G (1.9)
Por example, the Green function C;; in the configurational /* -

representation has the form

=3 -, 3 5 * nd
6'7 (%, ¢ 7;—])3/5//(, z/é’,/x)é‘ K, T )dRx (1.10)

and satisfies the equation

(Ho =2ch X, )Gy (2,7)= -85 Y, (1.11)
where /12 is the differential-difference operator (free Hamilto-
nian) with the etep, equal to the Compton wave length of the
particle t4%C:

Hy=2chid r2gshig —LaverpiS ). (1.12)
The equation for the wave function in the relativisgtic 2 -space/s/
[Ho~2E5 +V(2,6)]% 2)=0 (1.13)

as well as (1.1) and (1.2), do not differ by form from the Schro-
dinger equation.

It was shown (see review/e()that relativistic differential-
difference equations in the important cases of the Coulomb and
oscillator potentials, as well as for the square well, were exaotly
solved in full analogy with quantum mechanics. The scattering
theory in the relativistic configurational space is algso in full
analogy with the quantum-mechanical scattering theory.

The only serious difficulty in thie scheme is connected with
the peculiar formulation of the boundery conditions in the diffe-
rential-difference case. In particular, it very complicates the

investigation of analytical properties of the wave function and



scattering amplitude in the complex plane of angular momentum é’
and energy é;’ » although the dependence of the operaton@bn these
variables is the same as in the nonrelativigtic case.

We will demonstrate that there exists a version of QPA which
also has absolute character in respect to the geometry of the mo-
mentum space, but is free from the above mentioned difficulties
(analysis of the boundary conditions is given in §3).

Let us write nonrelativistic operator of the kinetic energy

in the form:
-

2
Eé Z = filEELZZ ’ (1.14)

whererfyy,les the distance between the point with coordinates
-
g and the origin in nonrelativistic three-dimensional Euclidean
momentum space.
Using eq.(1.14) the Lippmann-Schwinger equation has the form
(B,R)AMK, §)d L«
ﬂ/_’ ..'}_._1_ V(-; —))*4 / (1.15)
PGz qm VP g)tems) §273,0) -5 25500 FiE

Now we pass to the relativistic equation (see (1.5)) replacing the

nonrelativistic (Euclidean) quantities by the relativistic (non-
euclidean) ones. However, when transforming Green's function, we
do not now replace the expression for the energy, but pass from
formula (1.14) for the distance in the Euclidean f’ -space to the

expression for the distance in Lobacheveky /9 ~-gpace:

S/¢,0)=/§“7-—*}/g=f/z/£;+ /@2_1/. (1.16)
The quantity Xg, » taken now instead of the energy E
is also called "rapidity". The relativistic equation for /407255

has now the form ):

*) This equation was first postulated 1n/5/. About the
quasipotential [//,0,¢ Eg,) see §2,

AB3)= -7 V@,% 2o 7 W""K F%@fgp‘. (1.17)

The new quasipotential Green functlon

52¢ (k)= Jﬁ%%@ -ij;qg——jii——;;:E (1.18)

has a pole on the energy shell f;(~Z;as other quasipotential Green
functions, and its discontinuity ensures the fulfilment of the
two-particle unitarity condition (1.7).

Since in the following rapidities ;k% will play the key role,
let us pay attention to the following facts. The relativistic re-
lative distance /~ and rapidity /Zr are canonically conjugated
variables in the sense of Fourier analysis on the Lorentz group/s/

/12113/).

(see also The analysis of many properties of QPE is eg-
sentially simplified, if it is based oﬁ the properties oprhysical
quantities, as functions of the rapidity/s'gl. Invariant inclusive
cross-sections of many-particle processes at high energies are
simple functions of the rapidity. Recently an interesting attempt
was made in ref./14/ to analyse this fact on the basis of the
relativistic Pourier analysis. In papers/15/, the apparatus deve-
loped in/s-g/ was succesfully applied in the study of the préper—
ties of the hadron wave function in the parton modelt

Therefore, there is a number of evidences that the rapidity

is an adequate dynamical variable in the relativistic region.

