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The behaviour of hadron electromagnetic form factors at 

large momentum transfer is attracting now a considerable attention 

which is also stimulated by the fact that the behaviour of pro­

ton and pion form factors is well described by the "quark coun­

ting" rule /l/ 

~ (t) '"· t 1-na , (1) 

where n a. is the number of quarks in the hadron considered' t­
the momentum transfer squared. In the present paper the asympto­

tic behaviour of the electromagnetic form factor of pion, 

treated as a bound state of two quarks, is considered on the 

basis of known methods of finding the asymptotic behaviour 

of Feynman diagrams. The quarks are supposed to interact through 

intermediate vector or zero spin gluon ~ 

i~td = 4TLg [ :fa(x)rAf 4ix)t;Atx.).· 
a 

rA= 1 iJ. \fl, c2
) 

J v:n II 

where Q. are the indices distinguishing the quarks. It is also 

assumed that the interaction (2) is scale invariant at small 

distances, i.e.,that the case of finite renormalization of coup­

ling constant g is realized 12,J/ 

1. E,2,!1D_fact2!:.!L~L£2!!!l!~!!!!.~rticleJL~!L Gr_e~_!l __ _!!Y!C~ 

Let us consider, following the Mandelstam•s paper / 4/ the 

5-point truncated Green function 

(2n:)'i b\p~-tf.z_,_Pi;+pl;+Q) 'R.~(p1,f:.Jf/,fl', GJ= 

< ol T { ~ a(p/) iz 6(p~) ]?(G.) J/a(p1} 'zi(piij }C). (1.1) 

3 



Here 'J ~ 12 and )2 are the electromagnetic and quark 

currents, respectively, all taken in the momentum representation. 

The T-product of operators in momentum representation should be 

understood as a Fourier transform to the corresponding expression 

in a coordinate space. 4-point Green's function 8lft 1f2J/J/, J:/) 
defined bytlle equality (2!i)'~f/'(D·tO+f'-t0 1)Q{P D o' ,·)-

(1 1.t 1 12 if r1,r.t)rt7B. -

<ol T{ }("tP1;)tz€(p;)fLt.l.(p1)'l~fP;J]Jo> (l.
2

) 

. ) .2 2 should have a pole at S::: {p1-+ f 2 = M if there 

exists a bound state having the mass ~ , composed by the 

particles with momenta Pt ;fl . • !fear this pole g({p.}) can be 

represented in the form / 4 , 5/ 

I ~~ 

~(pJ,f;ifHft 1=- i 

i I-

Xp(~)X1 (!s?) (l.J) 

s- A/ 2 

where 
'Y ( p r_ ~)' Ap ;~ is the truncated Bethe-Sal,eter wave 

function 

G(Po)(2,7)f J'"(f1;·•r/·-P) Xpf t~fl-)-:: <oiT[t ('(f1) tT6(p_/y;pj:· 4
) 

f) i i 
In the following we use the notations p1-p1~J.'Z)N•f1~J,·p1-tf{·-P. 
The function R I' has a double-pole singularity: at s

1 
'::: P2= /1 2 

':2. :z and at 52..::: P : /vi • !fear these poles the representation 

4 

(2r,)~ r;y P- P'-+ Q) R~"(P, P; '; r) ::: 

·- i2 Xr { r') 1p /r) < P') 'J~'(Q) JP> 
(s· - 112..)[ s -·1'1 2) 1 1. 

(1.5) 

is valid. The matrix element <P:<r·('Jfl(Q)/P,rJ·) can be 

expanded into independent structures J/i ~ ( P, P 1
1 

•) , 1) ') , 

the number of which depends on the spin of a composite particle. 

<P' ,~'} 'J~( Q) fP,,J)7_ e (2T(Y1S\ P-E'+Q)LT{Q2)/t(~P; o,·r). 
l t ' L (1,6) 

The coefficients J: ( Q2.) are defined to be the form factors 

of the particle in question. Pion, as a zero spin particle has 

only one form factor: 

< P11 'JI"f(Q)IP>-= e(Z~t)~ t"( P-P~Q) (P 11 
+ prt') Fli. ( Q~ · Cl. 7) 

We define G!i) { Q2
) by the formula 

(.2rt) '-~ S 4 ( p-e 1-rQ) ~<r' Fe r.l ( Q~ ~ .. r~+ 0 ~,~ <~~·J(PJ) r(Pj)/F;·i-~l.a) 

The asymptotic form of the function !J/p.) understooa as a sum of 

asymptotic forms of all relevant Feynman diagrams in the region 

t · . · p2 L 
;: /{t d/ >> /V /1)1 has a Regge-like behaviour 

. t cA Cs) 
~ ( t , s ) _,-.J ~/- K c s) r (- o1. { s)) 

(1.9) 

that is, fj(t, <;;) has a poles at ct(~)= 0,1,2 ••• and in the 

neighbourhood of such a pole the following representation 
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<>{ [S) 

) 
1 g/' K (s) -/: 

Qlt s i -

j ? 15·:::-Mz- r( 1<-ol.(S)) o/. 'rs)(<; -Hz..) 
2 

takes place. Consequently, when ·t >> 5' ~ ll7q 

(1.10) 

:2. . . ._,((';) 

X ( ,-')X ( t) ":: ftc. K r s) -t . = ){s)t o((s). 
L E p cx'(S) r(1-d.(S)) 

(1.11) 

For the investigation of the Frm ( C/) behaviour for I Q2/>>~ mt 
we shall consider the behaviour of R~" in the region 

