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CKa'IKOB H.E., Conosuos Y!,JI. E2 · 9763 

00TBHUHanhl OAH06030HHOrO 06MBHa B penHTHBHCTCKOM 
KOH¢HrypaUHOHHOM ITpBACTaBnBHHH 

PaccMoTpeHa penHTHBHCTCKaH CHCTeMa asyx ¢epMHOHOB. B Kaqecrse 
KB83HITOTBHUHanOB B3HTbl ITOTBHUHaiTbl 0AH06030HHOro 06MeHa, rrpeo6pa30B8H
HhlB K TpBXMBpHOMy BHAY B TBpMHHBX ITpOCTpaHCTBa Jlo6a'IBBCKOro, 

OcywecrsneH nepexoa K penHTHBHCTCKOMy KoopaHHaTHOMY rrpocrpaHcray, 
Opeano•eHo penHTHBHCTCKoe o6o6weHHe crrHH-op6HTanbHhlX H TBH30pHhlX 
can. 

Pa6ora BhiiTOnHeHa B Jla6oparopHH reopeTH'IBCKOil ¢H3HKH OY!5H1. 
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The two-fermion relativistic system is considered. 
The one-boson exchange potentials transformed to the 
three-dimensional form in terms of the Lobachevsky 
space are taken as quasipotentials. The transition to 
the relativistic coordinate space is realized. The 
relativistic generalization is proposed for spin-orbital 
and tensorial forces. 
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I. INTRODUCTION 

The subject of the paper is the description of inter
action of two relativistic particles with spin 1/2. In 
ref. I I I it was shown that for the description of spinless 
particles it is very suitable to pass to the relativistic 
configurational representation by using the harmonic 
expansion on the Lorentz group. In the two- body problem 
there are widely used matrix elements of the relativistic 
scattering amplitude in the one-boson exchange approxi
mation. They are taken to be relativistic one-boson 
exchange potentials (OBEP). 

Our aim is to find the explicit form of such relativis
tic OBEP in the relativistic configurational represen
tation for interaction of the particles with spin. This 
paper thus may be considered as a sequel to paper / 21 . 
In ?2/ for the two-fermion interaction the 4-dimensional 
matrix elements of the relativistic scattering amplitude, 
corresponding to the Feynman diagram of the one-boson 
exchange (OBEP), were transformed to the 3-dimensio
nal form in terms of the Lobachevsky space. Such a 
transformation is analogous to the Foldi-Wouthuysen 
transformation, however, it does not deal with the ex
pansion of the interaction terms in powers of v 2 I c 2 . 

On separating the Wigner rotation D 1 l2j v·I (A P, k ) I 
originated from the relativistic spin kinematics, the 
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Feynman matrix element of the one-pion exchange (no
tations are taken from 131 ) can be represented in the 
form: 

~al (p ~~u a} (k I )u a2 

/1-2- (p-k)2 

( .... ) 02 --+ 
P 2 Y 5u (k2) 

--+ --+ (2) --+ .... 
=<pial; p2ai T PSI k Ia;; k2a;> 

= ! /f> al J;a2 T(
2
)(k(-)p)¢ ¢ D 112 ,{V-1 (AP.,k )jx 

PS a a a a .
1 

Y alpa2p lp 2p lp I 

l/2 . -I 
X D , 1 v (Ap ,k2 )l, a a 2 

2p 2 
(1) 

where the relativistic amplitude 

T ~~ (k(-)p)= g2 4<at_;< 1)( a2it 2~ 
/1-2+4K--+2 

(2) 

does not differ in form from the nonrelativistic potential 

v 
PS 

(k-p)= al(ki-PJ)ajfz-p2)_ 4(a;K ... Ie)(a2i<'2e) 
fl. 2+0<-p) 2 - -~4-~--

/1- + K e 

.... --+ 
k-p 

K =--
e 2 (3) 

used in the meson theory of nuclear forces. The two
component Pauli spinors ¢ are normalized by the con-
dition Jal ¢ a2 = ~ala2. a 
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The quantity : defined in 121 is called the half 
momentum transfer ( an analog of the half velocity of 
a particle introduced in I 41 ) and is related to the transfer 
momentum in the Lobachevsky space 