§ 2. Connection with Other Relativistic Eguations

Let us consider the complex plane of the variable ){ « Bnergy
and momentum (1.9) are periodic functions (with the period 2571:)
of the repidity along the pure imaginary direction in ;lr ~plane.
The kernel of the relativistic Pourier transformation, however,

does not possess this property of periodicity. Dealing with this



transformation, one should consider different quantities as func-
tions of the rapidity in the whole complex )f -plane. For instan-
ce, for calculating the integral (1.10) one has to use the
Jordan's lemma, closing contour of the infinite radius in the up~-
per, or lower, half-plane x » depending on the sign of the dif-
ference ¢ - 2’.

The mapping (1.16) is the infinite-sheet one. Only two sheets
of the infinite-sheet Riemann surface, corresponding to the strips

0<Im}’<ﬂ') T <Im X <0 (2.1)
have nonrelativietic analogs: the physical /) /E> 0 end the
nonphysical In VE < O  sheets.

The Bethe-Salpeter equation and infinite set of quasipoten-
tial equationa/16/ have the dependence only on C'A/r and ,SAX.
From the point of view of complex rapidities, for its studying
the principal branch of logarithm is sufficient. We have no rea-
son, however, to require QPE Green function to be 2-75‘. ~periodic
function of the rapidity. To satiefy the main requirement of the
two~particle relativistic unitarity, it is sufficient for the
Green function to have only one pole in the upper x semiplane.
An infinite chain of poles, corresponding to the periodic depen-
dence, does not contribute to the unitarity condition.

Let us study the connection between equations (1.17) and
(1.1). We use the relation

1 XK- °b.€
Gﬂ"’-‘zfc/zx2 S PTITD) =‘:17,[02% B
_(/ﬂ -&_’Lgéiéj:g7/K)+‘Qz(K), (2.2)

where

end S [Xe-Tp TS R
Rg00) $hX ,,Z,[(xe )% Crn)? (Xt Xp) 4 (o7 - »

Thus, we have represented the Green function GQ[/() of equa-
tion (1.1) as the sum of two terms, the Green function ‘?z/’() of
equation (1.17) and the quantity .Qg(’() + The latter contains the
whole infinite chain of "extra",(i.e.,not contributing to the
elastic unitarity), poles in the complex X ~-plane.

I/.\.et us clarify the connection between quasipotentials V
snd V' in equations (1.1) and (1.17). We write both equations in
the symbolic form

Az-ZLV+lm3VGA, (2.4a)
__ 1 p
= ﬁr[/*(—?%rﬂ Vg/]. (2.4b)

Transforming eq.(2.4a)

- - £ 4

= 5;%_ V‘/'(zmg Vﬁﬂ +/2W3 VPA’ (2.5)
we come to the conclusion, that eq. (2.4a) is equivalent to (2.4b),

A

if V and V are connected as follows

A A

- =N

V = V +(27,)3 V-QV, (2.6)
It is evident, that the Born approximations in (2.4a) and (2.4v)
coincide with each other.

let us pass to the connection of equation (1.17) with the
Bethe-Salpeter equation:

7—(p4,P2 ;/01///02,) :/(/p’)PQI'pf/)p?,} L (2.7)
2.

+f/‘/601'/02)'§**/1 gf-k/G'/p)k) 77_2éj+/(}§_/(’/01:,02’)c/fk )
where /O:,O, */p5 . In the c.m. system P:[Zd}}(,, 0—,} .
The two-particle propagator G’/EK) has the form

CO o b rprTrafF=emrid]f .




