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Summary 

The known integral formulation of the 
Mach principle/2- 61 

8rrK af3 . -- 4 
gik=-;-4J Gik (x,y)Taf3(y)y-g{y)d Y+Aik (2) 

with the requirement 

A ik = 0 ( 4 ) 

represents a rather complicated mathematical 
formalism in which many aspects of the phy­
sical content of theory are not clear. 

Below an attempt is made to consider 
the integral representation (2), (11) for 
the most simple case of conformally flat 
spaces 

d s 
2 

= ¢ 2 
( c 

2dt 2 - dx 2 
- dy 2 - dz 2 ) . 

The fact that in this formalism there lS 

only one scalar function¢(~ makes it pos­
sible to analyse in more detail many phy­
sical peculiarities of this representation 
of the Mach principle: the absence of asymp­
totically flat spaces, compatibility of the 
condition (4) with the presence of the local 
free radiation, problems of inertia and 
gravity, constraints on state equations, etc. 

I. One of the possible ways of mathematical repre­
sentation of the Mach principle is the method of integral 
equations in general relativity (GR). This method is 
based on the known statement of Einstein that the gravi­
tational field should be completely defined by the energy 
tensor of matter .·· 1 and consists in the requirement 
that the metric obeys the integral equations 2·-h : 

gk(x) = 
877," 1 Ga~(x,y)Ta/J(y) v--g(y) d\, (1) 

I C I< I 

where G ;aJl ( x , y ) is a bitensor (indices u . {3 refer to 
the point y and indices i, k refer to the point x ) 7 , 

the tensor Ta{J describes the matter and is constructed 
of hhe energy-momentum tensor of matter. The tensor 
G r;(' ( x, y) is an analog of the Green functions of 
the known equations. 

Condition (1) is imposed on the metric in addition 
to the Einstein equations. Generally speaking, the Ein­
stein equations themselves are equivalent tq the follo­
wing integral equations 

g (x)=~.!:SJGat(x,y)T fjy) y:=_g(y)dty+A.k(x). (2) 
1k C J I U I 

In equations (2) the term A;k characterizes the metric 
in the absence of ~atter (Ta{j = 0) and, as follows 
from the Einstein equation, it differs, generally speaking, 
from zero. It should be emphasized that due to nonli­
nearity of the Einstein equations the quantities G {f/~ (x, y) 
and i\ ik ( x ) must be rather complicated functionals 
of the metric g ik 
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a{3 a{3 I ) 
G ik (X , Y ) = G ik (X, Y g mn , g f1 v , 

Aik(x)=~k (xj gmn'gflV ), 
(3) 

therefore eq. (2) is the nonlinear integral equation. As 
will be shown, Aik(x) is represented by an integral 
over the surface covering the whole space of a cosmo­
logical model. At the same time the condition 

A ik( X) = 0 (4) 

is the boundary condition imposed on solutions of the 
Einstein equations and due to the tensor nature of 
Aik ( x ) it is covariant. 

The main difficulty of the analysis of the theory 
in form (1) is the nonuniqueness of choice of the diffe­
r.entialalperator of the equation for the Green func­
tion Gik : 

mn a{3 (a ~ {3 ) 
Dik (x)Gmn (x,y)=o(i ok) 

4 o (x-y) 
-------' 
y-g(x) 

(5) 

and therefore the nonuniqueness of choice of the Green 
function itself. Unfortunately, the proposed variants of 
the theory, reveal only separate aspects of the prob­
lem 12-5/ . This nonuniqueness is due to the fact that the 
only known indisputable requirement imposed on the 
operator D 

mn 1 
0 ~·k g =R.k- -g.kR, mn 1 2 1 

(6) 

or 

mn 
D.k g =R.k 

1 mn 1 
(6 ) ' 

is extremely weak. This nonuniqueness extends natu­
rally to the free terms A ik and results in that the same 
cosmological model considered by different authors 
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sometimes appears to be ;~?ll:~istent with the Mach 
principle and sometimes not J • 

Due to the fact that equations (1,5) are, probably, 
more complicated than the Einstein equations themselves 
it is rather difficult to analyse their physical conse­
quences. It is not clear to what extent this formalism 
is adequate to that understood as the Mach principle. 

