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The behaviour of hadron electromagnetic form factors at
large momentum transfer is attracting now a considerable attention
which is also stimulated by the fact that the behaviour of pro-

ton and plon form factors is well described by the "quark coun-

ting"™ rule /1/
) 1-n
/L; (#) ~ £, D)

where na is the number of quarks in the hadron considered, t“
the momentum transfer squared. In the present paper the asympto-—
tic behaviour of the electromagnetic form factor of pion,
treated as a bound state of two quarks, is considered on the
basis of known methods of finding the asymptotic behaviour

of Feynman diagrams. The quarks are supposed to interact through

intermediate vector or zero spin gluon ﬁ :
- e } A FQ 3, A4, \ (2
Lo =4mg Lt pmpuen Mt

where Q are the indices distinguishing the quarks. It 1s also
assumed that the interaction (2) is scale invariant at small
distances, i.e.»that the case of finlte renormalization of coup-

ling constant 9 is realized /243/ .

1. Form factors of composite particles and Green functions

Let us oonsider, following the Mandelstam's paper /4/ the

S5-point truncated Green function
(2r)* $(pypypy+pi+ @) R ury PesPiyPir @)=
COLTEN ) VR T7G) ) VPO
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Here :7 ’ '2 and )Z are the electromagnetioc and quark
currents, respectively, all taken in the momentum representation.
The T-product of operators in momentum representation should be
understood as a Fourier transform to the corresponding expression

in a coordinate space. 4=point Green's function 9()017/9_27?77;%)
A8y propret) s o i)
= ol TN ) L T e bty &P

should have a pole at S = (P,-*/ﬂi‘) = MZ if there

exists a bound state having the mass s composed by the

particles with momenta Py s P2 + Near this pole ?({A}) can be
/4,5/

defined by the equality

represented in the form

BV L ()

$PLprspip)= :
S— M2

g 2
where /(P( *_.2,—} is the truncated Bethe-Salpeter wave

function
612)(27)0 4 p,+p ) Xol L) = <ol T{ ) (B oS

In the following we use the notations P, P .Z'Z/P,' /9, f P" +6 »~P
The function R has a double-pole singularity: at S P M

(1.4)

and at = P R MZ « Near these poles the representation

(27)* §£4(P-P+q) RI(P, Py 1) =
7;.-2 R/P/ ("') Zﬁ) /‘I'-)
S~MA)(S- M)

is valid. The matrix element <P:¢'/Uﬂ(Q)/_P, 9 can be
expanded into independent structures ﬂ,,‘ ﬁ(E,_Pljl) 0 ') s

1.5)

<P1TR)IP>

the number of which depends on the spln of a composite particle,
. ~ . i, M
<P THQ) [Bsy=e (20) 15 (-2 +Q)) TR eP! 27
: 1.6)
3
The coefficlents "]’: (Qz) are defined to be the form factors

of the partiole in guestion. Pion, as a zero spin particle has

only one form factor: ’
<CPITM@)IPY = eZn) Y P-PLQ)(PT+ P'7) FL(QY). @
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We define /C;h-) (Q ) by the formula

(27‘) [) E'+Q) o (r (Q) (P*P )2<P0‘ I(ID-]) PU)/PD{I 8)

The asymptotio form of the funotion 3[/3,) understood as a sum of

asymptotioc forms of all relevant Feynman diagrams in the region
2.

i‘ /(” )/ >>.P H) has a Regge-like behaviour

3 (t.s)= 302}((5) [7(~as)) fd“) (1.9)

that 1s, (C}Lf, S‘) has a poles at A(S})= 0,1,2... and in the
neighbourhood of such a pole the following representation



%(5)
(1.10)

gLt 5) = §E K g

5 M2 /—-'(4+o((5)>o( (s)(s- -M*)
takes place, Consequently, when t >y §~ /”

Vo)X ()= FLKO) £ «s) @)
XE“ >X?(') R (5) [P {4+ 3(3)) = 9t

For the investigation of the 6]—) ( Q ) behaviour for/Q2/>>S.) m;

we shall consider the behaviour of /:1) in the region

[ro] 5> | Borl ~ | Pl > 1 G2 5> S, mi
S

Pr)(P'r) bl

In this region the asymptotic forms of the functlons XP (’) ;Yf(‘)

and X [’ X (r coincide, because from [)'.2 = P'Z: M=

1t follows that
_22/;4,»//2&(‘5)._«_, {XP' (rY ,}/Pfr)}l - {‘Xfl(r'>yf(r>}{}f(r’)YB‘(")) (1.13)

i
and in view of symmetry between P and .P

(1.12)