One of the wayes of transition from‘the four-dimensional
equation (2.7) to the three-dimensional QFE is to replace the
Green function G(ek) by "dispersion type" integral E(ex) provid-

ing two-particle unitarity

ads’ ,
G(P) ~+£(€ )= -(gi,,—,; S, wres A (s5)
where
*)
Dix)=0x8x%m?), (2.10)
s=P2c=pP P-4 P
and the quantltyf/f S/ satisfies the only comndition
Fls,8) =1, (2.11)

If instead of (2.9) one uses expression*)
4 p

3/'0’() (Qﬂ’ff/z)/z’ ze D / *K)Z)KE""), (2.12)
where ]:[”/ch'fl’? '1) , then in the c.m. system

00://?/()-’-4,;2—;)3% Qe(%). (2.13)

Substituting (2.13) into equation (2.7) and passing to Xhe
amplitude A /5/, we derive eq.(1.17). Connection between V and
the Bethe~Salpeter kernel K has the form:

V=K+K(6-3)V. (2. 14)

) It can be shown, that dispersion integrals in the/’( -
plane are just of type (2.12). Analytic properties of the solu-
tione of equation (1.17) in x - and &€ -planes will be descri-
bed elsewhere. We note that analytical propertiss of the amplitude
in the variable W= 'L # L 8/7{))7‘-;/))2 ”) V= E[ag , similar

to I , have been studied in ref. /17/,
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§ 3. The Equation for the Wave Punction in the

Configurational Space

-
We shall introduce the wave function % //)) in the conti-

nuous spectrum:

(P4
Y (5)= (cnpSiped) - ndhy AL G

Equation for V (/7} has the form

ip)= (22 Fof) 4k 3,7 e LU o

Making in (3.2) relativistic Pourier transfomation, we arrive at

- W d
the Schrodinger equation for the wave function 7¢ ()

o 5 d
%/Z):/—g‘j—rjgf{{pjzj%//’/d_{?p (3.3)
in the relativistic configurational z -representation:

Y (0)=£(G, %) 2)Q (22T V (F) ¥ (Il B B0

The Green function gyf—'z/ls given by the expressions

S ER)EIR, T)
223, 7
ﬁﬂ(?’?/vmsiﬁz JJ A7 eiE

Z (284—1/976/2 'z//D (7, (3.5)

- 4.7?'2 34
where ;78 /2, ?/ is the partial Green function (see Appendix A)

o * ,
s B X)S L) 4
g?‘f/?’?/_}; Shxy)  Xg? - Ax?+(E oL X

_e_,(f._)[ﬂ(z 228, 1o, )Su(2/ ) * B (2 2/~

Sh il
O#1 o (E+1)
& (255, 3)5, Vp (=) ey

)
and ’Z[/1 is the so-called generalized power.

(3.6)

on)
The definition of ¢ as well as relativistic free wave functions

1




by form from the corresponding Green function of the Schrodinger
equation. The distinction is only in free solutions. Let us em-

phasize that eq.(3.6) comprises the usual step o ~function

7 220
() - /0 (3.21)

2 <0,

while partial Green function of equation (1.1) in the relativigtic
-~

/> -gspace contains "smeared" 0 -function

M
20y - 4 dx
g2 = 252&-_/

“’frj'_fg’ ’ (3.22)
and that results in the difference character of the cperator
(1.12) and difficulties in the formulation of boundary conditions.
For equations (1.17) and (3.2), as well as equivalent equa-
tions (3.13) and (3.17), the situation is essentially different.
Here we deal with differential equations of the second order.
To determine its solutions it is necessary to put two boundary
conditions (at 2+ ¢ and 2 = ©° ), We write down these
conditions taking into account that /?g(?éé):fand assuning that po-

tentials V/2) are the short-range ones.
For the scattsring (}’2 2 0/

. /ZE
. e~ %,
Ye (Z)?:' s (X~ %!/ *Hel13)8 * " (3.23)
For the bound states )’2 =L 49; /ﬂ<(‘g < %r}
£y =cos sy, (3.24)
_(22
sze (%) ~ e (3.25)

The boundary condition at the origin in both cases is the

game

(/ke o) =g. (3.26)