It is clear only that in the representation (1) the ab­
sence of matter ( T i k co 0) results in the absence of the 
space ( g i k = 0). (Strictly speaking, this formalism is con­
structed in such a way that this requirement be satisfi­
ed). It is clear as well, that asymptotically flat solutions 
(of a type of the Schwarzschild solution) do not satisfy 
requirements of the formalism 12 ·ti/. In this forma­
lism, it is difficult to obtain and to analyse other conse­
quences of the Mach principle within the given represen­
tation. 

Therefore it seems interesting to apply the above 
procedure to spaces of a simpler special type, for 
instance to conformally flat spaces and then to analyse 
various consequences of the given representation of the 
Mach principle. 

/I.l. As has been pointed out, the main reason for 
it being difficult to realize and to analyse the Mach 
principle in the form of boundary conditions (4) is the 
extremely complicated structure of the Einste.in equations 
for ten independent components of the gravitational 
potential g ik . However, the consideration of spaces of 
the conformally flat type is considerably simplified from 
the formal aspect because in their metric 

gik(x)=¢
2

(x)ry ik (7) 

the quantities 77 ik . (the metric of the flat space) are 
defined with an accuracy to the choice of a reference 
frame and they may be considered to be known. Thus, 
the whole information on the gravitational field is covered 
by the only "potential" ¢( x ). At the same time, despite 
such a formal simplification, the physical aspect is shown 
not to be essentially distorted and to become more clear. 
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2. Since only one "potential" ¢ (x) should be defined 
the Einstein equations 

Rik - 21 g ik R = ~rr4K Tik ' (8) 
c 

which are considered as the equations for ¢ (x ), are not 
all independent. To avoid overdetermination and to make 
the form of the equations more symmetric we take the 
contraction of the Einstein equations 

8rrK T , R =-- 4 
c 

ik 
T "'Tik g 

as the equations for ¢(x ). 

(9) 

For metric (7) the Christoffel symbols are as fol­
lows IY/ 

e r r a £ a Pm a 
l.k = y .k +o. --k fn ¢ + ok --.Pn ¢ -77.k77 --fn ~6, (10) 

I I I a X a X I I a Xm 

where ytk are the Christoffel symbols in a space with 
the metric 17 ik . Using these symbols we find the scalar 
curvature 

R =-6 E.._c/> 
¢3' (11) 

where ocp is the d' Alembertian of cp covariant with 
respect to the metric 17 .k . Hence the explicit form of 
eq. (9) is 1 

O(/;= 4rr: T¢3. 
3c 

(12) 

Naturally, this equation can be found with the use of the 
Lagrangian formalism, as well. 

3. Equation (12) is nonlinear in ¢, however, a speci­
fic type of nonlinearity makes it possible to obtain an 
integral equation by analogy with the linear theory /IO/. 

Indeed, equation (12) can be rewritten identically in 
the form 

4 4 ---4 
o ¢(x)= 

3
:4 f T(y)¢ 3(y)8 (x-y)v- 11 (y)d y 

then, dividing by o we get 
(13) 
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4 3 -- 4 
¢(x)= -

77-T- fT(y)¢ (y)G(x,y)y-7](y)d y+A(x), (14) 
3c 

where G ( x , y) and A (x) obey the equations 

4 
oG(x,y)=o (x-y), 

(15) 
oA(x)=O. 

The explicit form of A is defined by the conventional 
method (see, e.g., ref. /II/ ): 

- i 
A (x) =- f I ¢, iG- ¢ G, i l y- 11 d S 

s 
(16) 

where S is a boundary of the domain over which the 
integration in the first term of eq. (14) is made. Finally 
the equation for ¢ takes the form 

4rrK 3 - 4 
¢(x)=--f T¢ G(x,y)y- 17 d y 

3c 4 

(17) 

-- i - f l c/J, iG- ¢G,i lv-77 dS. 

