ОБЬЕАИНЕННЫЙ ИНСТИТУТ
 คAEPHЫX
 ИССАЕАОВАНИЙ

АУБНА

$$
3045 / 2-76
$$

$9 / v 111-7 b$
$E 2-9748$
N.B.Skachkov

SHORT DISTANCE BEHAVIOUR
OF THE WAVE FUNCTION
AND QUARK CONFINEMENT

N.B.Skachkov

SHORT DISTANCE BEHAVIOUR
 OF THE WAVE FUNCTION AND QUARK CONFINEMENT

Submitted to "Письма в жЭТФ" and to the XVIII Intern. Conf. on High Energy Physics, Tbilisi, 1976.

Resently some models have been proposed in which the forces between quarks are increasing with the relative distance that results in the confinement of quarks inside a particle and their unobservability in the free state.

We shall consider the problem of quark confinement in the framework of the quasipotential approach $/ 1 /$, namely by using the Kadyshevsky equation $/ 2 /$. In quasipotential equations, in contrast to the Bethe-Salpeter equation, the momenta of all the particles belong to the mass shell. Therefore it is convenient to pass here to the relativistic configurational representation (RCR), introduced earlier ${ }^{/ 3 /}$ in the framework of the Kadyshevsky approeach. The difference of the RGR from the nonrelativistic coordinate representation consists in application here of the Shapiro transformation $/ 4 /$ instead of the conventional Fourier transfornation. The Shapiro transformation has the meaning of the expansion over the principal series (PS) of the unitary irreducible reprementations of the Lormtz group $S O(3.1)$ - the group of motions of the mass shell hyperboloid $p_{0}^{2}-\vec{p}^{2}=M^{2}$.

With notations $/ 3 /$ this expansion for the wave function of relative motion reads

$$
\begin{gather*}
\Psi(\vec{p})=\int F(\vec{p}, \vec{r}) \Psi(\vec{r}) d \vec{r} ; \xi(\vec{p}, \vec{r})=\left(\frac{p_{0}-\vec{p} \vec{n}}{M}\right)^{-1-i r M} \tag{1}\\
\vec{r}=r \vec{n} ; \quad \vec{n}^{2}=1
\end{gather*}
$$

Here $\vec{p} \quad$ is the quark momentum in the combs. $\cdot\left(\overrightarrow{p_{1}}=-\overrightarrow{p_{2}}=\vec{p}\right)$. The parameter r defines eigenvalues X^{2} of the Casimir operator of the $\operatorname{so}(3.1) . \quad \hat{C}=\frac{1}{4} M_{\mu \nu} M^{\mu \nu} \quad\left(M_{\mu} \hat{N}\right.$-are the generators of the $S O(3.1)$)
$\hat{C} \xi(p, r)=\chi^{-2} \xi(p, r) ; X^{-2}=\frac{1}{M^{2}}+n^{2} \quad(0<r \leq \infty)$
and, as was shown in $/ 3 /$, it has the meaning of a relativistic generalization at the relative coordinate. In the quasipotential equation written in the RCR the transiortis of the Feynman propagators in the new r-space play the role of potentials. Thus, to the propagator $\frac{1}{(p-K)^{2}}$, describing the massless gluon exchange there corresponds the attractive relativistic Coulomb potential $/ 3 /$

$$
\begin{equation*}
V(r)=-\frac{1}{4 \pi r} \text { th } \operatorname{tr} M \tag{3}
\end{equation*}
$$

Due to the proven in ${ }^{/ 5 /}$ equality $\left\langle r_{0}^{2}\right\rangle \equiv 6 \frac{\partial F(t)}{\partial t} /_{t=0}=\{\hat{C} F(t)\}_{t=0}$ the invariant mean square radius of a particle has the meaning of the average of the eigenvalue of the $S 0(3.1)$ Casimir operator $\hat{C}=X^{2}$ over the transforms $F(2)$ of the form factor $F(t)$ in the RCR. In the case when these distributions $F(r)$ in the new r space are the runctions of constant sign, the relativistic coordinate r describes the distances larger than the Compton wave length.

The transition to the distances, smaller than the Compton wave length, may be achieved, following ${ }^{/ 5 /}$, by including into the wave function expansion the supplementary series (SS), characterized by the subsequent values of the Casimir operator $\hat{C} \rightarrow X^{2}=\frac{1}{M^{2}}-\rho^{2} \quad$, where $0 \leqslant \rho \leqslant \frac{1}{M^{2}}$. The coordinate ρ is reckoned beginning from the boundary of the aphere to its center, and the value $\rho=\frac{1}{M}$ corresponds to the origin $X^{-2}=0$.

For the SS the analoge of the plane waves of PS $\xi(\vec{p}, \vec{r})$ are the tunctions $\zeta(\vec{p}, \vec{\rho})=\left(\frac{p_{0}-\vec{p} n}{M}\right)^{-1-\rho^{M}} \quad\left(0<\rho \leqslant \frac{1}{M}\right)$ which formally can be found Irom $\xi(\vec{p}, \vec{r})$ by the change $r \rightarrow i \rho$. The expansion of $\Psi(\vec{p})$ with account of SS for the states with $\ell=0$

$$
\begin{equation*}
\Psi_{l=0}(p)=4 \pi \int_{0}^{\infty} \frac{\sin r M x}{r M \operatorname{sh} x} \Psi(r) r^{2} d r+4 \pi \int_{i}^{1 / M} \frac{\operatorname{sh} \rho M x}{\rho M \operatorname{sh} x} \Psi(\rho) \rho^{2} d f \tag{4}
\end{equation*}
$$