/ 1-r') > '> J P ,., I -~ ) P 'r / > > J G 2 / > > S, mt 
~ 2 (rr') 

(1.12) 

[P~) ( P'r) . )' (. 
In this region _ihe asymptotic forms of the functions Xf (r) f 1

) 

11 ( ') X ) L'Y .2 ·- o.:Z- M.:z. and J\. [>' r .f (r coincide, because from .· - L -

-~ i' 

it follows that 

-i(rr-tj2Jt'S)~ {J.p,(r')X_lrf:: {l_ptfr·)~(r~{?/dX1Jr)} (l.lJ) 

and in view of symmetry between P and .P' 

1- X E' { r') Xp ( r) -~ 
/ rr'/ o<rs) '3} K { s) 

d..'(S') /~(1-+o((S)-) 

(1.14) 

Thus, from (1.5),(1.8),(1.14) it follows that 

R f1 ( P1 'p,_ ' P/' p; ' Q) = 
c ( 2) (1.15) 

. g~ K(s) /rr'}d.(s) {pf'-t prf1) lrn) Q + 

=L€ .l'(s) r(1-+oi.ts)) (s1-112){sj-tl'f2) 

fhe conclusion is that for finding the asymptotic behaviour of 

6 

the form factor one has to consider the asymptotic behaviour of 

f(fin the region (1.12) and to single our the Regge factor 

g} k (5) /rr 1/ o(cs) 

oi'(S) r(1-+cU>.)) ($ 1 -M~)(~-ft.z.) 

2. !he ~,!lli__Ei.Q.i~L~thod!Lin_ th_!!_!heQ.!L_2~..!~__Q:!:~~.!! 

We shall use the ol- representation of a graph ( see, 

e.g. /2,6/ ): 
it<J 

A(. )- oNfn ridv- G/ ,\ .. {Q[ti,p) )' 2-~-
fo--·Pn - (} $..-- ,«,f~exp -) -Ld .. (m-,t)C2.1) 

0 !jJ 2(.x) J)(ol \j' u a- • 

"'. \ where ~ ( d J is the sum~ all trees of the graph ( its "deter-

minant•) Q(<l,p) is determined by the expression 

Q(d,p)-= ~n B{i1 , ... ik1J1, ... Je) (p,_~-r ... p~J~ (2.2) 

where B(z.,, ... zk, }J~, ... ;~) is the sum of all the 2-trees 
' ' 

of a graph, the vertices ·1 1,. •• ~K of which belong to 
. ' 

one component, j-1, ••. )t - to the other, the nonenumerated 

vertices may belong to any of the components. The summation in 

(2.2) turns over all the posable 

in which the external momenta 

separations of the vertices, 

f1' • • • fn enter, into two 

groups. In a more oompaot form 

Q ( J., p) -=- L. s I' fl s, (d.) , 
(2.3) 

r 
where S' r = ( p ~ ~-+ . .. p ik) !l. • The Jl~ r { cl) construction ;_an be 

illustrated by the ladder graph. Let S 1 -::: { p1 r Q) 
( fig.l). One has to out the graph into two connected parts 
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Q ? ,c1 c2; 
n 1 ~ ~ o1.3 <>~s, ~ 
[1 I -, I I . I 

- L_ 1---_J I 
-~1 - ~21 ~I I io{6 

I - - -- _ _ L -1 I 
• I I o/.7- 1 
3 5 

Fig.l 

(cutting the lines only) to separate the vertices 1 and 2 from 

the rest of "external"'vertices J,4,5. Each of these separations 

corresponds to the product of ·~~ parameters of cut lines, 

multiplied by determinants of forementioned parts ( e.g. d.1~J3 9)1 

for the cut C 1 and J.1 o{:2. J.'-1 o/..5' for C,z , <JJ1 -= d.t, +o/.5 + ol.b• ol.r:- ) • 

The summation over all such possible separations forms the 

coefficient A. 

The five-lee diagram ( fig.l) depends on 10 independent 

invariants. Four invariants ·t1 -=- 2 (P'p1) ; t J.. =- 2(£ p;}; 
t ~ .:: 2 {p1 p/) ; f~, = - Ql are large in compari-

son with the remaining ones: s·1 , 5.1. 'l r/ • This gives 

"1 "-' 

Qc.).,F)= L l:K Jik (o<) + I ( v<, s1 ~ ~ , ?,2.) (2.4) 
k ~1 

Functions fl: (ol.) may change their signs. 

G(<><,p) is The preexponential factor due to the numera-
[1] 

tors of spinor propagators. To every spinDr line th~re corresponds 

the quantity 

A 

·f ~::: 01 ·-\' 
cr 

n 

"-• 'Jli,l) ;, B ( ~~ t\ '<) ?. 
(2. 5) 

1 

8 

where •b; and •e; are initial and end points of the spinor line 

C) G( ol.'l?) is given by the expression 

- A .'\ 

G(d-'lf)-=- fl (~;- R~t)'{ fv-i ... -f';r 
~<~ K 

(2.6) 

in which the operator \( ·arranges in a proper order the 

" quantities fo' and the vertex mat~ices,, r ~, t., ; and the 

pairing operator R.o-·1: replaces ... til"--· f·1:' ... by . , . ~~ ... X~ .. 
( with the summation over ~ ) and adds the factor /{. J' z-

't G"'·'t' ·-:.. 
B( ~~~ ~t \e!r"le't:)- B(€cr-,et:l€t-~cr-) (2.7) 

~ ot.cr- 0-..t SDc.x) 

The 2- trees entering the equations (2.5) 1 (2.7) are also construc­

ted by the diagram separation. 