= 3 2 .
: ~ Jors) 950 Kis) (1.14)
r X rr _

i X

Thus, from (1.5),(1.8),(1.14) 1t follows that
H -
R (&aﬁaﬁaﬁ,o)‘

2
8 Ks) | rr/ ( M, ,1) Fm)(Q) )
e )((S) /"’(,’.,.g((g)) (Sl—MZ)(SJ‘MZ) .

The conclusion is that for fimding the asymptotic behaviour of

(1.15)

the form factor one has to consider the asymptotic behavliour of

Rluin the reglon (1.12) and to single our the Regge factor
GAH(S) [rr =)
o' (S) [(A+a(S)) [Sq=M) %~ M

2, The asymptotic methods in the theory of Feynman dilagrams

We shall use the ad- representation of a graph ( see,

Cele /246/ )

A(Pn Pa) =9Nf G( /3) P{G( f) Z (m«QJ(z 1)

4

where »0(0() 13 the sumc® all trees of the graph ( its "deter-
minant ™) Q(O(,P) 1s determined by the expression

Q("daf»: ;ét[“:n B(tﬂ ik”‘i’”'je) (P,,,t,, Pi:c)'z: (2.2

where B(lv”... Z'k /‘/‘“,_‘ /@) 1s the sum of all the 2-trees
of a graph, the vertices 'i,, ces iK of which belong to
one oomponent, j,, goee jf — to the other, the nonenumerated
vertices may belong to any of the oomponents. The summation in
(2.2) turns over all the possble separations of the' vertices,
in which the external momenta /D” ves /3,, enter, into two

groups. In a more compaot form
Q(d,p)= Z 5, A () (2.

\ 2 A b
where S]_—(PH Plk) . The (oZ) oonstruction ca.n e
11lustrated by the ladder graph. Let (}% + (Q)

( fig.l). One has to out the graph into two oonnected parts
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(cutting the lines only) to separate the vertices 1 and 2 from
the rest of “external" vertices 3,4,5. Each of these separations
corresponds to the product of ’3(0- parameters of cut lines,
multiplied by determinants of forementioned parts ( e.g. d1d1d3 @4
for the cut (, and o, o, o, ol tor R = d, +o *ol'*d )
1 17274 25 2y NI TOGTOTT e
The summation over all such possible separations forms the
coefficient A.
The five-leg dlagram { fig.l) depends on 10 independent
! . — o
invariants. Four invariants 'i_f =-2 (P P,,) 5 t_z =- 2{EP4),
[ - '
t; =2 (P,, P,) ; 'Z' - - QZ are large in compari-
son with the remaining ones: S, . S, , fﬁz . This gives

~
i PEERY T,

(1
Qi) = %1 Cp A xhe L0035 55 P5) 0 (auny

Functions )4;,(0{) may change thelr signs.
The preexponential factor G ("(, P) is due to the numera—
tors of spilnor propagators. To every spiner line there corresponds

the guantity

: n
A 4 . A
~{LT': hlﬂ‘* A %(J') Z—\B(gf”t‘e‘) PL ’

v 1 (2.5)

where “b;, and 'e; are initial and end points of the spinor line

s . G(OL’P) is given by the expression

A

G(\*'\P) = E‘}T(/\* R(th)—\( @0'1 .“«g:

in which the operator Y -arranges in a proper order the
A

: (2.6)
‘TK

quantities %u’ and the vertex matrices Kf‘ y Y5 5 and the
pairing cperator e Teplaces ‘(—G' ﬁ_t’ by ”.K Kﬁ
( with the summation over ,\4 ) and adds the factor /ZJ’Z'
B( gg‘, %-’\‘: \e(r\e ’t:\ - %(ggqet\g-‘t'-.es‘.) (2.7)

LA
v 2 oy iy D)

The 2~ trees entering the equations (2.5),(2.7) are also construc—
ted by the dlagram separation.
Every diagram can be represented as a sequence of two-part-