Consider now the analog of the relativistic Coulomb potential for distances smaller than $1 / M$. Passing in (3) to the $S S$ through the change $r \rightarrow i \rho$ we arrive at the potential (see Fig.1)

$$
\begin{equation*}
V(\rho)=\frac{1}{4 \pi \rho} \operatorname{ctg} \pi \rho M ; \quad 0<\rho \leqslant \frac{1}{M} \tag{5}
\end{equation*}
$$

confining quarks inside the sphere with $R^{2}=X^{-2}=\frac{1}{M^{2}} \quad$. The operatof of the free Hamiltonian \hat{H}_{0} for the plane waves or the ss $\quad H_{0} \xi(\vec{p}, \vec{\rho})=2 E_{p} \zeta(\vec{p}, \vec{\rho}) ; E_{p}=M \operatorname{ch} \mathcal{C}=\sqrt{M^{2}+\vec{p}^{2}}$

$$
\begin{equation*}
\hat{H}_{0}=2 M \operatorname{ch} \frac{1}{M} \frac{\partial}{\omega \rho}+\frac{2}{\rho} \operatorname{sh} \frac{1}{M} \frac{\partial}{\partial \rho}-\frac{\Delta \theta_{1} \rho}{\rho^{2}} e^{\frac{1}{M} \frac{l}{\partial \rho}} \tag{6}
\end{equation*}
$$

as in the case of $/ 3 /$ is the finite-dirference operator. The solution of the quasipotential equation with the potential (5)

$$
\begin{equation*}
\left(\hat{H}_{0}+V(\rho)\right) \psi_{j}(\vec{\rho})=2 E_{i j} \psi_{q}(\vec{f}) \tag{7}
\end{equation*}
$$

.Fig. 1
in the domain $0 \leqslant X^{-2}<\frac{1}{\left.(2 M)^{2}\right)}$, where $\operatorname{ctg} \pi \rho M<O$ and the Morumil $=2 E_{q}=24 c^{\prime}(2 M)^{2} \quad$, Ior the states with $\ell=0$

$$
\begin{align*}
& \text { has the rorm } \\
& \qquad \Psi_{q, l=c}(\dot{f})=\left(e^{-i x} \sin x\right) \cdot e^{-i x} \hat{\rho} \cdot \exp \left[x \cdot \frac{\operatorname{ctg} p M}{2 \sin x}\right] \\
& \cdot F\left(1+\rho M, 1+i \frac{\operatorname{ctg} \pi M}{2 \sin x} ; 2 ; 2 i e^{-i x} \sin x\right) \tag{8}
\end{align*}
$$

The runction $c \operatorname{ctg}^{\prime \prime} M$ in (5), constant with respect to the operation of the rinite-difference differentiation (cf. $/ 3 /$), plays a role of the effective interaction constant in equation (6). The requirement of the regularity of the solution at $x^{2}=0(\rho=1 / 4)$ leads to the condition $\sin 2 x=x$, which determines two energy levels. One with $M_{\text {bound }} \equiv 2 E_{q}=1.38 M$, another with $M_{\text {Gcund }} \equiv 2 E_{i}=2 M$ In the region $\frac{1}{(2 M)^{2}} \leq X^{-1}<\frac{1}{M^{2}}$, where ctg $\pi \rho M>0$ and $2 E_{q}=2 M$ ch $x \geqslant 2 M$, the wave runction can be obtained from (8) by the change $x \rightarrow-i x$. The requirement of the regularity at $X^{-2}=\frac{1}{M^{2}}(\rho=0)$ leads to another condition $2 \operatorname{sh} x e^{-x}=x$, that defermines the third level with $M_{\text {Cound }} \equiv 2 E_{q}=2.98 \mathrm{M}$. Therefore in the quark-antiquark system, moving in the field oi potential (5) in the state with $\ell=0$ there are possible three energy levels, or three excited states of one particle (ror example ρ, ρ^{\prime} and $\rho^{\prime \prime}$).

The functions of $S S S(\vec{P}, \vec{\rho})$ do not belong to the class o \hat{i} square - integrable functions $/ 7 /$. This leads to necessity to include into the definition of the scalar product of the wave functions (8) in the momentum apace the regularing kernel $k\left[(p-k)^{2}\right] ;$ ie,

$$
\left(\Psi_{1}, \Psi_{2}\right)=\int \Psi_{1}(\vec{p}) k\left[(p-k)^{2}\right] \Psi_{2}(\vec{k}) \frac{d^{3} \vec{p}}{p_{c}} \frac{d^{3} \vec{k}}{k_{c}}
$$

The questions of the normalization of the wave functions (8) and the deacription of the meson spectrum and Ψ-particles in our model with the quark confining potential (5) will be the subject of the next publications.

The author expresses his sincerely gratitude to V.G.Kadyshevsky for usefull discussions.

Reierencer:

1. A.A.Logunov, A.N.Tavkhelidze. Nuovo Cim. 29, 380, 1963.
2. V.G.Kadyshevsky. Nucl. Phys. B6, 125, 1968.
3. V.G.Kadyshevsky, R.Li.Mir-Kasimov, N.B.Skachkov. Nuovo. Cim. 55A, 233, 1968; Soviet Journal of Particles and Nuclei (translation) 2 (3), 69, 1972.
4. I.S.Shapiro. Dokl. Akad. Nauk SSSR, 106, 647, 1956; Sov. Phys. Doklady 1, 91, 1956; Phys. Lett. 1, 253, 1962.
5. If. B.Skachkov. Theor. and hath. Phyr. 23, 313, 1975; JINR prenrint E2-3857, Dubna, 1975.
6. S.Ström. Arkov 1. Fysik, Bd. 38, nn.22, 373, 1968.
7. I.h.Gelyand, M.I.Graev, N.Ya.Vilenkin, Generalized Functions, vol 5, Academic Press, New York, 1966.
```
Received by Publishing Department on April `28, 1976.
```