The two integrals in the r .h.s. of (17) have the following 
meaning: The volume integral allows for a contribution 
to c/J ( x) from all sources localized in the volume. The 
surface integral allows for a contribution to ¢ ( x) both 
from sources which are outside the volume and from the 
free radiation which comes from infinity and is not 
produced by any sources. 

Since for the Mach principle all the observed masses 
of the Universe are important, the integration over re­
gion in (17) should be understood as the limit transition 
to inte~ration over the whole space of the cosmological 
model ' 6 / · 

4. In accordance with the above programme the Mach 
principle holds for the models for which 

- i 
f l¢'i G-¢G,i ly-77 dS =0, (18) 

or 
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4rrK 3 -- 4 
¢ (X) = -4 f T ( y) ¢ (y) G (X , y) v' -77 (y) d y . ( 19) 

3c 
Thus, the expression with which we associate the formal 
representation of the Mach principle, is a certain boun­
dary condition. 

Consider it in more detail. Because the integration 
in (17) is made over the whole space of one or another 
cosmological model all the sources T turn out to be 
taken into account by the first term in r .h.s of (17). Hence 
the free term A is not connected with any material 
sources of a given cosmological model 16 /: it describes 
the wave of the field ¢ to which material source can 
never and nowhere be related in the course of the whole 
evolution of a given cosmological model. In other words, 
after the limit transition the free term should obey 
the homogeneous equation 

oA = 0. 

at any point of a given cosmological model (i.e., every­
where and always) in the course of the whole evolution. 
Thus, the boundary condition (18) eliminates the "glo­
bally"-free wave (in the above sense). In the particular 
case of the absence of matter throughout the whole space 
of a given model in the course of the whole evolution 
it simply means the degeneration of the concept of space 
and time that is completely consistent with the qualita­
tive considerations of the Mach principle (eq. (19) gives 
¢ _, 0 at T "" 0 ). 

On the other hand, it cannot be stated that condition 
(19) eliminates any free wave. Really, if a source 
T exists in some bounded space-time region the integral 

in (19) is not zero, generally speaking, outside the region 
occupied by the source, as well. At the same time, in 
the free-of-source region the field ¢ obeys the homoge­
neous field equation and in this region an observer may 
consider it as a locally-free wave. Thus, in the given 
representation as well the Mach principle admits of the 
waves for which somewhere and at some time there exists 
a. source of a type of T (as an example see subject 6). 

This statement is closely connected with the fact 
that the Mach principle in the form of equation (19) 
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or boundary condition (18), as we shall see below, put 
some constraints on sources T too. It may happen, 
however, that no physically admissible source obeys 
this condition. Then the whole theory will be incompa­
tible, in this sense, with the Mach principle. In what 
follows examples will be given which give evidence that 
in this sense the given theory has a physical content 
and realizes the Mach principle in a specific variant. 

5. To calculate just the function G(x, y) we take the 
coordinate system when the metric q ik has the following 
form 

(~ 
0 0 0 \ -1 0 0 

11 i k =\ 0 
. (20) 

0 -1 0 I 

\ 0 0 0 -1 I 
' ' 

Derivatives covariant with respect to 7J;k reduce to 
partial ones. Choosing the retarded potentials, from 
eq. (15) we get the following expressions / 111 

G(x,y)= 

i> c t , - t " JL:-~L) 
c 

/, I , , 'I 
·ITT , r - r I 

and for the static problems 

G (X' y) ~ -~.---!----,-. 
117 I r -r ! 

Now eq. (19) takes the form 

¢(r', t} = __..!2__4 f .T(t', r)¢3(f',r) dt' , 
3 -+ --c jr-r'j 

,-;_; '! 
r=t- ---

c 

(21) 

(22) 

and one may proceed to consideration of specific physical 
consequences of this equation. 
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6. What we have said in subject 4 about locally-free 
fields can be illustrated by the following example. Given 
the source 

o ( r -a) 
T(r,t)=T

0
---o(t), 

r 2 

then eq. (22) results in the following equation 

(23) 

2 
¢(r,t)=a V 2rrKTO 

1 
r 

e < ct- 1 r- a 1 ) e <a +r- ct), 

1, X> 0, 

e(x) = (24) 
0, X < 0 

This solution has a character of a running wave and does 
not vanish outside the region occupied by the source 
(i.e., for r f-a, t > 0 ) at the same time obeying the 
homogeneous wave equation 

0 ¢ = 0. (25) 

The condition (18) forbids us to add arbitrary solutions 
of homogeneous eq. (25), i.e. globally free waves, to 
eq. (24) which we might do using the differential equation 
(12) only. 