--+ 
.... --+ .... -1 .... --+ p k ,.. s 
~=k(-)p=A k=k--(k- ")r)=Mshx --

P M 0 Pn+ ~ 1K1 

.... I --+--+ 
~o=VM 2 +~2 =(A-P k)0 =(~p 0-kp)/M =Mchx~ (4) 

as follows 
--+ --+ __ M___ X~ K 
K a ~ ..j "" M sh - - . (5) 

2(~0 +M) 2 1Li1 
The formulation in terms of the Lobachevsky space is 

natural when the momenta in the matrix element (1) are 
on the mass shell, i.e., their components are linked by 
the relation 

p~ - p2 "" M 2. (6) 
This equation gives the three-dimensional surface of the 
hyperboloid which upper sheet is used as a model of the 
Lobachevsky space. In the nonrelativistic limit, when 
the curvature of the Lobachevsky space tends to zero 
and this space turns into the Euclidean space, one has 
--+ ... . 
K-t>Ke • 

The Feynman matrix element (l) in form (2) is a direct 
geometrical generalization IS/ of the quantummechanical 
potential (3) obtained via changing the Euclidean half 
momentum transfer -; e by its analog in the Lobachevsky 
space. The kinematical Wigner rotation in (1) is inter
preted as a rotation at the angle between the old direc
tion of the spin vector and the new one. The latter occurs 
after the parallel translation of the spin vector in the 
space of negative curvat'!re along the triangle composed 
of vectors p, k.... and ~= k(-)p. In the nonrelativistic 
limit the Wigner rotation is absent: D112 1 y-I (A P,k)} .... l. 
Analogously, the amplitude of the vector meson exchange 
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(with the mass f1) in the c.m.s. (p
1 

=- p
2
=p; k~1 =- k~ = k) 

takes the form /2 : 

-· --> (2) -> --> 
<pa

1 
;-pa IT V I ka' ;-ka'> = 

2 I 2 

a a' --> a2 --> f1 a2 -> 
il t(p)y

11
ui(k)il (-p)y u (-k) 

g 2 ----------------------v 2 2 
f1 - (p-k) 

* a * a (2) -> -> -> 
I. ¢ I ¢ 2 Tv (k(-)p;p )¢ ¢ X 

a a a a 
lp 2p lp 2p 

l/2 -I 1/2 -I 
X D IV (A ,k)lD 'IV (A ,k)l, 

a I pa'l p a2p a 2 p 
(7) 

where the amplitude obtained after separation of the 
Wigner rotation 
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4M 2 
.... --> 2 -~ -T(2)(k(-)p;p)= -gV-2--4~ 2 

v f1 + 

4( _. .... )(-> .... ) 4 ........ ->2 
2 a 1 K 1 a2 K - (a 1 a

2
)K 

- g ---------------------
v 2 4 .... 2 fl + K 

2 8PoKo i(o"l +(;2)[px-;_] 
- g ----::--2- ------- -

V M 11 2 +4k:2 

2~ 
-gVM 2 

2 2 2 .... .... 4 P0 K 
0

+ p
0

K
0
(p· K )-M 

---~2-~;2 ----

i 8 ( a~ P )( -;,I ;; )( ;2 P )( a~ ;; ) 
- v M"2 f1 2 +-4 ,(_2 _____ _ (8) 

has the form of a, direct geometrical generalization of the 
Breit potentials 12 ,B/. 

In the second part of the paper we report in brief 
the main ideas concerning the relativistic configurational 
representation required to deduce new results. In the 
third and fourth sections we derive the relativistic ana
logs of spin-orbital, spin-spin and tensor forces and 
discuss their properties and distinction from the nonre
lativistic case. In Appendix I we give the calculations 
for deducing the expression for tensor forces, and in 
Appendix II we prove the hermiticity of the obtained 
relativistic potentials. 

II. THE RELATIVISTIC CONFIGURATIONAL 
REPRESENTATION. COULOMB AND YUKAWA 
POTENTIALS 

The relativistic configurational representation (RCR) 
was determined in/ 1 /. In the nonrelativistic case the 
configurational representation is introduced by the 
Fourier-transformation which has the meaning of the 
expansion over the unitary representation of the Galilean 
group, i.e., function exp(i qr ). The RCR is introduced 
via expansions over the unitary irreducible representa
tion (UIR) of the Lorentz group. The use of such an ex
pansion is justified since the Lorentz group is the group 
of motion of the Lobachevsky space realized on the upper 
sheet of hyperboloid (6). So, if we want to associate the 
local in the Lobachevsky space quasipotential (2) (8) with 
some local expressions in the coordinate space, we should 
make a transition to it by means of expansions on the 
group of motion of the Lobachevsky space. 