EVery diagram can be represented as a sequence of two-part­

icle irreducible subgraphs-kernels ( fig.2). Projecting the 

contribution of 

EIN:lrH 
Fig.2 

every kernel and interkernel lines on the complete set of 

projection operators R S "l R V o
1 

R T ~ RA and R p 12
1 

one can write 

, 



,7/J t e' {t 0t:n-t e.~_, t~_, n . en . . -~ · L c.1 1 1. " t R 
to ,Jlt,)sK)= {c.J.)l,/11 ~i ~ ... m-t /{rn ,(2.s) 

( . 
. -- r LJI/ ( -rf)~KI"rn)r 

where ( =- ') , ~ ? ) A 1 1? and K = I 1/~ Ad I d' 

The pion, being "unnatural" particle ( 'J"" P.:. -1) may give a 

projection only to P- and A- states ( T-state projection 

leads to the pion "conspirator•, i.e. o+ particle, which is not 

observed). One can consider either P or A projections of G(~,p) • 
We choose the P-projection. Notice, however, that the K PI+ 

transition is nonzero. The asymptotic behaviour Frr rv~ 1/Q2 

as it will be shown, is just due to this circumstance. 

Hence, for the G pp- projection one can obtain 

k (L ' "I ~-
G ' I)- r G ( 1'" r<-.)(<>( 5 s D.t)n t ' 

p p { d' f; - L ' 1' '2' r' J t 
12 iJ, '~ 1 
1{1' '• (<.'1 

( 2.9) 

To investigate tlle asymptotic behaviour of amplitudes R (~-, 5~) 
in the region (1.12) it is suitable to introduce the Mellin 

t~ansform P( J •, SK J with respect to each of the large variables 

t. Ct. &' +tCb 

D~·t t '( '\- _1_ J 11 ~ dj, tJi};r:;{J' . 'S S') 
r(,\ 11" ct)J1 __ )~J-\2-r. 1 )0..L "

1 
j _ t 'r 1>·)uJ 1·· ~-

L K(-(0:> (2.10) 

Using the expressions (2.1), (2.4) and (2.9) it is easy to obtain 

the representation for <, ,oo L 

;r. . \ N~ n 1'(1:. '\( ndd.r G(l'i~ .. f<..) 2) 
'±'(j~~--1 S1 s:t P~!l. 1::Cl L 1 "'·-J~') -~) (o<.~,r. · 

'P ' ~ <J t l"-1 0 1JCJ. (2.11) 

. (/f (.~)J,- R~ E( k) exp{ ~~ -Loi.cr-(ttl~-/.c:)c, 
'i(u() " D(ol) o- 'j 

10 

where uJ()= [ er liJ ± G(-A )] e-t.Ti)i:! 1 

is the signature factor appeared because of the sign indefiniteness 
J{ of !i;, »; , 

Besides the p;les of functions rr ft..-j~) lying to the 

right of the integration contour, the function t (J~, s,) 
may possess left-lying poles resulting from the integration 

over d... in the region, where Jf( oi.) ::::::. 0 . The position of the­

se poles does determine the asymptotic behaviour of R ( t~,, sk J 

Jf { oZ) can approach zero either on the edge of the integra-

tion region, when ol.<T ~ 0 for the lines :J , forming such a 

connected subgraph ·11- , the contraction of which into the 

point Wkills• the dependence of the diagram on [, .. ( endpoint 

singularity) or as a result of cancellation of opposite sign 
r:-' 

terms entering ]{( ol) at nonzero d.. ( pinch singularity). . 
The latter contributes only to the negative signature amplitudes 

and is of no interest for us. 

The simultaneous vanishing of the o(-parameters is convenient 

to describe with the help of the scaling 121: 
f-1 

n d~ =) [Jcla J), S'(1-l:o) 
rr v- t-'o- v ;0 

(]" ()' •) 
~cr =fly Per (2.12) 

If the contraction of ~r into the point kills the dependence 

on variables lt~ ••• t,c (i.e. Y is "t£_, ... t~c - sub­

graph)thi~ should result in the appearance of the factor 

/J J '1+--- J •(..- jc -1 and the integration over JV ...-../ 0 
( ~e •contraction• or asymptotic regime of V ) gives a pole 
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( . +- I 
·-' •. , ..• 0 •c: - ,) ( 

-1 
) • As a consequence ~(J) ~) 

may be represented in the form 

Cfutl~k)== CvU.~5k.) +RvCJ.,)K). 
. . -)o )t1+ jlc:' 

(2.1J) 

The first term corresponds to the asymptotic regime of the sub­

graph, f-i V is a contribution of noncontracted vr . The 

functions C and R may also possess the leading singularities, 

i.e., the poles at ji
1 

+ ... +J"'- :=. Jc­
of other subgraphs. 

due to the contraction 

The asymptotic contribution of any diagram can be obtained 

by combination of all the possibilities of asymptotic and non­

asymptotic regimes of subgraphs. Due to ,f ( 1-2 p()) 
only those subgraphs are allowed to be simultaneously in the 

asymptotic regime, which either have no oommon lines or are 

wholly one inside another. 