What we have said in subsect 4 about the restrictions 
imposed by the Mach principle on a source is illustrated 
by the following example. Given the following distribution 
of matter 

T ( r) = T 0( a 2 
- r 2 

) e ( R- r); T , a , R - const . 

The differential eq. (12) then gives 

2 3 
c v-

~ 2rrKTO 

¢(r) = ~ ~:s t 1 + 

3 
a2 ;-3 2' r < R r , 

cons t 2 , r > R 

(26) 

(27) 

for arbitrary R and const 1 and const2 defined on the 
basis of some additional considerations (behaviour on the 
boundary of a body, that at infinity, etc.). From the integ­
ral equation we get 

cb(r)= 

1 

c 2 V 3 - _3 -- , r < R, 
2rrKT 0 a2+3r2 

32_l_1 
-c '1/-----A-, r>R 
2 2rrKTo ar 

under the condition R = a I V 3. 

(28) 

It may happen, of course, that in some cases the 
Mach principle does not impose any restrictions on 
a source. For instance, due to a special type of nonli­
nearity of the field equation of our theory, delta-type 
sources linearize eq. (12). One example of this kind 
was given at the beginning of this subsect. For another 
example: 

T(r)=T b(r-a) 
0 

4 rr r 2 

eq. (12) gives 

c 2 r + c 3- I r -a I . 
6 ( r ) = c 1 ----r-------- , c 1 , c 2 , c 3 -cons t 

and from eq. (22) we have 

( 
2 ~- a H- I r -a I 

¢ r)=C y- ----
K T0 2r 

(29) 

(30) 

(31) 

for arbitrary a and T0 (however a =0, i.e., point like 
particles, are forbidden; at a= 0 we have¢ = 0 which is 
seen from eq. (31) and, of course, can be checked by 
direct calculation). 
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-12 
A peculiar dependence ¢- T 0 should be noted. Since, 

however, this dependence is not continuous when To ·~ 0 , 
the limit of ¢ as T 0 -> 0 should be defined directly from 
the cubic equation for ¢, which gives ¢ = 0 at T 0 =0 and 
is completely consistent with the Mach principle. 

It should be noted also that ¢ ( x) in its sense is 
defined up to a constant factor whose variations simply 
mean the scale transformation of coordinates which does 
not result in any physical consequences. This arbitrari­
ness corresponds to an arbitrary choice of an additive 
constant of a potential of the Newton theory (into the 
equation of motion in the Newton approximation there 
enters fn ¢ and the scale factor reduces to an additive 
constant). 

7. Consider now a problem of inertia of an object. 
Since the Mach principle relates the accelerated motion 
not to absolute space but to all other bodies of the 
Universe, the inertia of a body in this motion is defined 
by the presence of remaining bodies so that for an iso­
lated body in the Universe the concept of mass makes no 
sense now, according to /1.12,13,14/. 

An explicit concept of mass of a body is tightly con­
nected with the presence of flat asymptotic form of a sur­
rounding space. No such an asymptotic behaviour exists 
for the above cited examples. 

This result is of extreme generality. Consider an 
arbitrary restricted distribution of matter. At suffi­
ciently large distances from this distribution the problem 
becomes spherically symmetric and eq. (12) gives 

a ¢ (r ) = - + b ; a, b - eonst , 
r 

(32) 

i.e., at infinity we have, generally speaking, a flat space 

ds 2 
= b 2 

( e 2 d t 2 
- dx 2 

- dy 2 
- dz 2 

) . . (33) 

Requiring that condition (18) be satisfied 

12 

I 

' 

.1 
'I 

o- l 1 a ( a b a a 1 urn------+ )-(--tb)---
r'->oo 4rrlr~; 'I ar' r' r' ar' 4rrlr__:r'l 

we obtain 

2 14rrr =0,(34) 

b = 0 (35) 
Thus, that we have called a realization of the Mach 
principle excludes not only solutions at T ·~ 0 but also the 
asymptotically solutions in total agreement with qualitative 
consideration of the Mach principle*. But, let us consider 
dynamics in finite regions of a given world, i.e., in those 
regions where the quadratic form ds 2 has sense and, 
g ik ,f 0 . 