The method of expansions on the Lorentz group is well 
known · 9• and was already employed by a number of 
authors /1°1 in the elementary particle physics. However, 
these authors did not treat the group parameter (which 
plays a role of the relative coordinate in our approach) 
as a relativistic generalization of the relative coordinate 
and the expansion over UIR of the Lorentz group itself 
as a relativistic generalization of the Fourier to the 
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coordinate space. In ref. 1 the harmonic analysis on 
the Lorentz group was used in the form given in/1°/. 
The main object is the introduced by Shapiro 1 10• functions 

~ ~ ~ 
c ( . ~ ) Po - p • n 1 · s p,n,r =( )- -uM 

M 
(9) 

p = V M2 + p 2; n = (sin() cos¢ , sin() sin¢ ; cos ()) ; [; 2 = 1 
0 

composing the complete and orthogonal system in the 
Lobachevsky space 

1 t: ~ ~ ) -+~ 3 
--3 J s * ( p ; n ' r ~ ( p ; n ', r,) d n = 0 ( r..._ 1, ) 
a~ p 

~J e*(p;n,r)~(k; n,r)dt=o
3

(p-k)vl:p2/M2 
(271) 

~ ~ 

r = r.n, 
~, , _., 
r =r .n , dn 

p 

d ·+ 
=~---

Vl+p2/M2 

dr = r 2dr dw = r 2dr sin() d()d¢ 
rt 

(10) 

The functions ~(p;n,r) realizing infinite-dimensional UIR 
of the Lorentz group play the role of plane waves when 
passing to RCR. The nonrelativistic limit 

t: ( ~ ~ . ( ...... s p;n,r) ... ei p•n)r 
. ...... 

"" e 1 P • r 

... __, /1,10/ 
The partial expansion for e (p; n, r) has the form 

~(p;n,r),. ~ (2Y +1)/ Pn(chx ,r)Pr e.:, 0 (. p 

where the radial functions 

8 

-> .. 

(~) 
IPI 

(11) 

. f /-71-
p f ( ch xp , r ) = ( - 1) \ 2 sh X 

p 

-I -r 
1(irM~_!Lp 2 (chx )= 
---. p 

1 (trM+ 1) - L_ irM 
2 

.e 1(-irM+l) )e ( d )r < h ) 
= 1 -------- (sh x ----- p c x ,r 

1(-irM+ e + 1) P shx dx 0 P 
p p 

p 0 ( ch X ' r ) = sin ~~~...I!. 
P rM shx -

p 
(12) 

in the nonrelativistic limit M >> 1 x « 1 transform to 
the spheric~! pessel functions Py ( ch X~:, r) .. j p ( p r ) . 

In ref. · 1' the authors have found the operator of 
free Hamiltonian for the plane waves (9) 

~ 

->-+ c(+ + H 0 f (p; n, r) = p
0 

s p; n, r ) . (13) 

The relativistic Hamiltonian is the second-order finite-
difference operator 

i a 
~ i a i i a !\ e ,¢ "M a; 

H =Mch(- --) + - sh(-- )- --- e 
o M a r r M a r 2 Mr 2 

(14) 

with the step proportional to the particle Compton wave 
length 1/M. In the nonrelativistic limit 

· a · a 
exp ( ...!._ -- ) - 1 .. ~- -

M ar M ar 
~ 

and H 0 transforms into the free Hamiltonian of the 
Schrodinger equation. Analogously there has been found 
the momentum operator / 11 I 

P,; <~n',r) =i>f <i>;n, r) (15) 

(for its explicit form see Appendix). 
To complete this section, note an important property 

of the new relativistic coordinate. Its modulus is the 
relativistic invariant since it parametrizes the eigen-
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143-lues of the-. Casimir operator of the Lorentz group 
C= 1M vMIW=N 2-M2=1/M 2 + r 2 . It was shown in/I2/ that 
to ~e 11 standard invariant definition of the mean square 
radius of a system has been given the group-theoretical 
sense of the Casimir operator of the Lorentz group 
because there holds the following relation 

<r2> = £..._) aF(t) I = _1_[CF(t )1 o, 
o F(O a t o F(O) t= 

where F(t) is the invariant form factor of the system. 
Thus, the distance from the ... centre of the system is 
defined by the eigenvalues of C 

2 6 aF(t) 
<r >= ----

0 F(O) at 

1 2 -> f(-2 +r )F(r)dr 
M 

(16) 
t=O JF(r)dr-. 

where F(r) is the transform of F(t) in the new r -space. 
This relation between the new coordinate and the system 
mean-square radius will be important for the interpre
tation of the results obtained in Sect. IV. 