Divergent parts of the diagram do increase the order of the 

pole <J.1+ ... . . )-n 
+ J '-c - .}o , but only when they are inside 

t. ••• t· subgraph, i.e. when all ·1 ~c 
the contracted 

distances inside the divergent part :1re small. To sum these 

additional poles one may, consequently, apply the renormalizaticn 

group methods. The assumption of finite charge renormalization 

results in the shift of the pole position to the left at the 

distance, equal to the half sum of anomalous dimensions of the 

external lines 

j
0

= i[L-t -/vf(1+E<f)-B(1+E~)]-d, (2.14) 

12 

where E 'B 'v, and E..'-f, M are respectively the anomalous 

dimensions and the number of quark and gluon external lines 

entering v- • The meaning of the number d will be clarified 

later. 

From (2.14) it is evident that for the leading singularit~es 

the t-subgraphs with minimal number of external lines are 

responsible. 

Besides, the renormalized charge ~ inside the contracted 

subgraph ~ must be replaced by the "bare" coupling 

constant f}o 
smallness of 

• The experimental situation indicates to the 
2 gt and anomalous dimensions. Therefore for the 

investigation of contracted subgraphs the weak coupling constant 

approximation is justified. 

J. ~~_!!i~'ll:.!L~LJ2iO!L trillctory 

The methods scatched in § 2 have been applied to the inves­

tigation of the 4-point function !JL t, S) asymptotic behaviour 121: 
l'+i.o. J dJ tjr'(-.;) ~kt ()) ~)m2). (J.l) ~ kt ( t, s) 

1 -2TCi 
l-i.oo 

The result for P, pp (j, S, ml) has the form 

. -1 ,..., (J.2) 

flpp(~s,mt)= j cp,.rs)[U(j)-8(!)]TT CT/s), 

where C , C are the contributions of the most left and the 

most right nonasymptotic objeots ( fig.J) 
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c /B 
FigJ 

" 

~
p 

. 

... lA ' 

c 

p 

The factor j is due to the fact that the preexponent for the 

senior asymptotic contributions for G pp is of the form 

I: tn G c.-,) C c~,.~ s) · (J. J) GPP 
11=-1 . 

/'(n-j) 
This results in factors r(-j) ( see (2.11)) "killing• the 

poles at j= 0,1 n -1. 
·"'-"' 

Nonasymptotic contributions c c , are projected on the 

T-states just with the aim to get the senior asymptotic behaviour. 

To obtain the Regge trajectory possessing the zero spin state 

one should consider only the contributions with the preexponents 

without factors t,,pick out of them the contributions with the 

leading asymptotic behaviour and sum up them. Each of these 

contributions has a pole at-j=l+2ECj,- , i.e. at a point by 

unity further to the left of the value, dictated by the dimensions 

of external lines. The quantity cL in (2.14) reflects just 

this circumstance. 

The summation, analogous to one used in 121 gives 

(' (Is m2 )= CPN(~)rt{~(j+1)- Bts'Yr 1 
ct11'£ (S),(J 4) n p p J, , L J NA/' • 

where ,\ 1 i\ ' means P- or A-states. Nonasymptotic objects 
_....._. ~ 

f3 i ~ C ( s) i3 PA ( s) , CPA ( 5) have the 
Iff 1

' AP ' ·'~ 
following structure ( :fig.J): there is an odd number of [) 

J_ 
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values in each object, and the cuts, giving the factor corres-
" 

ponding to any J? value ( see (2.5) ) do not touch the l1nes 

outside the object in question • 

~~ Th£_~tr~ct~_]_£f_g~~E~Q~~d_!he_!~Ct£~izatiou problem 

The large variables in the region (1.12) are -t1 , tz, t3] tLj 

which are related by t1:2 :~ 1. It is easy to see that for 
tp::-4 

asymptotic form in this region the most essential are subgraphs 

\M ( fig.4), the contraction of which kills the dependence 

on all the large variables and therefore generates the pole 
. . ' -{ -1 

( )4Tjz.-rJ1+JLr+ 1 +2(:.'j,-) :; ( 7d-r2Ecf,) and subgraphs 

VL,VJ<,generating the poles ( Ji'~'Jj t 1,..2t:'IJ- 1
::= (J;,r 1•2L;;-)"

1 

ard (Jl .. )3 -r 1+ 2t."'r\. (jf r 1+2t~J-1, respectively. The 
:i assumption 2Jc <<. 1 permits us to use the ladder approximation 

inside the contracted subgraphs • The dependence on /:4 =- QZ 

being killed only by ~11 contraction, in all essential 

contributions the photon is entering the contracted subgraph. 

Consequently only diagrams of fig.4 type are essential. 

The 2-trees of some subgraph V of a diagram will be deno-

tedas 8(i1 ... Lk/j1•·.Je_;VJ 2-trees o~ the type fig.4 

have the fom 

8(1VL +NR) = B'CNL) B/'(;VR) (4.1) 

where B 1 
{ NL) ~ /3"( NR)are the 2-trees of the left and the 

right parts of the diagram respectively. The following notations 

are suit~ble also 
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. . J. .~; AL )= Ls . _ ' 
8\ Jn }'I ~' B( A~ f)1, .12> A,AL)- L 

801) -tt 1-~i/i; A._)= Lu 

8(ft/ )t '-&., ,4; ~~._) = L 

Ls: - Lu ·= L_ Ls +Lli""' L 1 

(4.2) 

with the change J ~ f , L. ·-) R for the left part. In these 

notations one can rewrite the exponent Q(c?, f) in the form: 

Qrc<.,pj-= t4 (L+L5 )( R+R5 ) + i:1 L_ CR-t R~)1 

... {, U -i 1 J R_ + i·:), R_ L_ + ](j., sP ~2 , p/). .. ·- ~ 

(4.J) 

According to (1.8) all the _contributions are divided into two 
o ~ A 

groups depending on the momentum P or P' in the photon 

V
-(p•) 

vertex. Let 1\1 be the maximal contracted subgraph of the 

P'-type. VM is the central part of the diagram and the 

kernels outside the ~M make up the left and right WRegge• 

parts. Simple but cumbersome considerations give the following 

result for the preexponent structure in the approximation gc~<<1 
2 /) -2) 1 

(h~wever, [j,.L e-n(- G , -S ) : the Juf3 line contributes 

P { L + L 5- 2.- ) to the preexponen t, the remaining spinor 

lines of the central part contribute to the pairings (rrrr' 

as it is shown on fig.4. 