1cle irreduoible subgraphs-kernels ( fig.2). Projecting the

Fig.?2

contribution of

-~

every kernel and interkernel lines on the complete set of

projection operators st RVQ, RT’ RA and RP /2/

one can write



‘

Z ' €-1 Zm—r A

7 %( m—fﬁ
m-1 m > (2:8)

) ) o i —¢) BS. nj
where ( = 3, - 7_', A,P and K“”:(/ k/!:/()(((/q /d"

The pion, being “unnatural™ particle -\/’TP: '7) may give a

“%

“én

T (A5 = /(i M%i

projection only to ID” and A" states ( T-state projection
leads to the pion "conspirator®, i.e., 0% particle, which 1is not
observed). One can consider either P or A projections of 6("/7/0)‘
We choose the P-projection. Notice, however, that the KPA -

(
as it will be shown, is just due to this circumstance.

transition is nonzero. The asymptotic behaviour F;- ~ 4/6\72

Hence, for the Gpp'projection one can obtain

G ‘4 D)= Z G (&4 &4){ S .2)[:’[ i_ é‘
pp(*1P) —£ ) GO P/ LLT - ()
TR oo

To investigate the asymptotic behaviour of amplitudes B /f;, Sx)
in the region (1.12) it is suitable to introduce the Mellin

transform j{’(j 7SK) with respect to each of the large variables
E . 6 )

| Wy
Rt M tm34 Sy)= &21- &n gg‘ { ti‘ }@(JM'J%‘%--&&)'( ;
, 100 2,10

Using the expressions (2.1), (2.4) and (2.9) it is easy to obtain

the representation for

@(31,..,34)84’shpfl):%"/ﬂ 7 hCS \g”ddcr)g(k R0,

(2 11)

(B e 1359 gy

QL) D) o
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where E.(.HL): [e(ﬁ(_)—- e(’/lt)] > —
is the signature ffq._gtor appeared because of the sign indefiniteness

of /:/—',ﬁ 43.

Besides the poles of functions /—-’(4,_‘/‘) lying to the
right of the integration oontour, the function i_(]‘ bl S)\)
may possess left-lying poles resulting from the integration
over ©C 1n the region,where jy?v(d) =~ (0 . The position of the-
se poles does determine the asymptotic behaviour of /‘B(f” Sk)

//qv(cl) can approach zero either on the edge of the integra-

tion region, when &0‘—) 0 for the lines Y y forming such a
connected subgraph ’Vﬁ , the contraction of which into the
point "kills® the dependence of the dlagram on i—" ( endpoint
singularity) or as/jx result of cancellation of opposite sign
terms entering _/-I;(ol) at nonzero ©ob ( pinch singularity).
The latter contributes only to the negative signature amplitudes
and is of no interest for us.

The simultaneous vanishing of the d-para.meters is convenient

to describe with the help of the scaling /2/:
F_" . \ i
:ﬂv}% G‘(dv:ﬁv gdﬁv (’MV SM—); F’f> ' (2.12)

If the contraotion of V- into the point kills the dependence
. (e Vois 'I'I f - sub-
graph) this should result in the appearance of the factor

2 Iyt “c JC 1 and the integration over 2 ~ 0

on variables ft,, cos Z_[

( the "oontraction® or asymptotio regime of V ) gives a pole

11



( ‘jL'l + "J“'c “ch ) 1 « As a consequence @Q, §)

may be represented in the form

, N )
éf\thU- \E—(—J—“’&——"’P (J ) (2.13)
}L,, o Jie "o

The first termm corresponds to the asymptotlc regime of the sub—
graph, 7% e 18 a contribution of noncontracted Lf « The
functions C and R may also possess the leading singularities,
l.e., the poles at /L4 . J(7 due to the contraction
of other subgraphs.

The asymptotic contribution of any diagram can be obtained
by combination of all the possibilities of asymptotic and non-
asymptotic regimes of subgraphs. Due to éq(/4 _‘Zj ﬁ¥~)
only those subgraphs are allowed to be simultaneously in the
asymptotic reglme, which elther have no oommon lines or are
wholly one 1nside another.