In ref. /I I the transform of the meson propagator 
has been found in the new coordinate space. Due to 
the spherical symmetry of the propagator the transfor
mation via functions (9) takes the form 

·v(~ 1 ~: -. -. dnll 
fJ= --fs (ll;n ,r)------

(217) 3 112- (p- k) 2 -

(17) 

=417 f _sin rMx!l _ sh 
2
xl1 dx !1 

rMsh Xt1 11 2_ 2M2+ 2 My'M2+ ~2 

of the relativistic generalization of the Yukawa potential 
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I 

' 

\ 
J 

2 2 
Consider the Yukawa potential for 11 < 4M . On 

performing the finite-difference differentiation we ob
tain, like in the nonrelativistic case, the scalar and ten
sor parts: 

V(r)=V
5

(r)(a' V')+V (r)S , 
I 2 T I ,2 

(27) 

where 

Vs(r)= i [112V Yik. (r)-817 ~(1/~2 +r) o(ii )] (28) 

and 

2 2 
VT(r)=.L r [/12+ 3 !:.._( 1 -~-) th(rMa) + 3 i i r 2M2 --

(r+~fXr+2M) y'1-112/4M2 

1 
+-;2 

2 2 3 
3-2-w(l-112/4M )-~-;M;) 

1 -11 2 /4M 2 

(29) 

V (r). 
Yuk. 

The potential (27) with such Vs and V T in the nonrela
tivistic limit reduces to expression (23). So in the rela
tivistic expression (28) there appears the o -function 
of 1/M2 + r 2 , instead of o (r) in (23). As was mentioned 
at the end of Sect. II (see formula (16)), it is just the 
combination 1/M 2 + r 2 that measures the mean-square 
radius of a system in the relativistic case. Therefore 
to the point 1/M 2 

+r2 = 0 there corresponds the system 
centre in full analogy with the nonrelativistic case r 2=0 . 

Like the above considered spin-orbital interaction, 
the potential V T (29) does not contain at origin the sin
gularities higher than the Yukawa potential itself (17) 
(in contrast to the nonrelativistic expression (23)). 
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CONCLUSION 

It is shown that in the relativistic theory the consis
tent use of the language of the Lobachevsky geometry and 
the harmonic analysis on the Lorentz group allows one 
to construct the three-dimensional formalism similar 
by form to that of quantum mechanics. Indeed, the Feyn
man matrix elements ofthe scattering amplitude, cor
responding to the one-boson exchange, in the momentum 
space can be represented as a direct geometrical rela
tivistic generalization of quantum-mechanical potentials. 
To this end one needs only to extract the kinematic 
Wigner rotation which performs the transfer of all spin 
indices onto one momentum ll 3 1. Then the remaining 
dynamic part takes an absolute form in the sense of 
transition from the Euclidean to the Lobachevsky geomet
ry. 

The use of the relativistic configurational represen
tation allows one to conserve this three-dimensional 
nature of description and the nonrelativistic spin struc
ture of expressions in the coordinate space too. The 
derived images of the relativistic OBEP may be treated 
as a relativistic generalization of the spin-orbital and 
tensor forces. 

An important difference of the obtained relativistic 
potentials (21) and (28),(29) from their nonrelativistic 
analogs consists in that in the consistent relativistic 
formalism the account inclusion of spin does not result 
in increasing of the order of singularity at the origin, 
i.e., the appearance of terms of the type r -3 and r -5 . 

This is the result of the~ finite-qj.fference nature 
of the relativistic operators P and Ho in RCR, since 
the action of the finite-difference operator does not 
raise the order of singularity. Thus only a new singula
rity appears on the imaginary axis, at a distance of the 
order of the particle Compton wave length from the real 
axis. It is clear that in the nonrelativistic limit these 
singularities and the order of singularity increases. 

It is interesting to note that the potentials with such 
singularities at complex points have already been intro-
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duced by some authors in a pure phenomenological 
way to describe a number of specific features of the 
high-energy scattering/14/ (cf. also/151 ). Our formalism 
provides a field-theoretical basis for application of such 
potentials. 