The central part must be projected on the AA-compoBent, 

i.e. the left Regge-part gives an extra fl , the right one 

"' v g:1ves an extra P • The pole corresponding to M-

contraction is, as a result, at the point dictated by the line 

dimensions, that is d =0 for VM , d =1 for ~ , VR • 

16 
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1 

" 'J 

Finally, the preexponent of the leading contribution has the 

form G(o< p)::: 2(PP')G (o<.,S' P.;_)(L-.-Ls)~(ttR.). 
' , . L n ~ c_}j(.,<) 

. n ])~(ol.).DR_(o<) G {d., s· [)'1.) 
. -~ "JJ(.I) R 1-H; 

where 50(.x) is' the determinant of the whole diagram, 2)( !VR) 

(4.5) 

is that for the right part of the graph, Dj 1 DR_ are the 

determinants of left and right, in respect of i-th pairing, 

components of the graph, and { GJ PA 1 { GK) A p are the pre exponents 

of left and right 4-leg diagrams. Using (2.11), (4.4), (4.5) 

one can rewrite the Mellin t;ansform PCj. 
1 

S~() as 

J::,( ·_ . ·)·-f'Q Nl VM) n· r'(- ··) ('(1-. )1f7dd.u-
'j:' J ~ ~ \ -~ (/ 0 j L ).it ..ir__ • 

"\!.: ~ =t 'if('-".) 

M ' ' . · (4.6) . c (d, s., p,,) (L; Lf-;, (~t~~ Rri(r~-r 
where 

·"'--" 

G =- GL GR ])( NR.) 17 DL' D~ 
' 

For subsequent considerations one has to know the factorization 

properties /2,J/ of functions A, As , A_ ( A.::: R, L) 
Using the expression (4.J) one can prove that 

A ( V+ v) =A ( v) A ( v) - - -
A(V+V) =A (v)'2AV)-+ A5 (v)A(v)-t-Au(v)A'(v) (4.7) 

As ( v + v J -= As ( ~- J As ( v) -t- Au ( v) A (A ( ~-) 
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·r r ( v is chosen to be on the left from \1 for R and on 

the right for L ) . The subgraph V being contracted, can 

be considered in the ladder approximation ( 9
0
2« 1). In this case 

A ( V+ i/) t- A 5 ( Vr V ) = 
[ A(v) +-a{v)jCJJ(v)- CL(v)[9J(v)-A5Jv)-A(v)}. 

(4.8) 

For the planar graphs As':::: AlA ·= a . However, the subgraph v 
itself contains the "Regge-tail•, and, consequently, should have 

at least one contracted subgraph .VA ( V R on fig.5). 

When .J1 V ---'-' ( 
R 

A)(\J A(v~ -- •'\,_., ---=-
A L{ C}j /\_' X . :JJ(v~ ~ __j_ (4.9) 

~)(v) vR.Jc;J,(vJ :Dtv,) c.bcn ~(vJ 
and it is easy to get from (4.7) 

~ ( v1 ) - A C v1 ) 
9J c v,) 