Divergent parts of the dlagram do increase the order of the
pole ( .jt4‘+-‘~ -+JLC —1/b >, but only when they are inside
the contracted fb1... 'f;c subgraph, i.e. when all
distances inside the divergent part are small. To sum ihese
additional poles one may, consequently, apply the renormalizaticn
group methods. The assumption of finite charge renormalization
results 1n the shift of the pole position to the left at the

distance, equal to the half sum of anomalous dimensions of the

external lines

Jo= La-Mr-e=B1&)]-d. Gy
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where E(i/’ B and E../), ™M are respectively the anomalous
dimensions and the number of quark and gluon external lines
entering Dr +« The meaning of the number Ci will be clarified
later.

From (2.14) it is evident that for the leading singularities
the t—~subgraphs with minimal number of external lines are
responsible.

Besldes, the renormalized charge é} inside the contracted
subgraph Lﬁ must be replaced by the "bare™ coupling
constant g?c +« The experimental situation indicates to the
smallness of g}c and anomalous dimenslons. Therefore for the
investigation of contracted subgraphs the weak coupling constant

approximation is justified.

3. _The_structure of plon trajectory

The methods scatched in § 2 have been applied to the inves-

/2/,
tigation of the 4-point function é?[f S) asymptotic behaviour :

§+iv0

?ke(i"g:‘-z—ja—fdj f //j) Aké(/) ")) (3.1)

The result for hPP (j, S' ml) has the form
gpp(«lys mi)= [ p-,-(S)[U(j) B(f)] C 9,

where L,, C are the contributions of the most left and the

(3 2)

most right nonasymptotic objeots ( fig.3)

13



The factor j i1s due to the fact that the preexponent for the
senior asymptotic contributions for GPP is of the form

GPP = L t" G () (3.3)

n=1
I(n-4)
This results in faotors —T:(-—) ( see (2.,11)) "ki1lling® the
-7

poles at J= 0yl eso n . -~

Nonasymptotic contributions C, C are projected on the
T-states jJust with the aim to get the senior asymptotic behaviour.
To obtain the Regge trajectory possessing the zero spln state
one should consider only the oontributions with the preexponents
without factors t, pick out of them the contributions with the
leading asymptotic behaviour and sum up them., Each of these
contributions has a pole at-j=1l42 E‘l/ y 1. at a polnt by
unity further to the left of the value, dictated by the dimensions
of external lines. The guantity Cl in (2.14) reflects Jjust
this circumstance.

The summation, analogous to one used in /2/ gives

- 3 R PN K \“- 1" 7 g
APP (;,8,m%)" CPN(S)[ U (J+'|) - B(S)] C/V’[‘(S)‘(B-O

A/A/l
where ,\ j/\- means P-or A-states. Nonasymptotic objects

following structure ( fig.3): there is an odd number of J_D

14

values in each o}dect, and the cuts, glving the factor corres-
ponding to any l? value ( see (2.5) ) do not touch the lines
outside the object in guestion.

4. _The_structure of contributions and the factorlzation problem

The large varlables in the region (1.12) are 't“ fz, f57 fq
which are related by %1.{-2— =~ 1. It 1s easy to see that for
asymptotic form in this 3regj.on the most essentlal are subgraphs

\«7\4 ( fig.4), the contraction of which kills the dependence
on all the large varliables and therefore generates the pole
( jﬂj;_*\/;ﬁ-‘)‘,‘* 1 +2&Lj/ )-4‘5 (T+1+2 Ecl/)_’ and subgraphs
VL,VR , generating the poles ( J.1*J‘3 t 4'2211})'_1; (st 1*2{7,)-
and (sz t]3* 4+ ZE%)—"; (./'5, + 7+2£2 )\1, respectively., The

7

assumption 9c2<< 1 permits us to use the ladder approximation
inside the contracted subgraphs . The dependence on fz, =" Qz
belng killed only by -‘//-\4 contraction, in all essentlal
contributions the photon 1s entering the contracted subgraph.
Consequently only diagrams of fig.4 type are essential.