A specific property of dynamics is that it is impos­
sible to neglect the effect of a test body on the metric, 
since in the opposite case concepts of inertia and gravi­
tational mass do not arise. 

Indeed, the field is as follows 

¢(r)=~-. 
r 

(36) 

Let us now introduce in the space with metric defined 
by this field a test particle which does not perturb the 
metric , then the force acting on the particle will be 

me - me 1 · r f = --==== - grad fn y g = - -- • -- , --- 2 I I 2 ~ 
2 oo ' 2 r r 

yl-.Y_ yl--v_ (37) 
e2 e2 

where m is the mass of a test particle, v is its veloci­
ty; for v « e we have the following equations of motion 

r 2 --­=-.£.. • .!_ 
r r 

(38) 

*A specific space obtained in this way (g ik .. 0 if 
r --. "") seems to be unreasonable to be classified following 
Petrov: the Weyl tensor (of conformal curvature) is zero 
identically. 
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Thus the equations of motion do not include any para­
meters of a central body: whatever the central gravita­
tional body might be taken when observing the motion of 
a test particle it is impossible to distinguish one body 
from another, i.e., there is no such a quantity of a central 
body which would specify the motion of a test particle 
(e.q., its acceleration). Since, on the other hand such 
a parameter of a gravitational body, by definition, is 
the gravitational mass of the body then in virtue of the 
equivalence principle this result means that a single 
body (noninteracting with other bodies isolated of them) 
has no inertia in total agreement with the sense of the 
Mach principle. 

And what is more, the mass of a central bodX can be 
shown to be zero. If one uses the results of ref.· 8 ·

1 

then 
the inertial mass of a body at rest can be defined through 
zeroth component of its 4-momentum in the following 
way: 

2 . 
M ~ -~- r _:!_ r c -g) (goo g u Ill _ go u go Ill ) 1 df 

16,-," · ii.\m 11 

that gives, for the spherically-symmetric field: 
2 

,. c ·I a"~ 2 M = I 1m -- d' · --- r 
r •"" A. (} r 

and for the given field * 
2 l 

M oo Pim ( - _£_ ~ ) = 0 . 
r-•oo K r· 

(39) 

(40) 

( 41) 

Things are changed essentially when we take into 
account the influence of a test particle on a metric. To 
determine the field of two particles (central and test) 
within a given theory it is impossible to represent them 

* It is the same as in the case of a closed world; 
though this model cannot be considered as three-dimen­
sionally closed. Another fundamental property of a closed 
world, viz., electric neutrality, has no adequacy in this 
case (due to the scalar character of the theory). 
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as mathematical points, i.e., to give a o -type distribu­
tion of matter: 

T(1) = T
1 
o(f)+ T

2
o (r---R ), (42) 

since a field of a particle within our theory (as is seen 
from subsect 6.) tends to zero if the particle sizes tend 
to zero. Therefore we will consider that both particles 
are of a radius p with 

P << R, 
(43) 

where R is the distance between particles, 

T(r)=T
1 

-.£fL:: .. E..\ T _o(lr'-RI-p) 
477r 2 2 4 (_. rt 2 

77 r-K) 
(43 ') 

An appropriate field has the form 

¢( C') = .2!-L J o(r' -e.l..l (r'') ~r'... + 
3c 4 477r' 2 lr-r'l 

-> 

~T 2 J _0lf- ~.:f.L "'3 (r->,) -~- = 
+ 2 T _. ... 2 '+' -> -> 

:J c 4 17 (r '- R ) I r - r ' I · 
(44) 

