


1 Introduction

The standard proof of the well-known Froissari upper bound on the total
-cross-section is based on the combination of three conditions: unitarity, ana-
lyticity of the amplitade of elastic scattering in the Martin-Lehmann ellipse
and polynomial boundedness of amplitudes in local quantum field theory
{see, for example, {1, 2]}). So that the Froissart upper bound is considered
to be the intrinsic property of local quantum field theory. The generaliza-
tion of this proof on nonlocal theories where amplitudes have nonpolynomial
bound for large momentum was done in [3]. In this paper we want to show
that these restrictions for amplitudes of physical processes on the mass shell
and the total cross-section can be obtained taking into account the unitarity
condition and the natural assumption that amphiiudes are convex down func-
tions of transfer momentum at least in some vicinity of the peint £ = 0. The
last assumpion is consisteni with experiment and it is fulfilled in al! known
theoretical models of local and nonlocal theories. The idea of the proofis to
consider the S-matrix as a unitary operator defined on the Hilbert space of
physical states. This method is more general in comparison with the standard
methods [1], in which the main object of investigation is the amplitude of
elastic scattering considered in the form of decomposition over partial waves.

Another reason of this work is to remove the main objection against
the relativistic nonlocal quantum field theory in which the form-factors (see
[4, 5]} and propagators (see [6]) are entire analytic functions decreasing in the
Euclidean region of momentum space. The problem consisis in that pertur-
batior coeflicients of any amplitudes represented in the form of perturbation
series

M(S(_,’) = E g"Mn(s‘-,'), Mn(3¢3') ~ l’:m?f for 8ij — +0o0

n=ng

with s;; = (ki + k;)®. It means that the sirong coupling regime in nonlocal
theories appears for gexp(s%;) ~ 1, and we should use some methods to
sum perturbation series. In local renormalizable theories the strong couphng
regime appears for gIn s;; ~ 1 and from practical point of view this boundary
usually is quite far. ,

However in the nonlocal quantum theory it is proved {4] that the S-inatrix
is unitary in each perturbation order and analytical properties of amplitudes



in momentum complex space are the same in local and nonlocal thecries in
each perturbation order except the infimity. We hope that these properiies
will be valid for exact ampliiudes, Then the question arises, if the unitarity
condition makes all amplitudes to be bounded for high energies. Thus paper
gwea a positive answer to this question.

2 The Frozssart upper. bound

The Well~known Froissart upper bound (see; for example, {1]) on the iotal
cross-seclion is based on the following arguiments. The imaginary part of the
amplitude of elastic scattering

I(s,t) = % Im M(.?,t) = Z(?l 4 ])az(e}ﬂ(cosﬂ),

t=0
where cos6 = 1 + %= {t < 0), is considered for which

e the unitarity conchi:non is used ip the form

0< s} <1,
o the function M(s,t) should be analytic in the Martin-Lehmann elhipse
and, therefore, it is bounded for

]c059|<}+—-—g£—~1+it3
8 — 4m?

where 1, = 4m?, for any fixed large s,
e in the local quantum field theory the amplitude.increases like & poly-
nomal
|M(s, )} < sV (1)
where the number N does not depend on s -
Then, the tnequality

Fi(z) >

\f“.i J+\/§7__] ~m[1+zv/g]

for z = 1 + 2 > 1 and large s gives

{ ' : -
2t
C\ﬁ a;(s) . [1 + 2\/%] < 2. a:(s) - F (1.4— —3—0) < SN,

' } l

ai(s) < %exp {Nln s — 2\/’5%} .

One can see that for oyfs) € 1 for :
[>L=CVslns

so that

and
I(s,0) < MZ(ZH— 1) & 2L% ~ Csln®s.
[=0

The final result, the so called Froissart upper bound can be obtained ac-
cording to the optical theorem

< Cfmns)?. (2)

(s,0
Trot(8) ~ —(—%*—)

Essentially, we can see that this proofis based on the analyticity and locality,
and practically does not make use of the unitarity.

We can repeat all these arguments in the nonlocal theory {see [3]) where
instead of (1) we have

IM(s,8)] < ™, 3

where the function r(s) increases like r{s) ~ s* or more rapidly. We ha.\fe
ai(s) < 1for L > L = Cy/sr(s) and

2 L
I(s,0) < S—fc- S (214 1) m 2I2 ~ Cor™(s).
I=0

Finally, for the cross-section one gets

19 < o), @

Tiot{8) ~

However, this bound is too rough. We shall see that the unitarity condition
leads to a weaker upper bound.



3 Unitarity on the mass shell

We shall consider an one-component scalar field for simplicity. The generaﬁl—‘

ization to other fields does not introduce essentéial difficulties.
The Hilbert space of physical staies consists of vectors

F = fl0) +Z/Hdk FulB)f, By € H

n=1
where '
- . 1
&1, .y b = "—,_ngazl et aE'AZ[)),

where |0) is the vacuum, for which (0[0) = 1. The norm of F' is defined

IFIP = (R =1+ / T s (B < o0

n=1 i=1

The S-mairix can be represented in the form

-8 = I'+4T, _ (5)
Y
da
re S5 T [T

ny=2n;=2 H H \/2("')‘ .
1 ' ]

- —at .. '
nl!aiﬂ-l GE“‘ flmm (kzp) Qe Oy, _7);_'

where kj = (w;, B),  wj= ym? 4 fc.f, l—c'j € R2
‘I'he S-matrix is rencrmalized and satisfies the stability conditions:
- 510) = |0, S|k = [),
i.e. the vacuum loops are removed and one-particle states are renormalized.

min{ny,ng}

Tmnn(kap) = Z ZMﬂrm (“':p) : ISVnu(;C>p)}

{34}

A’[ﬂn{k,p) = (5(4) (Z k] - Z?ﬂg) M,,m,(k') p).
j=1 =1

The functions .M,m(k, p) contain connected Feynman graphs and depend on
the relativisiic invariant momentum vana,blc:h on the mass sheﬁ

Sy = (R': - Ii‘;) >0, Sim == (1 — Pm) >0, ta = (ke ~ P() <0

We shall assume that the functions M . (s.;, t.) are differentiable and convex
down functions at least in vicinities of the points £, == 0.
If the S-matrix is unitary

5Y8 = 55" =1,

we have the evident inequality

iy = s =1l < IS <2 (6)
Thus, if the S-mairix is unitary the inequahity
(RTR S 2B EF) (7

is valid for any F € H. This inequality is the main tool of our investigation.