-~ [CJn-:J- A(li)- A5Cv)] ~ 
CZ(V} . · 

/VI.. YM /VR 
Ftg.4 

~~~ 
V y VR 

r±m~ 
Fig.5 

For the subgraph '1ft , both the ends of which are 

(4.10) 

contracted <]J( v1 )-A( v1) = A; ( v1) • For the combination 

Ji([~J)= (A;A~ JBf 4-Ji in (4.6) one can obtain, using (4.7) 

the following rule for separating the contributions from 

18 

v and v ( j ~ e ~ 'J): 
00 ~ 

Jl (v+·v· [ jJ = [ r(n-f+1) fl(v·f-n J··~n) A;(;;)[<J;(v)-Afv)-A~(iiJ]n 
' ' n;c nt tY-t-Pl ' ' 'L J Ht (4.n) 

where the formula 

(o(-~/ = f rrn- e) o<.. e-n j3n 
n~o r(-e)n! 

(4.12) 

was used which is valid for the case of our interest /?e f <0 

when f ct../ > I j3/ • One _:an easily verify that this requirement 

is fullfilled. If V-t-V belongs tothe central part, then 

~AV)- As('V}-A(V)= A'(i/) (remind that the V' s end 

adjoint to tr is contracted) • Formula (4.11) can be rewritten 

in the form 

J/(V+V) v fi(V)@ A1
(V) (4.13) 

( The sign V . shows that this equality is valid when 

~V-O).when V2 is contracted, it follows from (4.9) that 

A' ( V1 + V2 ) v
2 

A' ( V1 ) E ( V2 ) E (V; /)={A_(V)}J 
. 7J( v) (4.14) 

Thus, using formulae (4.13), (4.14) one can express the 

contribution of an object with m+l kernels in terms of the 

contribution of an object with fn kernels. The summation over 

the number of kernels and over all possible sorts of them gives the 

following result ( see fig.6) 

(L) ~{ . HrR) . ') 
PU.,-\)= 1-IP!v (JJ, <;1,~.:) IVN'(J,j'J~; 5t) N'P 0n 5:n{: (4.15) 
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( L) . M . cR) . 
' · r (j'. s s2)= f.<N ( S1)Q Mu.CJJ<!Y~ ( S2 )+ 
VVN 'N' L' 1' t M nn YM'N' 

(4.16) 

(L) .. K' . . ) )~ (R) ~' ~(L) }/ . (R) 
+ ONM ( 51) MM' (Ji ®;vM'N,( ~) +YM./S/IlJnMM' (JJ OM'N' 

}x_=o:ID·~·@L 
p H(L) w f-I(R) 

Ju,~o®@&o+O®®!_}o _,_ 
"'V[ ~ .M. 11 fi k(L) t (R} 

+0·~00 
Fig.6 ((L) ~ f3 

The structure of H coincides with that of the 4-leg diagram: 

H (L) = ccs1)[ U(jA+1)-B(51)]- 1 

I I I R) ,... "- . . - ]-1- ) H ' ' :: L u {) (~" 1) - B ( ~.2) c ( 5.2 
(4.17) 

Using new integration variables)~ ,jy, 'J1 jS one can rewrite 

(2.10) ' . 

R(t- t t t;)·= C(s12_Jci.J',j d.jf; y-~+t.2 Jr cr~) 
1 , 2 ~ 3' , (21i "J"i ~ - "- . 

[~A 0"+1)- Brs1)j[u{J~t1)-Bt~)Jc 4• 18) 

~ cl.J J.j3 \' ( k )A )I (j3 -~~w-J3) n 1 + J/kJ; J)\V ()l, i,,J}t~ ~~J 
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' ' 
The J3- integration contour encircles the points )"!:, =0,1 ••• 

max { Rejfl' Rej!] • The poles [ 1-{~(j•t)- l5(s(r·1_ 
are on the left from the J ,l- ; j 5' ·- integration contours. The 

residues at these poles give the asymptotic behaviour. of 1?. (tJ 

with respect to the variables (t1/-t), ( tz/t~J: 
R ( fd ~ (:b)o~. 's.,)fiz..)o((~) c (s:) "'t·~<';~:ls; n~-o((s2)1 

t'1 rt~ fi:'[o<<S,)] n=o )) h} 

(4.19) . (f3 f'1lh I d'J t4':7 r(«C~)+d(.S:Z)-n-J+yW(o((ij),d(~),':l} 
i:,(t-2 1 J I "- ) 

• CCSJ 
17' c c1. c s:.)] 

The amplitude R has a double-pole singularity at s1:::: s~.:: /v/ 2 

. 1 1 (t f)oi.(Mz) 
R( tJ:::: [o<I(M2)]z(),-M2){s~- fl12) ;/ · ~~ .. y7c4.2o) 

The summation over n does not affect the asymptotic behaviour 

because of t"!:. i4Jt
1
t1::::: 1. W(J.,d.., "'J) has singularities near 

the point J =.- 1 - 2tq, ' 
'J -1-2c.,v ~ J d1 t4 '"'vf(o~,~, 1) :c:::. (- 0 2

) {(oJ, 0 2
) (4.21) 

As to the function {{ Q2
) , we can only say now, that it 

is slow varying function, depending on 'i}} and ~ (- Q 2) 

It is shown in the Appendix that ~ ( Q2) :: Cf2 
( Q

2
) 

and the Mellin transform of the function 'f{ ~2) possesses the 
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z 9-2. 
poles at j=- c 

1
) ncn.-

spin 0 gluons and ~ 

, accumulating at zero ( ~ =1 for the 

-2 for vector gluons). But the relative 

weight of these poles depends not only on small distance 

physics, but also on the large distance one, this fact being 

reflected by parameters ~ in (A.21). That is why it seems 

impossible to sum these poles, but one can consider expressions 

(A.l9)-(A. 22) as a starting point for further approximations. 

Using (1.15) and (4.18) one obtains 

F ( a z a~. (Hz) ) .::: 
( 71) , 

i<'(o<) ~ ( Q2.) r_ mCV2.)ol.{~o<2)+)E<?-
--, ( -- (4.22) 

Q2. 

This formula corresponds to the quark counting rule /l/ and 

( 2)- o<(/'12) 
gives also the natural correction - ex for the 

spin oZ ( 1'1 2
)of a CJllllposite particle, just as in the nonrela­