= KTL¢3(t'*)J~(r'-p) 
3c 4 477r'2 

d;' 
---+ 
I _. ... , I r -r 

+ KT2_ 3ct**+R>J o(lr-RI-p)~~. 
3c 4 ¢ · 4TI(r'- R )2 1r---r'l 

where 

1 -r * 1 =- 1 f'i< * 1 = p « R , (45) 

and finally, between those particles 

15 



cp(r·) =-KTr ¢:l(r.*)J... 1- KT2 ¢3(RH~**)--J--. (46) 
3cJ r 3c 1 IR-r•l 

"Neglecting now the sizes of particles as compared with 
the distance between them and putting I i~ R 1 = p we have 

~ KT I :l K T. :l 1 
<6 ( R ) ~ --- ,6 · (0) .L ~ --2 c6 (R) -

3 c I R 3 cJ p 
(47) 

Next suppose that R is so large that the first term 
in the r.h.s. of (47) is a small correction to the second 
one; then neglecting the second and higher order correc­
tions we have the following solution of the cubic eq. (47) 

---- "T . 
,,',(R) - + \ _l~_ c 2 - ---:--1 _,,, .1(0) _l_. 

Kl 2 6c 1 R 
(48) 

Taking the sign + in the first term of the r.h.s. we 
change the coordinates 

-; 
X 

.. 3p 2 i 
\ --- C X 

KT2 

and allowing for the definition of <.'> tr') we have 

,1, c R) ~ l- -.:!J,,,, :\o) -l-. 
6c • R 

(49) 

(50) 

From the geodesic equation in the nonrelativistic limit 
and in virtue of a smallness of the term -1/R we obtain 
the equation of motion of the second particle 

;; ;;! 

KM R 
R ------ -2 - ' 

where 

16 

R R 

M = _!1_ ¢ 3 (0) 
6c 2 

(51) 

has the meaning of mass of 

I 
) 

the first particle. In this way we have arrived at the 
Newton law with the essential account of both-particle 
field. 

The same result can be illustrated in the following 
way. Given two concentric massive spheres 

o(r-a) o(r-b) 
T(r) =T --- + T 2 ---- a b = const a< b 

I 3 1. 2 ' ' ' . 4i7r 4i7r 
(52) 

The solution to integral equation is 

¢ (r) = ~1 ¢ 3(a) ~ -lr-:~- + _: T .!_ ¢ 3(b) __t:_+ b.=.J.!:-!>1 (53) 
3c 4 2ar 3c 4 2br 

and in the gap between the spheres (i.e., for a< r < b ) 

KTI 3 1 KT2 3 1 
¢(r)=---¢ (a)-+ --4 <;6 (b)-. (54) 

3c 4 r 3c b 

It is clear that for constant ¢ (a ) and ¢(b) from eq. 
(54), one gets the system 

KTI 3 KT2 3 
¢(a)=----¢ (a)+--- <;6 (b), 

3c 4a 3c 4b 

3 KT 2 3 
¢ (b)+ --- ¢ {b). 

3c 4 b 

(55) 
K Tl 

¢(b) =~b 

As can be seen, this system has the solution 

¢(a)<O, ¢(b) > 0. (56) 

Indeed, with the notations ¢(a)=- a < 0 and ¢ (b) = (3 > 0 
from (56) one can easily obtain (regarding eqs. (55) as 
identities) the following consistent inequalities (taking 
into account that a < b ) 
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T2 {33 < ~ T a 3 
a I ' 

3 3 
T 2 {3 > TI a (57) 

Renormalizing in a proper way the coordinates, from 
(54) we get the Schwarzschild-type field 

¢ <r) =I- KM 
c2r-

M 
TI 
3;2¢ 3(a)> 0 ' 

(58) 

which gives rise to the Newton equation of motion 

~ KM ~ 
r ------

r 2 r-
(59) 

At the same time, outside the larger sphere (i.e., for 
r >_ b ) the field is of the form which does not result 
in the Newton law 

KTI '1 KT2 :1 1 
¢(r)= [ -- <P ·(a) t -- <P (b) ]-A.. 

3cl )ct r 
(60) 

Both these examples give evidence that the Newton law 
(and hence, mass) is meaningful within the gravity theory 
based on integral equations as long as there is interaction 
between several bodies and consequently the mass of 
isolated body cannot be introduced. 