The 2~trees of some subgraph v of a diagram will be deno-
ted as B( L4 Lk qu,_,j& ;V') . 2-trees of the type fig.4

have the fom
BV, +Ng)= B'(N.) B (Vg) -
where B/(/VI_)a B”(A/R)are the 2-trees of the left and the

right parts of the dlagram respectively. The following notations
are suiteble also

15



B”Mﬁmj_a ’i‘r‘;/lL ):['S‘ BU,,"’;, /'?:J/‘*;/k ):LH
B(/L’//?M’{?‘/’;-’r;/lll):z‘ 8(1/?—’1/]17’)2/’3;44):[" (4.2)
LS - [_u =L AS 'an = L.,f'

wlth the change ?—“’ ¥ s Z."T R for the left part. In these
notations one can rewrite the exponent G(Id,/D) in the form:

Q,p)= T, (/L*L;-s)(' R*le) + T, L_(R+ Rs)"

(UL DR E R L+ [ (4S,, S, pH). @

According to (1.8) all the contributions are divided into two

groups depending on the momentum P or P in the photon
~(P)

vertex. Let VM be the maximal contraoted subgraph of the

p'~type. V/,

™

kernels outside the V/-\q make up the left and right "Regge"

1s the central part of the diagram and the

parts. Simple but cumbersome considerations give the follewing

result for the preexponent structure in the approximation gf<<’7
2y -2

(however €n (- & ) =1 ): the W line contributes

(ngwevers Fe, J“fs d

PlL+L 4~

lines of the centre.l part contribute to the palrings 4

) to the preexponent, the remaining spinor
oo’
as 1t 1s shown on fig.4.

The central part must be projected on the AA-compoment,
1.e. the left Regge~part gives an extra P s the right one
glves an extra /5/ « The pole corresponding to VM -
contraction 1s, as a result, at the point dictated by the line
dimensions, that is o =0 for VM , o -1 for VL, VR

16

Finally, the preexponent of the leading contribution has the
form = i . ‘ (l: A
G(a,p) = 2(PP) G («,s”/z‘)‘.____L*Lgmf 2).

/7 D, (X D) (4.5)

- /2‘
70 (43 S5 P'%)
-2 (<)

where %(d) 1a the determinant of the whole diagram, f)(/VR)
is that for the right part of the graph, DL 3-D are the
determinants of left and right, in respeot of 1-th pairing,
components of the graph, and (G )PA,(GR) p are the preexponents
of left and right 4-leg diagrams. Using (2. 11) (4.4), (4.5

one ocan rewrite the Mellin transfom é(j ) as
é( ar /‘7 - ‘ )71 1) /7a’v(,r )
JM k 29 j J4 (Dl(d)
Vi - (4.6)
G559
. 3 K)Pc 3 2 .D 5
where

G'= G, G Ditg) 72 0s DR '

7

For subsequent considerations one has to know the factorlzation
properties 1253/ of functions /4, /45, '4_ ( /4,: R, L)

Using the expression (4.3) one can prove that

A_(v+V)= A (V)A_ (V)
Alv+V) = AV)2(V) + AS(VM(V)*AL{(V)A’(‘?) (4.7
Acvev =AW A W)+ A, (v) A, (V)

17



T —
( \« is chosen to be on the left from V for R and on
the right for L ). The subgraph V being contracted, can
be considered in the ladder approximation ( 32«1). In this case

Alv+V)+ A (veV )=
[ At) +ao] A7) = )L 20) - A(7)-AW)] .
For the planar graphs AS:AUE a . However, the subgraph V
itself contains the "Regge—~tail", and, consequently, should have
at least one contracted subgraph V:4 ( VR on fig.5).

When /)1_ =
R (4.9)
Al AN Ay, D L
CD(\) V) Q(V) VR’ T(v)  Dvy)
and it i1s easy to get from (4.7)
o -\ (V)= AV
2r)- 4 (V)= A(V)] = 1)~ ACK)
m) X (V,) (4.10)
M P it
) |
&y ' R %2
7S
tht*
2 é@ 'Da
Y Vi
Fi1g.5
For the subgraph m ’ .'both the ends of which are
contracted ( V1>"/4(V1)= A’l(V4) . For the combination

AL oo o

the following rule for separating the contributions from

18

ViV (jre=0):

, A ( ) 20)-Alv)-At)
ATit) nzcm/'/’ o D fv;ten,jon) = (j4n>

where the fomu.la
(""ﬁ Z r(n-t) £) f—nﬁ” (4.12)
ho [(-€) T(-e)n! )

was used whioh is valid for the case of our interest /?e (./<O
when /oki > /ﬁ/ « One can easily verify that thls requirement
1s fullfilled. If V+-L7 belongs tothe central part, then

OCC/( \7)' As(V)—A“;): A/(\7) ( remind that the V’ S end
adjoint to V 1is contracted) . Formula (4.11) can be rewritten

