


1 Introduction

The hypothesis of time multidimension is a direct generalization of Ein-
steinian special relativity assuming more symmetry of the time and space
coordinates when time is considered as a three-dimensional subspacé and
every event is characterized by a six-dimensional vector !

x = (21, =2, z3, cly, ctz, ,13) 1)

Dirac, Fock and Podolsky introduced a proper time for each material
body [1], Tomonaga was the first who introduced that time for every spa-
tial point x [2]. Though these generalizations themselves did not discover
any new physical effects, they improved the theory and allowed one to for-
mulate the condition of compatibility for equations of motion excluding
'superluminal velocities and to develop a consistent renormalization pro-
cedure. It is interesting to further follow the way of the space-time sym-

metrization and to consider time as a three-dimensional vector [3, 4, 5, 6]

The analysis has shown that this approach is at variance with all the
presently known experimental facts [6]. In particular, the difficulties with
negative energies mentioned by Dorking and Demers [8, 9] can be avoided
by means of the Principle of time irreversibility [10, 11]. Nevertheless, we
don’t observe macroscopic bodies moving along time trajectories distin-
guishing from our one because the energy necessary for creation of such
objects is huge [3]. Bodies with diverse ¢-trajectories would appear jn cos-
mic cataclysms where enormous amounts of energy are produced. And
which is more, in very strong gravitational fields the concept of energy
itself loses its sense and the energy conservation law becomes inexact. All
that must influence the properties of emitted gravitational waves which

In what follows the Latin and Greek indices take the values k = 1,...,3, p =

.,6). All matrices will be denoted by capital letters.
2Several authors used multitime hypothe51s in connection with attempts to bypass

the difficulties in nonlocal theories [7]
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acquire the "time component” 3.

How that affects the behavior of gravitation detectors which are now
under the construction in many countries? The discussion of this question
is the main goal of the present consideration. It should be noted that
both aspects of the problem, the discovery of the time multi-dimension
or, on the contrary, the proof of inconsistency that hypothesis, are very
important.

Section 2 is devoted to calculations of the metric tensor determin-
ing a plane gravitational wave in six-dimensional space-time. We show
that in contrast to the customary one-time grav1ty the transversal tensor
components are mutually independent. In sect. 3 where tidal forces are
considered it is shown that due to this fact the "height” and ”width” of
a gravitation detector have to oscillate also independently. The observa-

tion of such a detector behavior may be considered as an indication of

the time multidimension. An interesting analogy with e]ectlodynamlcs is

drawn and a possibility of longitudinal components of grav1tat10nal waves
is considered. In the last sect. we discuss results of our consideration.
2 Plane gravitational waves

According to the standard procedure (see, e. g., [14]) we represent the

metric tensor as a sum

w = N + huu ’ (2)

772(;1(1))7 (3)

I is the three-dimensional unit matrix and A, is a small addition.

where

30ne can expect the appearance of objects with a ”turned time” on the level of
microscopic space-time intervals where energy necessary for their creation is about
their rest-mass. This aspect demands special investigation, however, one can predict

that if the deviation of time trajectories is significant, then the time of an interaction

of such particles with their surrounding is very short [12, 13]

The Ricci tensor

1 1 62 o 82 g 4
By = §D6h"" t3 (ax“az"F" t 90z FI'” ' )

where h = n#h,,, the operator Og = §*/0x*dz, and

1
F] =k} — '2”'5: (5)

The expression in the brackets can be turned into zero if we impose the

condition

dF? 9z, =0 (6)
by means of the gauge transformation

huw = by + 8,6 + 806, (M

when .
’ F;.w — Fuu - 6;‘6” - av{u + niwaaéa' (8)

To prove that F,,, besides eq. (6), is constrained so by the conditions
F=y¥F, =0, F,U" =0 (9)

where U, are components of a constant unit vector (U #ll, = 1) defining

completely our gauge, we pass to the momentum space:
F,, = | &%V F,(k)dk. (10)
Then relations (6), (9) and wave equation
Ogh,, = OgF = 0. (11)