Formally this result is rather obvious. In fact, 
within the standard theory the Newton law is obtained in 
an approximation based on the flat asymptotic form cf 
a space surrounding the restricted distribution of matter. 

The integral formalism rejects the solution with the flat 
asymptotic behaviour. It is clear, however, that the flat 
asymptotic behaviour is not necessary for the appearance 
of the Newton force. It is only sufficient that in the 
region of localization of a test particle the field has the 
Schwarzschild form 

const 2 ---- (61) ¢ (r) = const I + 
r 
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that is just achieved by allowing for the field of the 
second interacting body * (as in the conventional theory 
where the flat asymptotic behaviour of this problem is 
given initially, the proper field of the test particle re­
sults in unimportant corrections only). 

Thus, in the given theory inertia of a body actually 
is completely defined by interactions with other bodies, 
in agreement with the Mach principle. 

8. The problem is also rather interesting concerning 
the possibility of validity of the Mach principle in the 
real Universe. 

If one assumes that the real Universe is described 
sufficiently accurately by the Fridmann model then it 
is necessary to define conditions under which the Frip.­
mann model is consistent with boundary conditions of the 
type_ \18). The results of the well-known investigati­
ons 1 2 •· • 6 ~ are discrepant, as has been noted in the 
Introduction. 

If one sets the equation of matter state in the Frid­
mann model to be of the form 

p = y f' (62) 

where y = const, p and f are the pressure and energy 
density of matter then from / 2 ,3 / we have 

p =- f ' (y =-1) 

and from •6 ; it follows that 

_lr<p_s:r, 
3 - (~Sy::;.l) 

(63) 

(64) 

Assuming that the Fridmann model is conformally-

* In some approximation the proper field of the par­
ticle can be considered as independent of a mutual 
positions of the particles. 

19 



flat it appears to be possible to solve the above raised 
problem within our theory, as well. 

Consider the simplest case of the flat model 161 

2 2 )ld 2 d 2 2 d 2 . 2 d 2) ds = ¢ ( T I T - X - X ( e + Sin e f3 (65) 

m 

¢ ( T ) = A ~2 ( !._ t m , m = 2 --
3y + 1 

BTTKfo 
Ao= 0-~ 

(66) 
3y+3 

f ~- f(r)¢ (r). 
() 

The field has a singularity at r = 0, thus the integration 
in (22) will be made for r ::: a > 0 and then a -• 0. 

After elementary integration eq. (22) gives 

A 2 ( L) m = Pim A 2 ( L) m -A 2 ( ..!L) m- r m l m m 1 

0 m a , 0 o m o m 

l-3y 1 m-1 
+ ---( --) 

with y I. 1.. , whence 
_3 

2 m A: am I, 
,. a m- 1 1 -3 • 1 m- 1 m 
hm I (-) r - -_;.~ ( --) a I - 0 m 2 , 
a -• 0 m 

1-

(67) 

(68) 

which is possible only for m "1, therefore one obtaines 

1 - . 1 --' y -.-
3 3 

:6 
For the open model · 
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2 2 2 2 2 2 .2., 2 ds = A ( T) I d T - d X - sh X ( de + Sin lj d f3 ) , 

m 
2 m r A ( r) = A 0 sh ( -) 

m 

(69) 

(70) 

(71) 

there is the known substitution 181 

T 
r = const e sh x , T 

ct = const e chx, (72) 

which reduces the model to the conformally flat form 

ds 2
= ¢

2
(r ,t)!c 2dt 2 -dr 2 -r 2(d0 2+ sin2 e df3 2 ) !, (73) 

I/2 m 
where taking the const in (72) to be equal to (A 

0 
I 2) 

we have 
A _ _L m 

¢(r,t)=[1- J(c2 t 2-r 2) m ]. (74) 
4 

In the given model the field has a singularity at 

2 2 2 A0 m 
c t -r = ( 4 ), therefore we integrate eq. (22) over 

the domain 

c 2 t 2 - r 2 :::: (.,:\ 0 t (1 +a ), (75) 
4 

and then a ... 0. In so doing , eq. (22) gives ( y f t) 
I I 

Ao 2 2 2 --; m · Ao 2 2 2 ~ m 
[ 1 - - ( c t - r ) ] = fim I [ 1 - - ( c t - r ) ] -