J{I}( V"'V)ﬁ ﬂ(V) @A/(W | (4.13)

( The sign — shows that this equality is valid when
}]V“'O)- When \/2 is contracted, 1t follows from (4.9) that

A'(\/"+\/Z)§2 A,(\/4)E(Vfl) /—<ij) {fb(l\//))} T (4.14)

Thus, using formulae (4.13), (4.14) one can express the
contribution of an objeot with m+l kernels in terms of the
contribution of an object with /70 kernels. The summation over
the number of kernels and over all possible sorts of them gives the
following result ( see fig.6)

N (R)
é(Jn‘Sk)_ 4P/v(~“’§” )W/VA/’{/U51352)H (jy)27/€j)

(4.15)

19



WNN,(J;., ﬁNMM@MMM (m@ﬁ (s, >(+4 .
(L )
¥ NM MM (@)QM/V’(S);3 (S’@KMM' M/V'

Fig.6 ((L) K:@
The structure of H coincides with that of the 4=leg diagram:

H® = o) Ugn-8esy]

l | (R) (417

=[G -Bes)] 1 Cs)

Using new integration variables ‘/4 7,/)’) 77J5 one can rewrite
(2.10)

Rty oty £ [t difE) () E0s)

43 52y
bl u) ~ ey . 5 .
@S PR ) - BOSJT01) 815 4. 109

e BN [T
gdj d’J’S\ (35 ‘)A)\ (J3 JS) T \)3) F(‘I*ng‘h‘ 3>W(5h3353\‘t4%:)]3

The J’S‘ integration contour esnciroles the points JS =0y1e0e
max { Rej;l ’ ReJ}} « The poles Z Zr(j" 1) ~ B’(S)]'l

are on the left from the J) ) /j integration contours. The
residues at these poles give the asymptotic behaviour.of R(f)
with respect to the varlables ( 1/+ ) ( 2/ )
oL (S o{( max{is) )}
Rk) (%) ) ‘~’>£@_ S i) o4cs)
4 4 &'[=(s)] p=o
(4.19)
( ts 1‘4) f oA £, )+l )-n-T+) Wos),elcs) 9):
tt
1) . C(S})
W= (50)]

R VA
The amplitude R has a double~pole singularity at § = Sl—’h/

o 1 tyt, «(M?) |
R(to= T RS, (S, Mz)( fz) Z’]zﬁ,.u.zo)

The summation over n does not affect the asymptotic behaviour
i3t ~
because of 3 4/t1tz = 1. W(O(,o(;j) has singularitles near
the point J=- /}—2£qj ’
-1-2¢

fd:’ tj Wty oty T) = - Qz) v f(o!, Q'z) . (4.21)

As to the function f(&l) s We can only say now, that 1t
1s slow varying function, depending on 02 and 6?1 (— QZ) .
It 1s shown in the Appendix that {(Qz) = SOZ(QZ)
and the Mellin transform of the function jo(az) possesses the

21



2
ZQ‘C
nn+1)

spin O gluons and Z = -2 for vector gluons)., But the relative

poles at J=-— y accumulating at zero ( 7 =1 for the
welght of these poles depends not only on small distance
physics, but also on the large distance one, this fact being
reflected by parameters ./8 in (A.21). That is why 1t seems
impossible to sum these poles, but one car consider expresslons
(A.19)=(A.22) as a starting point for further approximations.
Using (1.15) and (4.18) one obtalns

. A 2 , ZAD((/"'Z)*ZE .
/i ) ( C?Z’ cX(ff{)) ~ é(o[) ¢?((2 ) -~ W@, V2
Ji

:Tgiz—jgjzzza -ZEE (4.22)

This formula corresponds to the gquark counting rule 2% and
~ KX (M2

gives also the natural correction (‘ C32> for the
spin A (/wz)of a camposite particle, Just as in the nonrela-
tivistlc case.

For the plon (a¢=0) in the parton region ( {L? é% (‘(Q%)<<1 )
according to (A.23)

F(gY)= —c——s (-2
a -2 oL'(17)

where C=0(1). Thus, in this case, the dimensional parameter,

2 2
compansating the & to make FIT(Q) dimensionlessy, 1s the
_ o
inclination of plon trajectory c{": Tfé .

