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1 Introduction 

The standard proof of the well-known Froissart upper bound on the total 
cross-section is based on the combination of three conditions: unitarity, ana­
lyticity of the amplitude of elastic scattering in the Martin-Lehmann ellipse 
and polynomial boundedness of amplitudes in local quantum field theory 
(see, for example, [1, 2]). So that the Froissart upper bound is considered 
to be the intrinsic property of local quantum field theory. The generaliza­
tion of this proof on nonlocal theories where amplitudes have nonpolynomial 
bound for large momentum was done in [3]. In this paper we want to show 
that these restrictions for amplitudes of physical processes on the mass shell 
and the total cross-section can be obtained taking into account the unitarity 
condition and the natural assumption that amplitudes are convex down func­
tions of transfer momentum at least in some vicinity of the point t = 0. The 
last assumpion is consistent with experiment and it is fulfilled in all known 
theoretical models of local and nonlocal theories. The idea of the proof is to 
consider the S-matrix as a unitary operator defined on the Hilbert space of 
physical states. This method is more general in comparison with the standard 
methods [1], in which the main object of investigation is the amplitude of 
elastic scattering considered in the form of decomposition over partial waves. 

Another reason of t.his work is to remove the main objection against 
t.he relativistic nonlocal quantum field theory in which the form-factors (see 
[4, 5]) and propagators (see [6]) are entire analytic functions decreasing in the 
Euclidean region of momentum space. The problem consists in that pertur­
bation coefficients of any amplitudes represented in the form of perturbation 
senes 

= 
M(s,,) = L g" M.(s;;), M (s ) 

.,,._ 
n ij "' e ., for Si.j -+ +oo 

n=nn 

with s;; = (k; + k;)2 • It means that the strong coupling regime in nonlocal 
theories appears for gexp(st·) ,...., 1, and we should use some methods to 
sum perturbation series. In local renormalizable theories the st.rong coupling 
regime appears for g Jus;; - 1 and from practical point of view this boundary 
usually is quite far. 

However in the nonlocal quantum theory it is proved [4] that the S-matrix 
is unitary in each perturbation order and analytical properties of amplitudes 
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in n1omentum complex space are the sante in local and nonlocal theories in 
each perturbation order except the infinity. We hope that these propertie~ 
will be valid for exact amplit.udes. Then the question arises, if the unitarity 
condition makes all amplitudes to be bounded for high energies. This paper 
gives a positive answer to this question. 

2 The Froissart upper bound 

The well-known Froissart upper bound (see; for example, (1]) on the total 
cros:s-section iH based on the following arguments. The imaginary pa.rt of the 
ampJjtude of elastic scatt.cring 

1 sl/2 co 
T(s, t) = - lm M(s, t) =·- 2:)21 + l )a,(s)fl(cosO), 

81f k i=O 

where cos e = 1 + ,_!:,, (t < 0), is considered for which 

• the unita.rity condit.ion is used in the fonn 

0 ;<::; a,(s) ;<::; 1, 

o the function M(s, t) should be analytic in the Martin- Lehmann ellipse 
and, therefore, it is bounded for 

2to 2to J cos OJ< 1 + 2 ~ 1 + -, 
s- 4m s 

where t0 =4m2 , for any fixed large s, 

• in the local quantum field theory the amplitude increases like a poly­
nomial 

JM(s, t)J < sN 

where the number N does not depend on s 

Then, the inequality 

c [ l P,(x) > vi+t [l + v'2X=-2]' ~ C 1 + 2 {t;_] 
v'i Vs 

2 

(1) 

---~-

,, 

for x ::::: 1 + ~ > 1 and large s gives 

~ to 2to cv'i. a,(s). 1+ 2~ < 2l· a,(s). fl ( 1+--;-) 
[ ]

I 

< SN ~ 

so that 

a1(s) < ~exp { Nln s- 2y'ta:.}. 

One can sec t.hat for a, ( s) < 1 for 

l > J, = Ov'$ln s 

and 
. 1/2 L 

T(s, 0) < 8 
k · }.)21 + 1)"" 2L2 ~ Cs ln

2 
s. 

t=O 

The final result, the so called Froissart upper bound, can be obtained ac­
cording to the optical theorem 

) 
T(s,O) ( 2 

<1tot(S ~ --- ;<::; C Ins) . 
s 

(2) 

Essentially, we can see that this proof is based on the analyticity and locality, 
and practically does not make use of the unitarity. 