tivistic case. 

For the pion (~=0) in the parton region ( l:Jc2 {?n (-Q 2)<<1) 
according to (A.2J) 

c 
Fr. ( Q2

) = _ Q2 ol.'(tn#) 
11 

where C=O(l). Thus, in this case, the dimensional parameter, 

compensating the Q 2 
to make F, ( 02

) dimensionless, is the 

inclination of pion trajectory o( 
1 := ~~ 

2!._£!!.!!cl ~diruu:~~§. 

(4.23) 

The method of Feynman diagrams turned out to be a rather 

effective tool for consistent relativistic consideration of form 

factor asymptotic behaviour of the simplest composite systew. 
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The important role in the consideration plays the assumption 

about the weakness of the effective quark interaction at small 

distances. In particular, just this property is responsible for 

the existence of the parton region, g/ fn (- a z) < <... 1, 

where the •quark counting• rules are valid, FJi(G:2 )''-(Q:L)"-f 
It predicts also the deviation from these rules at larger ~~ 

The breaking of the Bjorken scaling in deep-inelastic 

jl-1 p- scattering 18/ , discovered at FNAL allows one to expect 

these deviations in the region I 0 2
/ "-' 50-lOO(GeV/c) 2 • 

The consistent consideration of more complicated system 

seems to be difficult for the present from the technical point 

of view • But there is no doubt, however~ that for these systems 

also the asymptotic behaviour in the parton region 
2 /) 2) 

7}c t;-n(-0. «1 is determined by the scale dimension of the 

corresponding t-subgraph, i.e.,is given by the quark counting 

rules. 

The analysis carried out shows, that although the scale 

degree of form factor asymptotic behaviour is governed by the 

small distance dynamics, the function f ( Q2) 

due to the absence of simple factorization depends on the wave 

function properties at large distances. 

For the deep inelastic scattering it is possible to get 

simple factorization when some ( the most natural, indeed) 

variables are chosen. It is just the reason for the success of 

application of the renormalization group (RG) and Wilson 

expansions methods for the investigation of this process. It is 

interesting, in our view, to obtain the results of the present 

paper by the renormalization group. 
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APP~ 

!Q~__!!!~st!g!l,tiQ.!!_Q!_ th~.--£~E!!-LI!!!-!:L!!!1.ntri£!!ti,2!! 

The formula (4.16) can be rewritten in more detail 

W (, · 9) = ~ { R Or+n,Jr+k, 'J). 
J.1'Jf• LA r(1-t"fJrr-e.~) f" 

k n=o 

"t M(i,.-k)jr,_n,a)}' _(3(n,Si)J3(k,s1) + I{K(J!+n)t(f ~)c;;~:~)+ 
n 1-t-l) /{-tf) nl }<f n=O r(1-ff) ), n( 

where 
+ !(( J',~+n) f(f s·) j3(n,S1)} ' 

r(1-eA) r, 2 n! 

f\1 c j 51 j A , 'J) = r (1 -e ~ 1 i'f- (I) 11 Ur , J ~ , '1) 

K(J)= rr1-e)x{J). 
The contraction of the /1- or K- type subgraph gives a pole 

(A.2) 

C {j.A , Jr, 'J) ( 'J-t-1+ 2 E.'})- 1 
• f1 in (A.l) is supposed 

1 

to correspond to the case when in the photon vertex there is j> 
The coefficient eM for a M - contribution is determined 

by the sum of the following contributions: 

1. The subgraph f11 Ef1 is contracted, the contribution 

from the left kernels of a complementary subgraph Jv~ = M "- M1 
being €U:n X.) from the right ones- f(jy 'n) . One must 

also take into account that there can be no left or right kernels: 
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C1~;1 -= Jvl
1
®g+ t®M1 + g®M/ZJt. (A. J) 

2. Inside M the right subgraph f<.' is contracted. 

The contribution from the left part of the graph ( which cannot 

be asymptotical due to the superfluous factor L t Ls 
in (4.6) ) is C ( j~) • Hence 

C ::) = c ( f\ ® b -r K) · 

Taking into account that e ·= Q( ~/) and leaving the 
2 

senior power in 9o , we get 

C~ = M1 ® & _.. g ®M1 ·-t- c K 

In more detail 00 ~ · • ) 

'I! M (J. j' J) = \"' M (JA 'Jr+n /J o (J. n) +-
.1' f' ~ n 1 f:o f' noo . 

(A.4) 

(A.5) 

+ t M (}, k ~, it, 'J) c (J;, k)+ r!- C;) C()j) R ~f'~,C·· 6) 

k ~a • 
where the notation 't'::: 'J -t- 1 +- 2 E'j.- is introduced. 

For investigation of (A.6) one requires to know the 

function K { j 1 'J) • The coefficient CK is fo~med by the 

contribution from a subgroup K1 E K and by the contribution 

from)\\~, which equals g(jf,n). Consequently 

r K(j, 'J)= r(1-f)RU/J)+ E K(~+,n, 'J) t(j,n) (A.7) 

n=o · 
The term R (j i 'J) is due to the m1Idmal t_, t 2. t3 t4 - subgraph. 