14

Iy

§ 4. Some Simple Potentials

For Z= J equation (3.17) has the form

2 (’Z Y ”~
‘é_:%’_}-ﬁ]’ng;,/z/ {é%; Viz) %ol2). (4.1)
We consider the square well/6/ '

l//'z):—ﬁ(ﬁ’s’Z)Vo (4.2)

For the bound states (see (3.24)) we obtain the discrete spectrum

of the rapidities from the transcendental equation

(o +6(8)clg(R618,)) =0, (4.3)

where
5/(¢):/°fg2*f¢%/5577(; (4.4)

Note, that the behaviour of the wave function 5’20(2)'\1.5'[}70’2

inside well is different depending on the sign of the expression
under square root in (4.4).
In the continuous spectrum we obtain the following expres-

sion for the scattering phase

0,(Xy) = =)o R +M¢Z}[%)C§ (eo*/)',))]' (4.5)

For the attractive Coulomb potential

= - % (4.6)
V(2 = - 557z, » <20,
corresponding to the massless scalar particle exchange, the wave

function of the discrete spectrum has the form

B (2) =L (%Q’/;/‘%e‘zf" Dre-n,2,228,) (4D
/17,

The energy spectrum is given by formula (cf.

_ [1eJT-<TnT (4.8)
En" Y, n=1,2,..,

15




From the asymptotic behaviour of the wave function of the

continuous spectrum

Pool(?) =V ]9 € 2&,21//71 5/;21, //(-’ ¢/f" c 2“4{/}‘“9)

shery ?
which is given by formula
%ﬂ/g/ ~|/]%5(}7/,r22 7‘51;7(7}, 572};&1‘6;/);)/ (4.10)

we obtain the expression for the matrix element of the,51—matr1x
AR ?cé‘f)’g) /{1 -i/spox,)
9 /‘/j +Lo(/5.Ag/(g) (4.11)

We congider now the equation for a harmonic oscillator. In

dimensional quaniities it has the form
. 2
/ i od° mw? 2y 2
L LT -
(- 2 r mc? X% P (2} 0. (4.12)

¥e introduce the operators

L7
Zran s (4.130)

“~ A
-y 2 277 A 4

/Al lag, = C o A =-¢ i e (4.13b)
[7,q] =-¢, (¢.130)

as well ae the creation and annihilation operators

e : R AP (4.14a)
a’ =p(qg-ir), a 2509 +i7),
[a,e*]-1 (4.14b)
The initial equation can be written now as
"2 ~ mc? - 2
X 237G, = B = X%, (4.15)

Because of the commutation relation (4.14b) and formula

16

2 zaa* -1/2 (4.16)

@)
all excited .5 -gtates can be obtained from the ground state ?: s
A 2
ro) _ (o) ro)
2297 = 2,7, (4.178)
- (0
a %" -0, (4.17b)

4
by/? ~-multiple action of the creation operator @2 :
2
~272

*,,(; - 2
/g/ u?’ )st%s/z, 2%

The energy spectrum

£, =2mc3ch(VES (ent32)) (4.19)

in the nonrelativigtic limit goee to the KY -states spectrum of

(4.18)

the usual isotropic oscillator
bn -2mc? - Fw (2rn+3/2) , (4.20)
We also present the relationm, connecting the
root-mean-square deviations of the relativistic relative dis-

tance A7 and the rapidity 4% in the ground state (cf./'2/)

2
2 2 (4.21)
/Z 2) (11)() ﬂvlcz .
The authors are very grateful to N.M.Atakishiyev, V.G.Kady-
sheveky, N.P.Klepikov, A.N.Kvinikhidze, S.Mavrodiev, V,A.Mat-

veeév, M.Mateev, L.I.Ponomarev, A.N.Sissakian, N.B.Skachkov,

L.A.Slepchenko and A.N.Tavkhelidze for numerous useful disous—
sions.
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Appendix A