4 a-->0 4 

a m-I A m 1-m 1 ] ! 
-(-) [1-(..:.:.D) (1---a) 

2 2 
? , (76) 

m 4 m c t -r 

whence 

m-I A 
n· ( a ) [ ( 0 m 1 m 1 nm- 1- -) (1- -=-a) -----]=0, 
a-->Om 4 m c 2 t 2 -r 2 

(77) 

which is possible for m > 1 only, i.e., as in the flat 
model one has 

1 < / 1 - 3 y' 3. (78) 
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Allowing for the general relation 1161 

~' I ::_• 1 (79) 

we find the Fridmann model is Machian one when 

0/ p < j_ ( 
- 3 (80) 

at least for the open and flat cases. 
Taking into account that according to (67) and (76) the 

consistency of the model with the Mach principle is basi­
cally defined by the beginning of evolution when the dif­
ference between all the three types is small one may 
possibly consider that the obtained result is valid also 
for the closed model. 

That eq. (22) forbids ) ·c \ is probably due to the 
scal~r c~aracter of our _theory- ( v -~ + ~ T ~- 0), however, 
as, m this way, the Umverses consisting of photons and 
neutrinos are ruled out of the consideration it is doubtful 
whether this fact can be regarded to be important for the 
real Universe. The following note also should be made: 
ThPrP is a rather widely accepted viewpoint that the 
Mach principle necessarily requires the three-dimen'sional 
closedness of cosmological models. As a rule, this requi­
rement is derived from that the Mach principle forbids 
asymptotically flat spaces. However, in the proposed 
representation of the variant of the Mach principle the 
absence of flat asymptotic behaviour and the three­
dimensional closedness, generally speaking, is not the 
same. In this sense, the flat and open Fridmann models 
are illustrative enough, in our opinion. 

III. An integral form of the gravity equations (in 
fact, originating from the known paper by Einstein · 1;; ) 

being applied to the GR in the general case 2-6./ seems 
to be physically nonclear because the formalism is extre­
mely complicated. 

The consideration of conformally flat spaces, however, 
simplifies essentially understanding of the formalism of 
this variant of the Mach principle. 
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The considered variant of the Mach principle is cha­
racterized by a specific geometrical interpretation and 
also by a highly specific physical content. The fact that 
imposing certain boundary conditions on the Einstein 
equations gives the consequences we are used to obtaining 
from qualitative consideration of the Mach principle 
allows one to consider that the integral equation forma­
lism (though requirung further development) is really 
adequate to the Mach principle and that the generally­
covariant boundary conditions imposed on the Einstein 
equations, in this formalism, really make the general 
relativity to be a Machian theory, as has been proposed 
by Einstein. 

An Addition to Subsection 3 

As has been noted in the Introduction, condition (6) 
imposed on the operator of equation for the Green func­
tion is too weak. 

Thus, for the considered conformally flat spaces, 
as an operator obeying only a condition analogous to 
(6) one can take an operator of the form 

D=aD+(l-a)~ 
¢ 

(81) 

( D ¢ = o ¢ gives the left-hand side of. eq. (12)) with 
arbitrary (nonzero) a . 

To the formalism we have considered there corres­
ponds a= 1 , to the cases/2,4 / a=-1/3, to those of refs/3 •5/ 

a= 1/3 
Now the Green function satisfies the equation 

aoG +Cl-a).Qo¢=o 4 (x-y). 
¢ 

(82) 

Equation (17) formally remains unchanged, however, 
since G ( x, y ) depends in one way or another, on a , the 
meaning of expressions entering into it (and hence of 
eqs. (18), (19)) changes. 

All the formalisms coincide only for o¢ = 0 (e.g., 
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for empty space and a Schwarzschild-type solution. See 
the Introduction) whereas for o ¢ =1 0 the results, 
generally speaking, are different (e.q., for the Fridmann 
model. See subsect 8). 
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