4 Elastic scattering.

Let us consider the amplitude of elastic scattering. We introduce

Pk = f dF, [ Ay FalFs B}, B, ()
Oue ()bi.ajns |

(FFY = (J, By) = [ [ ARy By P

and

(F,TF) = {F,, TF;) (%)

dEl d;’:_g f /I r'ﬂf)'] dﬁ:z

5(4) k1 + ;-h — 1 =
ffm ST o)
f U‘»la k) Maa(ky, ka1, p2) fa(Ph, )




where Mos(ki, ko;pi,p2) = M(s, 1), s = (ki + k2)? and ¢ = (ky — p1)?
['o extract the behaviour of the amplitude M(s,f) as s - coand { — 0

we introduce the following funciion

-i~¢Ca”®j-¢C;:®j (1)

oy, ) = T :

where ¢(u) is a function with a finite support

1
supp dl{u) = {u < u< 5}

and it is normalized by the condition
. if2

/Emd’l (—) = Q'K/duﬁcﬁﬂ(u) =1

go that (F, F} = 1.
Two parameters §" and ¢ are chosen
Q=7 +m?» m? and e < Q7

For e — 0
[falF, B2)* — 8(ky — @6k + ).

Let us intoduce new variables in the integrals {9) where the function f,

is given by 10
bi— k4§,

Fo—ka=G P RAE BB

Then the integration region is bounded
(7=12)

-

(k} )2 < (PJ)Z 2

[ R
-

For large () > m? one can get

naz;?g;igxgﬁ:(gﬁ)-{—o (Q;) :Q{H—O(

?))

Wy —

-.‘—-
= =y

£3]=y

Thus we obtain for Q@ — oo

(F,TF) ’*ﬁa? f f Ry des f ] dFdFs
()

€
SR 4By — 5 — ;‘,'2) 5 (([fc'1 — kb~ FL+ 52]ﬁ))
[ = 5257 - ek ~ 7))

M (s,-—
L L
= ¢ 2 —ue) = 2 (2 -
=05 du @2 (u)M(s, —ue) = .[dv i (E)M(s, v).
o

0

The function ®(u) satisfies

8(0) = 0% Yoo = [ 78 (77) # (F+57),
) =1, [®(u) <1

supp ${u) = {u: 0 < u 1},
Thus, for large s ~— oo the inequality (7) leads to

/dn @z M(s ~u) £ —-s, {(0<egs) {11)

for positive functions ®{u) and any value of the parameter ¢

This inequality for t < t; < 0 gives
1M(37t” < G(tl) t 8,

(12)

(It] > ita] > 0).

in comparison with

|M(s, £)] < Cto) - s{ln s)*/2

mentioned in [1].



5 The total cross-section

Now let us consider the function 7(s,t} = Im M(.‘;‘,t). This function ik a
differentiable and convex down function in some vicinity of ¢ = 0 so that for
smaljl enough ¢ '

T(s,~ne) 2 T(s,0) = e (s, omo (13)
Then we get the inequality ‘
1 . B :
/du &I (s, —ue) > ey I(s,0) — 502%2—(-‘3,—1’)“;0- (14}
o

where ¢, and ¢y are posifive constants.

Inequalities {11) and (13) give
3

' 4 E.[l — ech(s)}’
b(s) = %1111—(3,75”;:0 ' (15)

I(s,0) <

g0 that
l .
cebts) 5cb(‘:)[1 - acb(s)]

If the function b(s)} — const, we should choose & = const; if the function
b{#) — oo, we should choose ¢ = 57
According to the optical theorem, for s — oo

fl'(s 0)

7(s,0) < Csb(s) = Cab(s). (16)

< Ch(s). | : L Q7)

atot(s) ~

I{ the amplitude M(s,t) has the Regge behavior

M(s,t) ~ T'(t) (-;;) am,

where a{t) = —at for small ¢, then b(s) = alns and
Teil(s) < Clns, (18)
8
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7 The optical theorem
'1'2""‘ = (E::Ezﬂ'li"l,--uf"n)

(2-7!’)45 (i&g +ky ~ Zn: Pj)- —’Mﬁn(ki P) ’

=1

(gw)ﬁf?(n”)\/?w;i’.w H 2 E,'
3=l )

Manlh, ) 1 7,
0'2—on,( - J( )/ (nl\q'l"lﬂz Z J) (2’”)3“!1| I:Ilzi;

=1

J{(s) = p1p2122w, 200{27)% = 24/s(s — 4m?), s = {ky -+ ky)?

[£]
Teoe(s) = Z Taman($)

(-1 =T1"

2Im Moy(s, 0)

It

n=2

= Motk p)]® vy 47,
Z/ (kl‘i‘kb Z J) (zﬂ-)ﬂn —4 JI__IQEJ

2+/s(s ~ 41'!12)(;&,5(3)

Im May(s,0) Ty Adas(s, 0)

Utut(-‘?) =
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