“2)
Using the connection between Fg/gﬂandgfz,/;\/6/, we write
eq.(3.6) in the form

y Yo (2% by (20 .
g?e/? 2/_ _Sz%i e [gf’ f??) 077? /?,2_//’ (A.1)

where

) 2)
., & (0, %)8, "2l 1)
I 020z | S (h.20)
@ “ 0, X)) & we)
(ggg /? 2/ / /,(9 _ XKQ 1‘[ I a//zlk_ (A.Zb)

The integrand in (A.2a) decreases in the upper half-plane
/}; » the integrand in (A.2b) decreases in the upper half-plane
when 2 > 7% and in the lower half-plane when Z< 7 . Thege

statements can be easlly proved using the following representa-

//
tion for 5} ‘2 );)
4 2) o E '*z/}’ =2,
- _/‘L} b4 i‘f/‘r . . *~ (A 3)
%{?/{/_Z—FWP e 26@-{7‘42’,1 é?/e /

From the representation (A.3) 1t also tfollows that integrands in
(A.2a,b) have infinite chains of 2Z-order "kinematic" poles at
the points ¥, = ¢tims n=7,2,.) o exclude these poles, not con-
tibuting to ithe unitarity condition (1.7), we define the integrals
in (A.2a,b) as the contour integrals (see. fig. 1). The integratic=
in (A.2b) is carried out either over contour (j sy Or over con-
tour (j » depending on the sign of Z= r-44 » Performing the in-
tegration by Caushy theorem we obtain the expression (3.6).
Strictly spesking, our definitions are of model character,
because we omit a certain quantity in the Pourier transform of
the free Green function. The model satisfies all physical requi-

rements what ig its main justification. From equation (3.10) with

18

the Green function (3.6) for a real potential we obtain real
scattering phase shifts. The wave function ;ﬁ;(i/safisfies the
correct boundary conditions of the scattering theory in the re-

lativistic 2 ~-space (3.23).

Appendix B

Ne give another derivation of the equation (3.2) (cf./18/).

The wave function 9%?%/2}0f a system of two free particles
with equal masses in the momentum representation obeys the equa-

tione
(P2 =m ) pa, pe) = 0,
/pzz'mszfpd,ﬂzj = 0.

Pagsing to new variables (Q and /D by the formulas

prspr 8, paeprQ (5.2)

we write the system (A.1) in the form
[(§+P)-m?]Yra,p =0,
[(8-p)°-m?]¥10,p)=0.

Taking the sum and difference of equations (B.3), we come

(B.1)

(B.3)

to the equivalent pair of equations

(%Z,L,oz—m )R, p)=0, | (B.4a)
(Qp)¥(0,p)=0p. (B.4b)

-
In the c.m. aystem Q 0 p1~-,02 P because of (B.4b)

we have

Yra,p) =38 o) %, (P). (B.5)

19




For the claass of atates with positive energy taking account
of (B.5), (B.4a) tekes the form
(Eg=E5) %, (5)=0, (B.6)
where (J, = 26; :2Vm?+ g2 é;:-_v/az"mz-

Passing to the rapidities according to formulas (1.16),

we have
(ch Ry ~chXp)¥y (P)=0, (8.7)
or, equivalently
2 sh(2ef2e) ch( e 20)ys 157 <9 (5.8)
Using the relation
Z
Sﬁ z = 71 ~lX/p)C(L1+E2/7) 1
we will write (B.8) in the form
A Xy, %) (2°-X°) ¥, (5)=0, (.9)
where

/4/,}’7/ );,} = 2///-/1 + L'//9 -XP)/}//-/I#[/X;*]P)/W/ (B. 10)

As /4/2'7,2}) does not vanish for real rapidities, Zﬁsatis-

fies the equation
//YQZ -2 ) ¥ P =0. (B.11)
Introducing the interaction into (B.11) according to the equation
2_y 2 2)_ 1 Xe - > ~
(% ]P/%//D/—(z—‘f,ja 577%’?/IV/ L Kil )Y (K)d %k, (B.12)

we arrive at equation (3.2)

Fig. 1. The contours c and c in the complex }/,.( plane

for integrals (A.2a,b).
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