We can repe.at all these arguments in the nonlocal theory (see [3]) where 

instead of (1) we have 

JM(s, t)J < e•<•l, (3) 

where the function r(s) increases like r(s) ~ s" or more rapidly. We have 

a.,(s) < 1 for l > L = CJSr(s) and 

1/2 L 

T(s,O) < 8 
k }.)21 + 1) ""2L2 ~ Csr

2
(s). 

l=O 

Finally, for the cross-section one gets 

( ) 
T(s, 0) 2 ) 

-l7tot s ""'---:::; Gr (s . 
s 

(4) 

However, this bound is too rough. We shall see that the unitarity condition 
leads to a weaker upper bound. 
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3 Unitarity on the mass shell 

We sha11 consider an one-component scalar field for simplicity. The general­
ization to other fields does not introduce essential difficulties. 

The Hilbert space of physical states consists of vectors 

F =folD)+ f 1 fi dkif .. (k)lk,, .. , k,.) E 1f. 

n=l J=l 

where 

I ~ ~ 1 + + 
k,, ... , kn) = r;a· · ... ·a. IO), 

yn! kt kn 

where IO) is the vacuum, for which (OIO) = 1. The norm of F i< defined 

IJFW = (F, F)= l/ol2 + f 1 fl dk;lf.{kW < oo 
n=l r=l 

The S-rnatrix can be represented in thl' form 

s = l+iT, 
co (X'> 1l.l dk· 1 1~2 dPr 

T = L L 1 fJ .flw; g v'2wt 
n1 ::::2 fi-~::::2 J-1 

1 + + 1' {k ) 1 c-ra;;. · ... · ak · n1 n~ , P ap1 • ... • ap"~ Cl 
vn1! 1 .. \ · vn2! 

where k; = {w1 , k;), w1 = Jm' + kj, k, E R.'-
Thc S-matrix is renormalized and satisfies the st.abilit.y conditions: 

SIO) = IO), S'lk) = lk), 

{5) 

J.L t.he vacuum loops a.re remov(~d and one-partidP. states are renonnalized. 

min(n!,nz) 

T.,,.,(k,p) = L "£M,,m,(k,p) · ... · Jvf,"""{k,p), 
v::::O { s,t} 

M,n(k,p) = o<•> (tk,- tP•) M,"(k,p). 
;:::::1 /:::::1 
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The functions Mun(k, p) contain connected f'eynman graphs and depend on 
the relativistic invariant momentum variablc8 on the tnass shell 

"'' = (k, - k,)
2 

> 0, Sim ::::: (Jll - Prnf' > 01 t,, = (k, - p,)"' < 0. 

We shaH assume that the functions A1 un( B~f 1 t,t) are different.iable and convex 
down func.t.ions at. least in vicinit.ic~ of t.he 'points tlc = 0. 

If the S-matrix is unitary 

s+s = ss+ = 1, 

we have the evident inequality 

IITI! =II·''- I! I:; !lSI I+ IIlii :; 2. {6) 

Thus, if the S-ma.trix is unitary the inequality 

I(F, TF)I :; 2{F, F) {7) 

iH valid for any F E 'lj. This inequality iR the main tool of our iuvestigation. 

4 Elastic scattering. 

Let. us consider the amplitude of elastic scattering. W(~ introduce 

F = F, = f dk, f rlk, .t2(k,.f.,)lk, k2 ). (8) 

One obtains 

(F, F) = (F2 , F'.,) = 1.! dk1dk, lli(k,, k,)l' 

and 

(F, TF) = (F2 , T F2 ) (9) 

= - o ·1 + ,.,.., - P1 - v) 1 .! dk1 d. k2 f ;· dji, dfi, c(1) (k '· . ) 
../2w12w2 ../2R12R, · - · -

·h{k" k2 )Mn{k1 , k2 ; p,, p,)h(fi,, ii,) 

5 



~-~---- -----

:! where Mn(k" k2 ;p"p2 ) ~ M(s, i), s = (k 1 + k2 )" and t ~ (k1 - p 1 )'
2 

~ To extract the behaviour of the amplitude M(s, t) cw s ..._co and l-~" 0 

i 
I 

II 

we introduce the foll_owing function 

JAk,, f,J ~ _1_ "'((ft- w) "'((f, + ,n') (I OJ 
c3/ 2 e e 

where ¢( u) i~ a. function with a. finite support 

supp cf( u) ~ {'" : 0 < '" < n 
and it is normalized by the condition 

l/2 

1 dk if' (p) 
e;3/2 e = 2n: I du,JVcf'(u) = 1 

0 

""that (F, F)= I. 
Two parameters (j and e are chosen 

Q2 = ij 2 + m 2 >> rr?, and e <Q'. 

