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Resently some models have been proposed in which the forces
between quarks are increasing with the relative distance that
resulte in the confinement of quarks inside a particle and their
unobservability in the free gtate.

We shall consider the problem of quark confinement in the
framework of the quasipotential approach/1/, namely by using the

Kadyshevsky equation/z/

« In quasipotential equations, in contrast
to the Bethe-Salpeter equation, the momenta of all the particles
belong to the mass shell. Therefore it is convenient to pass
here to the relativistic conligurational representation (RCR),

/3/

introduced earlier in the framework of the Kadyshevsky appro-
ach. The difference of the RCR from the nonrelativistic coordinate
representation consists in application here of the Shapiro

/4/

transformation instead of the conventional Fourier transfor-
nation. The Shapiro transformation has the meaning of the expansion
over the principal series (PS) of the unitary irreducible repre-
sentations of the Lormtz group 50(3.1) - the group of motions

of the mass shell hyperboloid Ff —'Fz =M [

/3/

With notatione this expansion for the wave function of
relative motion reads
. e \=d-irM
4 (7= g ) @ 57 = (heoEE "
F=rn 5 wi=4.
Here F ig the quark momentum in the c.m.s. (ﬁ-:-f_ﬁ: =]—>’-)
The parameter r defines eigenvalue ;Xfl of the Casimir opéra-
tor of the SO0(3.1). C =1 Nf.o Mﬂ ( MIJQ- are the genera-

i
tors of the SO0(3.1))



CElpr)=X"5/p,r) X222, 002 focrs=) (2

/3/

and, as was shown in , it has the meaning of a relativistic

generalization at the relative coordinate. In the quasipotential

cquation written in the RCR the transiorms ol the Feynman pro-
pagators in the new I" -space play the role of potentials. Thus,

to the propagator , describing the massless gluon ex-

4
(p-w)?
change there corresponds the attractive relativistic Coulomb

potential/j/

Vio = /”‘ T (3
2 oFtY, b /)
/5/ . _—_—_f U—{CF tj/fzo

Due to the proven in equality (Vo) = E(Dt

the invariant mean square radius of a particle has the meaning
oﬁ the average of the eigenvalue of the S0(3.1) Casimir operator
C\:JCI over the transforms F(2) of the form factor F-{f) in the
RCR. In the case when these distributions F (V) in the new v -
space are the runctions of constant sign, the relativistic coor-
dinate V¥ describes the distances larger than the Compton wave
length.
The transition to the distances, smaller than the Compton

wave length, may be achieved, following/S/, by including into
the wave Tunction expansion the supplementary series (SS), cha-
racterlzed by the subsequent values of the Casimir operator

_,-X‘“ 82

is reckoned beglnning from the boundary of the sphere to its

, where O&f é;—;z_ . The coordinate S?

i 2 .
center, and the value 9= M corresponds to the origin X"=0 .

)

For the 33 the analogs of the plane qaveﬁ of PS E’(P:

- . _a»-r - —5) . -~ i
are the tunctions S(F,g):(ﬁﬁ_r_q_f_ﬁ') /04f£ Ff_)
which formally can be found irom g{-ﬁ: i-”’) by the change Yy g .
The expansion OTQk(F? with account of SS for the states withlgﬁ

has the i‘orm; .‘(/M
2 7 4/) M / 2/
r}{/bo (F) =4WX’SL:'/";/{ r%/}"/f‘ (7/r' +da ; —‘j;/qg‘?;/— y/}”)j’ t&

Consider now the analog of the relativistic Coulomb poten-
tial for distances smaller than }1{ . Pagsing in (3) to the 83

through the change | —r—[f we arrive at the potential (see Pig.1)

-1

contfining quarks inside the sphere with R‘ =X = . The

Vie) = ToM s ocpe i (5)
f "f 3 s R
B

operator of the free Hamiltonian '40 for the plane waves ol the
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as in the case of /3/ ig the finite-difference operator. The

solution of the quasipotential equation with the potential (5)

//-/: +V/j¢))qé (7 -:,Zé; Z/; /fy (1)
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2, ~
in the domain 0 £ X ‘Jﬁj)!,where C/? ’{f//é C  and the
No’.—m,z/sié LA cosx , for the states with £ =0
hag the form
'//7 /"
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(8)

The function 0\’/3?{7/3}/ in (5)) constant with respect to the opera-
tion of the {finite-difference differentiation (cf./B/), plays a
role of the effective interaction constant in equation (6). The
requirement of the regularity of the solution at '}C’Z= O/f: %\4}
leads to the condition S’I'IL—ZX =X , which determines two energy
levels, One with /% =1 = 1J8M , another with /', . ZE =M
In the region /Ijﬁ-)z,é Xte /7_{'7_ , where lﬁ? f/—f/'/ >
and jé} = IM [A}’?/ .f/v , the wave function can be obtained
from (8) by the change X< -P—If » The requirement ol the regularity
at xz-‘- %a. (‘f:o) leads to another condition Qghf 6—}= X
that defermines the third level with Mg,,wdziE.ﬁ 2.98M
Therefore in the quark~antiquark system, moving in the field of
potential (5) in the state with /:0 there are possible three
energy levels, or three excited states of one particle (ior
example f)f/and f” ).

The functions of S5 5 /P-,Pf’jdo not belong to the class of
square- integrable functions/7/. This leads to necessity to inclu-
de into the definitién of the scalar product of the wave functions

(8) in the momentum space the regularing kernel k[(P‘K)Z]} e,



) [ kL] b ) 4F L2

Ko
The questions ol the normalization of the wave functions (8) and
the description of the meson spectrum and 1k -particles in our
model with the quark confining potential (5) will be the subject
of the next publications.
The author expresses his sincerely gratitude to V.G.Kady-

shevsky for usefull discussions.
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