5+ _Concluding remarks

The method of Feynman diagrams turned out to be a rather
effective tool for consistent relativistic consideration of form

factor asymptotic behavliour of the simplest composlte system.
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The important role in the consideration plays the assumption
about the weakness of the effective quark interaction at small
distances. In particular, Just this property is responsible for
the existence of the parton region, gh% 577("'622) <L 1,
where the "quark counting® rules are valid, F%((QZ)'\((QZ)”{
It prediots also the deviation from these rules at larger (QQ

The breaking of the Bjorken scaling in deep-lnelastic
/U}7~ soattering /8/ y discovered at FNAL allows one to expect
these deviations in the region /(?2/“’ 50-100(GeV/c)2 .

The consistent consideration of more complicated system
seems to be difflcult for the present from the technical point
of view . But there 1s no doubt, however; that for these systems
also the asymptotio behaviour in the parton reglon

gcz (/771{" 02_)«1 1s determined by the scale dimension of the
oorresponding t-subgraph, 1.e.y1s given by the quark counting
rules.

The analysls carried out shows, that although the scale
degree of form factor asymptotic behaviour 1s governed by the
small distance dynamics, the function =¢(’(QZ) .
due to the absence of simple factorization depends on the wave
function properties at large distances.

For the deep inelastic scattering it 1s possible to get
simple factorization when some ( the most natural, indeed)
varlables are chosen. It 18 just the reason for the sucoess of
application of the renormalization group (RG) and Wilson
expansions methods for the investigation of this process. It 1s
interesting, 1n our view, to obtaln the results of the present

paper by the renormallzatlon group.
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APPENDIX
The_investigation of the central part contribution

The formula (4. 16) can be rewritten in more detall

MCjetn, jy+ky D)
W(J,njf, { (1= €) (=€) '

/V}(J\”R)Jrrn 3) ﬁ(h ﬁ(k 5) o0 K(J;*fz) (A1)
Fo-Gyregy ) k' Z{m mﬂ), )M
+ K(J +h) -\ BM,S
where mAm “?h%)T} ’

M(Jiaj)ag): FM"&) /7/~€,)>M(jg,j),7)
K ()= (1-2) K(j).

The contractlion of the M or K- type subgraph gives a pole
C(J) ’ Jf; 7) (7+1 25(,,) M in (A.1) is supposed

to correspond to the case when in the photon vertex there 1s ID

(A.2)

The coefficient CM for a M ~ contrlbution is determined
by the sum of the following contributions:

1. The subgraph M EM is contracted, the contribution
from the left kernels of a complementary subgraph /\/ M\ Mf
being g(J,\,k) from the right ones— g(j;,,”) . One must

also take 1nto account that there can be no left or right kernels:
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Cm M@g oM, - €®M®é (A3)

™M

2. Inside M the right subgraph K i1s contracted.
The contribution from the left part of the graph ( which cannot
be asymptotical due to the superfluous factor L *LS-
in (4.6) ) is C(‘jlg) . Hence
C(Z) = (K ®f + K)- (a.4)
™M
Taking into account that £ = 0(9(J ) and leaving the

senlor power 1n 302 y We get
C,=M®EE@M = cK a2

In more detail

M iy fotn, D) p |
TJ/V/(JA,J“U) Z J);)J!" £ijo,0)+

co . . ~
+ Z M(“;/j’”’ 7) g(%k)ﬂ& M) K(odkae
k=0 .
where the notation T=z=TJ+1+ 26«,} is introduced.
For investigation of (A.6) one requires to know the
gunction ([, 7). the coetfictent Cj 1s formed by the
contributlion from a subgroup K (‘ K and by the contribution

from K\ K 4» Which equals g(Jff ). Consequently

v K(j,7)= r(1-0R(, 7>+Z K“””é( ) ean

The term R(j,g) 13 due to the minimal t4tzf3 4 ~ subgraph.
The straightforward calculatlions give in the lowest order 1n9:'
3
the values for g, EQ/’ P(J’ 7), c.
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2

6(i.n)=-2g? [(j+1) £ = ‘1'2/90 (Ae8)
) & [(j+n+3) v 2
4 Z9; (4.9
R(J)U> = i%’_ C‘(\/‘.’ g)/ :_‘gicz ,
J+4 g:__1 J,+7

where £ =1 for zerc spin gluons and Z =-2 for vector gluons.