Our further purpose will be to utilize the obtained 
relativistic OBEP formalism in quasipotential equations 
for constructing the three-dimensional formalism sui
table to the relativistic description of composite par
ticles and the high-energy scattering. 

The authors express their gratitude to V .G.Kady
shevsky for fruitful discussions. They also thank D.I.Blok
hintsev, V.A.Matveev, V.A.Meshcheryakov, R.M.Mir
Kasimov, A.F.Pashkov, L.I.Ponomarev and V.N.Starikov 
for interest in the work. 

APPENDIX I 

The momentum operators P in the coordinate space 
satisfying (15) have the form 

i a 
~ v~- A 

P =- sin e cos ¢ ( Me r - H ) -
X 0 

. a i. a 
- i ( _£~f co_s..sk.__ _a_ - Sin 1!..__ -- ) e W a;-

r a e r sine a¢ 

. a ,... ...1,_ __ 

p =- sine sin¢ ( Me M a r - H 0 ) -
y 

. a 
_ < cos e ~.!!!L. ~ + cos L !!__ ) e ~- a;-

r ae r sine a¢ 

A i a i a 
p = -cos e (Me M a;- - H ) + i sine_ L e M a;-

z 0 r ae 

(1.1.) 
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In the nonrelativistic limit the finite difference operator 
p transforms into the known quantum-mechanical 

~ 

differential operator p 
nonrtd. 

written in the spherical 

coordinates. In accordance with (1.1) the momentum 
operator can be written as follows 

A i a 
• M-
~ ~-~.(Me ar 

J 

i a 
- Ho ) + Y_i ( e' ¢ ) e "M ;r;-

(1.2) 

The operator Yi (0, ¢) containing the differentiation over 
angles 0 and ¢ has the same form as the non-relati
vistic theory. 

From (1.2) it follows that 

-· .... • i a 
[ r x p I ~ L cxp ( M a-;- ), (1. 3) 

where L coincides with the usual angular momentum 
operator. . • ' .. i a 

Now we mtroduce the operator Vr . .J;f. = vf.dif. exp(-ftf"Tr) 
and derive the commutation relation for radial func
tions \l ;.dif. and t' which is necessary for calculations of 
the tensor forces. The most simple way is to proceed 
from the relation be;ween \7;.dif. and the nonrelativistic 
gradient operator v : 

nonr. 

.... , .. +-no) - ~) ar ' (1.4) v v f.dif. nonr. 

where 6 is the finite-difference operator 

~ 1 · · a f!.e ¢ 
D = -. [ (1- -1

- )(1-exp( -2 -h - )+ --' --l. 
2 _:. rM mar M2r2 

(1.5) 

M 
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Then we have 

~ 

[ v f~dif.i .-r.] = o 
I ij 

+ n. [ n ,r. J- -n. fi .. 
I J I J 

(1.6) 

Further using the property 

!!. .... 
0,¢ 0 =-2ii (1. 7) 

we arrive at the commutation relation for radial func
tions 

... 
v ;.dif. i 

·•]"' 2i .... -.D~ , r. =u .. - -- n. n. d 
J IJ M 1 J ra (1.8) 

~ 

where D 1 is the radial part of D rae 

D = ~- [(1- _i __ )(1-exp( -2 .i ~- ))] 
rad 2 ...:_ rM M ar (1. 9) 

M 

It is easy to see that the second term in (1.8) vanishes in 
the nonrelativistic limit and (1.8) reduces to the usual 
commutation relation for nonrelativistic quantities: 

To calculate the tensor forces we should know the 
action of vi vi on an arbitrary radial fun.ction f( r) . 
Using the relation (1.8) one can find 

.... .. r- 2 :!.__ 

f 
.... -· M ~ 1 A 

(r) ="'! n. n. ---:-- [ T - - 0 l + 
1 J 1 r 

v v 
f.dif.i f.dif. j 

r+ M 

+O .. _l_p !f(r), 
IJ r 

(1.10) 

* The relation (1. 7) follows from the fact that com
ponents of the vector n can be represented as a combi
nation of the spherical functions Y1M (0 ,¢),and the spheri
cal Laplacian acts on them as follows: 

!!. 0 Y < e, ¢) =- e (f + 1) Y < e, ¢ ). 
4 fM fM 
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where 
. a . a 

~ i a 
P =eMa7 

1 2 1 

e .- M Tr = _!_ __ r_ ( e M Tr- 1) D 
rad 

2 i a 
0 = _l __ (e w-a;-

2 (2 2_) 
M 

2.L r+.L 
M M 

-2.2... a 
-e M-ar 

~ 2 i _a__ 2 i a 
1 Nrdr - v-T = -.-- ( e r + e a r - 2). 