The straightforward calculations give in the lowest order in 8.'--
the values for C, Eq,, R (j, 'J); C: 

0 

25 



. 
Eq. = I Z./ CJ'o2 ec J, n):::: --r ~~ ~Ci+1) 

rrr·n..-3) 
(A.S) 

R . . ) r: Q 2 (A.9) 
(J ~ :J -:: -, _ifa clj., 'J)j .:- !Jl_ , 

J·t-1 'J=-1 j d 

where l::. =l for zero spin gluons and l_ =-2 for vector gluons. 

From equation (A.7) and equalities (A.S),(A.9) there follows the 

equation: co 

'L(J.t-1)(J+2)F(J· J)= rr~-e)- t(l [ F(J'+n, 0). cA.lo) 
) (7/j-t-2) ifD 

,_; n=o 
where F (j, 'J)-= K (jr'J) 

~~o2 (}+3) 
Since r(1-f)/r(j+2)= 1-+ oc9;) in the neighbourhood of the 

point 'C' =0, equation (A.10) can be simplified: 

00 

0'tt)(j+ 2)F/j, :1)= J_ + v (\h-1) L F (j+n, 'J) J 

1:' n=o 
(A.ll) 

:2. 
where ·y (v+ 1) =- -~ g.i; ::: ;)-{ 

·I:' 
• From equation (A.ll) there 

follows the recurrent relation 

(j+J)(jt-2) P(J+1, 'J)=ftjJ(jl-1)- v(V+1§ F(j, :;) (A.12) 

from which one can obtain the solution for F: 

F(j, '1) = r(J --9+1) l'(j-~-v-r2) f(j 'J) ::=. 
r r j+ 2) r r J + 3) t' ' 

:P(J',dt) fcJ,1). 
(A.. D) 
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) . . . . 
Moreover :.;-CJ, CJ) = +c.. j+~, 'J) • From (A.ll) and the Dugoll 

formula ( 191 , § 1,4) it follows that for integer J ( which we 

are interested in) fcj, )) = ~. The function .P (j ~ k) 

for integer j satisfies the equation 

Do 
~ ~~ ' . 1 ,. -,-.. -~, Y(j+rl, ~}:: Y(J;x)-(J.+- 1)-( .+21 (A.l4) 

1j+1j(J+L.) J ) 
\ n=o 

and is a moremorphic function of a parameter X , having 

the poles at K =Cj+r1+1) Cj+Yl.+2 ),n=O,l,2 •••• 

Equation (A.6) with account of (A.S), (A.lO), (A.lJ) and the 

fact that t ::: -1 - j can be rewritten in the form 

- . • Oo 

P(J,~ ,)f~ T) -(J. -r~)( :t-2)L P(j/l,jf+n, T) ·-
5 Jj n=o 

0() 2 
? Ci ( jA f' k j r) ~ - _:_::.K._._ ' 

(JA d)(j,J t-2) ~ ' Y, {J~ r1) 2 U,;. r2) 

(A.l5) 

X 

where 

cP(J~, Js, T) = !'(;~ r 3) !'(J~"'3) 1'1()) > ; 5 , 7). 
The solution of (A.l5) is searched to be the sum of two 

terms: 

:.+, ) - ]J(js' k) ;K : . . -) 
'±'(J",J~)'r-=- x(. )r, 2) + '%1(J,i,)J,x 

J~t1\J)+ 
(A.l6 ) 

f1 Cj;~ ,.)
51 

deJ satisf:es the .equation which is symmetric with 

respect to the change J.A ~ )f 
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00 

~~(j~,Jf~~)- U -rD(J -r2)[ P/J~,Jr-j-n·, qe_)-
f f h=:O (A.l7) 

00 . . .X 

- de f. p1 (j:l+k,jp de)=-0-~+-1X,,.-j;-... 2-,-~-~t~1}(-jf-, t-2)' 

The solution of (A.l7) can be reprsented as a double integration 

in the space of complex variables 'Je1, ~.2. over the hypersur­

face L , the poles of .Pr }1 df1) , P(J', ~2) being 

inside it, the points J€1 =0, ;)(:2. =0 and the ones satisfying 

the relation _1_ = _i_ + ..1_ outside it: 
K .x'.z. J.e1 

~lj~,j~.,'t)~ 

- _L rrd~ d ~ fJCJ;. ~ ~) jJ(J~' ~.t) 
- ( 2Ji.L)2J 1 i. _i_ + j__ - ...L 

1; df1 x 2 oe 

(!.18) 

(:..i - j_ \( j_ - .i \ 
.X ;}<.1 ) J{ Jel) • 

One can easily verify the formula (!.18), substituting it into 

the equation (A.l7) and taking into aocount that• 

Y(j,O)-= {{j-r1){j+-2)_}-1 
and j .P{j, Je2 ) d~ o::O' 

r 
where r is the integration contour remaining after the integ-

ration over ~1 
Collecting together all the terms entering the (A.l) one 

can obtain the expression for the asymptotic behaviour of form 

factor: -d(H2)-2fa C£J 2( o1 Q2)o~_1 . ( Q2) " I ' · 

Fuo ( Q2) = - m~2 - Q2 o((M2)(d+1)[8.,zli'[o<(Hl)J} 

o{ 

·L 
n-=-o 

(2o<- n+-1) i 
n! [ ( o<-n)!j2 

(A.l9) 
j 
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where 

~( o\, Q2)~ ~ J (-Q2) T_dr ~(o<, -i) 
2 7iL 1:"' 

(A. 20) 

and 00 

~ (ol;r) = L rr ~ ... ,n+ 3) fi( n, ol' Mz) JYo~.+ n,- ~@o2).cA.21) 
n=-o 

To derive (A.l9) the equality 
Do z 
k=o 

r(o<+k+1) 
r(o1+1) k! frk-,o~.,Mi'J-= t(o~,M

2

) (A. 22 ) 

is to be used. (A. 22) follows from j ·t f = -1 and from the 

fact that 

t(j, s) ~ f 'J da,. ( ~ vj-~(•,, S) ; fir k, j, s) ojj.«/1- ~~~!ttl 
where 2:-;j ({,s),some known function. The function :P( <>~, - lf/) 
has the poles, aocumulating at 1: =0. The same one can say 

about ~ (o<' r) . In the part on region .jo2 f'h (- Q2 ) « 1 
we can restrict ourselves to consider the lowest approXimation 

PC.J)k)-:::::[(J+1)(jri)_}:
1

Then tp(o<., 0 2
) ::-lf(<><) 

and from (A.l9) it follows that ) 
o/.{1'1./. 

c caz d.(H2)!- kr~) (-01) 
1(Ti) ' '/- -Q2J.'(ff2.) Q2 ' 

(A. 2J) 

where k(d)= 0(1). 
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