From equation (A.7) and equalities (A.8),(A.9) there follows the
equation:

k-5 2 L Fim

where F(j, U)_— K;J ?jf,j) ,

Since /—’(1--@//"(‘/42): 1+ 0(93) in the neighbourhood of the

point ﬂf‘ =0, equation (A.,10) can be simplified:

,(/H)(J"*Z)F(j, ﬂ)zjg‘ + \7(\)‘*4) Z F(j'v‘”, 9)’ (a.11)
h=9

where Y (V* 7) == 23:5 = o€

follows the recurrent relation

(9)(J#2) Fljst, D)= i +1) =V 01)] F(j, ) 422

+ From equation (A.11) there

from which one can obtain the solution for F:

e CUID T i) o

P, ) $4,9). (4
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Moreover «{(J,D) = +(J+4 3) « From (A.11) and the Dugoll
formula ( /97 § 14) it follows that for integer J ( which we
are interested in) %{J, f]>~—-. The function f (J, -)()

for integer J. satisfies the equation
OQ 1

P .14
i J<J+V’L 3€) J(J; ) (J*‘O(J*Z) (A.14)

e
(J+1)*2)

and is a moremorphic function of a parameter P s having
bYe :(J'+ N+1) (J+ 1 +2 ), 20,152 o
Equation (A.6) with account of (A.8), (A.10), (A+13) and the

the poles at

fact that {>a-

Baoi®) <2y L Elndn) -

<
<7

S S
(JW)(/)*Z)@@J” )=

can be rewritten in the form

(A.15)
.2

_oxt
(21 2)
where N |
DUpy gy 0) = 11373 Mas 5, 7).

The solution of (A.15) is searched to be the s}lm of two

terms:

¢(J ey )= % _J_(JS’M_.
i (12¢1)(J;+2)

$4(J,{ 7})71 X) satisfies the equation which is symmetric with

* 24y, Jgy %) wae)

respect to the change /\ <> ./f
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R * > to . N\ —
@4(J)1J§59€)— (J‘f‘rﬂ(/')’fZ)hZ:o @4(_)/)1jf+na K)

(4.17)

(2]
¥ Z @ ( +/( ’X):— - .
—_ _‘m_'_,__ ) 9 ] . ' )
oo lavd) Ay 1 I G e
The solutlon of (As+17) can be reprsented as a double integration
in the space of complex variables 964; xz over the hypersur-
face Z s the poles of p(J1 9{’1) ’ P(J', WZ) being

inside 1t, the points X4 =0, Xi =0 and the ones satisfying

the relatton 1. _ 1 1 outside 1t:
X %t
§<jh1_‘3§5'a:
(A.lB)
Udu e, f(JM”ﬂ) p(Jrr %) -L\&
ZJU)Z P14 3(1 214 XZ

One can easlly verify the formula (A.18), substituting 1t into
the equation (A.17) and taking into aocount that:

PQ) O>: LG+ +227 7 ana f])(\/; 30)) A%, =0
where F 1s the integration contour reg’a.ining after the integ-
ration over Z’Q,j

Collecting together all the terms entering the (A.l) one
can obtain the expression for the asymptotic behaviour of form

fa/;tm(czz)’( Q? >~d(m)_2% ¥t Q%) ot .
(R m - Q2 LMot + D 92U )]
Qunen)! (2
Z nl [(«- n)’]
28

where

fa, 0= 5 [ CONTEE BT,

. 7 [(o+n+3) o 2g2
= ANt o, M? n,-%%
b=y LD pina, ) Pheon, 2y
n=0
To derive (A.19) the equality

i o+ k+9) Bk M= LEM)
o [ k! ,

1s to be used. (A.22) follows from J + f = 21 and from the
fact that

X(j,9)= fﬂdd (5;) g(a«,s) ﬂ(/r,j,s) jﬁh{,{{-’eagm),

. Zal.
where Z,'J- (04,,5)7501113 known function. The function \P(O(,‘ —T& )
has the poles, aocumulating at T =0. The same one can say

; 2 z
about %(04 ’T) In the parton reglon goz tn (- & )<<1

we can restrict ourselves to consider the lowest approximation

Pj ) = [ +2)] mhen Ploty Q2) = P()

and from (A.19) 1t follows that

2N K@)
Fm(Oz’ A (M) = il g )

o (M2)

(A.23)

where k(d): O(") .
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