Fore..._ 0 

lhrkt, f,W ~ o(f,- i()o(k, + i(). 
Let us intoduce new variables in the integrals (9) where the funct.ion h 

is given by I 0 

ki -- kl + (7, k2 ---+ ;;2 - ql PI --+ pl + q, P2 ---+ fJ2 - q 

Then the intcgrat.ion region is boundf':d 

(p )" < ':_ 
J - 2} 

e 
(k,)':,; 2' (j = 1, 2). 

For large q ~ rr?- one can get 

W± = ;:;:;+ (k ± i/) 2 = Q ± (kn) +() ( ~2 ) = Q [j + () ( ~)] > 
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- q 
n= Q' 

Thus we obtain for Q --> oo 

_, 
( -)' - 'L_ ~ l. 
n - Q' 

(F, TF)--> (n:e\38 · 11 dk,dk, 11 dfi,dfi, 

"'(~)"'(~)~(~)~(~) 
.,s<'l (f1 + f,- ff,- ff,) s (([f,- f,- ff, + ff,]iil) 

M (s,- [lft- pi)'- (ii(k,- fft))'j) 
1 ' 

=- · du <I> (u)M(s, -ue) =- · dv <I>- - M(s, -v). 'Ire I 2 n: r , (") 
2s 2s . e 

0 0 

The fu]](·tion <I>( u) 8at.isfies 

<t>(u) = <f>(k ')k,~. =I dff cf (ff') q, (cf + i>'?), 
supp <!>(u) = {u: 0 :S u :S I}, <1>(0) = 1, j<l>(u)l :::; l. 

Thus, for large s ~ oo the inequality (7) leads to 

' 1 du <!>2 (~) M(s, -u)l :::; ; . s, (O<e<s) 
0 

for positive functions <l>(u) and any value of the parameter e. 
This inequality for t < t 1 < 0 gives 

IM(s, t)j < O(t1 ) · s, (jti > jt,l > 0). 

in compari..,on with 

IM(s, t)i < O(to) · s(ln s)''' 

mentioned in [1]. 
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5 The total cross-section 

Now let us consider the function I(s,t) = lm M(;,t). This function is a 
differentiable and convex down function in some vicinity oft == 0 so tl1at for 
small enough e 

d 
I(s, -1><) :2': I(s, 0)- >« d/(s,t)i<=O· 

Then we get the inequality 

1 J du <!>2(u)I(s, -ue) :2': c1I(s, 0)- ec,;J/{s,t)lt=O· 

0 

where c1 and C2 are positive constants. 
Inequalities {11) and (13) give 

I(s 0) < Q. · 8 

' 4 e[l - ecb(s)]' 
d 

b(s) = dt In I(s, t)lt=O 

so that 
c 1 . 

I(s, 0) < -sb(s) min b( )[ b( )] = Csb(s). 4 ecb(J) ec s 1 - ec s 

(13) 

(14) 

(15) 

(16) 

If the function b( s) --? const, we should choose e = const; if the function 
b(s)-> oo, we should choose e = a~,)' 

According to the optical theorem, for s -+ oo 

I(s, 0) 
u,,,(s) ~ --:5 Cb(s). 

s 

If the amplitude M(s, t) has the Regge be-havior 

( ) 

a(t) 

M(s, t) ~ I'(t) :, , 

where O!(t) =-at for small t, thcu b(s) = alns and 

a,,,(s) :5 Cln s. 
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7 The optical theorem 

72-" = (k" f,ITI,V,, ... , iin) 

0'2-n(s) = 

(2ff)1S (k,+k,- tP;)M2.(k,p) 

(27r)'/2(n+2lvf2w12w2 IT ..f2Ej 
j::;l 

_1_ jo (k, + k --.2-- ·) IM,n(k,p)IZ rr" dp, 
J(s) 

2 ~p, (2n)1
•-• J=l 2Ej 

J(s) = p,p,v,22w,2W:J(2n)' = zy's(s- 4m2 ), s = (k, + k2)2 

[~] 
O'Lot(s) = L 0'2-n(.<) 

n='2 

i(T- T') = Tr 

[~] 
2lm Mn(s, 0) = L J ·' (k, + k2 - '\"." p) IM2,(k, PW rr" dp,. 

_ L. J (2Jr)3n-4 2£ 
tt-2 J=l J=! 1 

2·/s(s- 4m2 )a101 (s) 

( ) 
lm M 22(s, 0) lm Aln(s, 0) 

atvt s = ' -+ 
y's(s- ·1m2 ) s 
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