(2 _1_) 
M 

(1.11) 

In the nonrelativistic limit the operators P and 0 
transform into the one and the same operator of a usual 
differentiation a I a r. The operator T transforms into 
the differentiation operator a2 I a r 2 • Expression (1.10) 
is written in the form close to the nonrelativistic one 
where the operators of single and double differentiation 
are replaced by their finite-difference analogs. 

APPENDIX II 

Here we show A the hermiticity of the operators of the 
free Hamiltonian H o. and the momentum P . 

Consider first H0 . It appears to consist of two 
hermitian parts 

and 
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M h ; a i hi a C .....__ + -S --
M ar r M ar 

iE_ 
l1e,¢ e Mar 

- 2Mr 2 

(11.1) 

(11.2) 

To prove this assertion we note that the operator exp( ~ aa ) 
is hermitian with the integration measure dr * and ·tner 
spherical Laplacian !18 ¢ is hermitian with the measure 
dw =-sin{) d(} d¢. ' 

The hermiticity of (1.1) follows from the following 
consideration 

f dr r
2 

t/1 * ( r) I M ch .L L + .L sh L _a_ ] ¢ ( r) = 
M ar r M ar 

=M.. I -
1
- fdq'l*(r)[(r 2 + !!._)+(-l)n(r 2 - j_r_)]x 

2 n n! M M 

i a n M [ 2 x(-- -) ¢(r) =- f drl (r-Mar 2 

i a 
+(r

2 
+!!:._)eM dr ]t/J* (r) 1¢ (r) = 

M 

• _i_ i__ 
!.!..._)e-M ar + 
M 

= f dr r
2

l[Mchj_ .L + j_ sh _t_ .L ]t/J ( r) l *¢( r). 
M ar r M ar (11.3) 

Hermiticity of (11.2) follows immediately from hermi
ticity of exp( * .iL) and t\ e ¢ with the corresponding 
measures rJ r ' · 

... l'!.e ¢ i L 
f dr t/J*(r) -'-elf ar ¢(r) = 

r2 

. a 
=fdw drt/J*(r)/18 .-~..exp( 2.. -)¢(r)= 

n w M ar 

= Jdf[ l1e,¢ 
r 

. a 
exp(...!... - ) rp ( r)] * ¢ (r) . 

Mar (11.4) 

*This follows from hermiticity of the operator ( .L _!!_t_ 
M ar 
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Thus,· the finite-difference operator of the free Hamilto
nian H 

0 
given by (1.4) is hermitian with the measure 

dt. . ~ 
The proof of the hermiticity of the qperator P is 

carried out for the third component P3 as the most 
§imple for calculations case. Then using hermiticity of 
H0 and the commutation relation 

~ 1 . a i a 
[ H ' n l = -- ( cos (} + Sln e - ) exp ( - - ) 

o 3 Mr2 ae Mar 

and integrating by parts over angle (}, we have 
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. a A 

f d r t/' * ( r) = [-cos fJ( M exp( M1 
-)- H

0 
) + 

ar 

+ i sin_q_ .2._ exp(i.. _L) l¢ ( r)= 
r ae M ar 

. a " 
= f d r ! [- cos(} ( M exp ( ~ --)-H0 ) + 

M ar 

2 1 . a 2i i a 
+ ( - cu;O + --- s1n(J-- --cos(} )exp(--) + 

Mr2 Mr2 ae r Mar 

. sin 0 a ( i a ) + 1 --- - exp -n - + 
r ao m ar 

( 2i 2cos 0 sin(} a ) ( i a ) ] + -cosO---------- exp -- x 
r Mr2 Mr 2 ao M ar 

x t/J(r)!*¢(r)= 

. a " 
= f dr I [ - cos (} ( M exp ( !__ -- - H ) + 

M ar o 

+ J..sin e i._ exp < i_ L ) 1 t/1 ( r) 1 * ¢ < r). 
r ae M ar 

Thus we derive the condition of hermiticity 

" 
fdrtjf*(r)P ¢(r)=fdr[P tjf{r)]*¢(r). 

3 3 
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