‘are reduced to the system of algebraic equations

7" Fu(k) = 0, Bt

°F,,(k) =0, (13)

U° F,, (k) =0, (14)
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(ko k) Fuu (k) = 0. )

Turning the axes one can reduce the momentum vector to the form
k =(1,0,0,1,0,0). Hence egs. (12) — (15) can be rewritten as follows

Fui=Fuy, e (16)
Fy=F=Fyz=Fi5 = Fi6=0, (17)
Fll+F22+F33"‘F44_F55—F66—0 _ ’ (18)

Vector U* is taken here in the form U“ = (0,0, O 1,0,0).
We satisfy these equations with the help of the gauge tlansforrnatlon
(8) which has now the form

Fo.(k) > F, (k) - zkﬁfu(k) ik f‘,(k)—}-znwl. & (k) (19)

or for the chosen above spec1al form of the components k*
F42 - F42 i 262 y F43 - F43 - ?f;;, (20)

= Fys=Fys—ils , Fig— Fig—i&s. o (21)

Being given by ¢, &, &5, & one can turn Fyy, Fy3, Fys, Fye into zero.
Now we must satisfy only the equations Fy; = 0 and (18).

Using again the transformation (19) we get

F/4—>F/4+z£1 z£4 , F41 —>F41—Zfl 4. (22)

If we assume F = Fy; = O then we obtam a consistent system of equa—
tions for the calculations of & and &,.

So, we convinced ourselves that the tensor

0 0 0 0 0 O
0 hgy hozs 0 has hog
he 0 hoz haz 0 hgs hag ’ (23)
0 0 0 0 0 0
0 hos has 0 hss hse
0 hog hizs 0 h;,e hee

where hog + haz — hss — heg = 0, satisfies all necessary conditions.

In comparison with the customary one-time theory where every plane
gravitational wave in the linear approximation is completely defined only
be two quantities hoz and hgy = —has the multltlme wave depends on nine
independent quantities.

3 Tidal forces

Such forces acting on particles of a body moving along a geodesic curve, i.
e. "free-falling” together with an observer in the considered gravitational
field, are described by the so-called deviation equation [15]:

i d2Lu/dT2‘+Ru4~a4LfyﬁO4 . = | N (24)

Here L is the vector linking two points with the same proper time on
closely related geodesic curves ¢, R.is the curvature tensor.

. The displacement vector can be represent as a sum of two terms
*=¢ 4  (25)

where £#.is a constant component, A% is a small addition changing

during the motion. In this case eq. (24) assumes the form
A [dT? 4 R 4oql° =0, : (26)

(We omitted the term R* 4,4 AL since we confine ourselves only to the
first approximation). ’

Using the above considered (transverse, traceless) gauge one can write
R a54 = 1" Ry40q = —(1/2)0** 0%,y JOT2. (27)
(the summation over y is absent here). So,

A [dr? = (8,200 h,, [OTHE. - (28)

4The proper (scalar) time 7 = (¢2 + 2 + ¢2)~1/2 is counted along the body time
trajectory [6].



Let us suppose that the considered body is a parallepiped with a cross
section £ X {3. Inserting £# = §ly, AL* = Alibye and k = 2,3, into
eq. (27) we get the equation determining the change of the body "width”
and "height”:

PAl)dr? = — (£ [2)d b/ dT>. (29)

Hence

Alg/ly = —(1/2)ht, k=2,3 (30)

We see that there is the quantitative difference of one- and multi-
time cases: in the latter there is no correlation of the detector "width”
and "height” oscillations in a plane perpendicular to the direction of
gra:vitational wave propagation . In the customary one-time theory the
amplitudes of these oscillations are equal. That can be used for the
experimental check of possible hidden multi-dimensionality of time in
our world. v

A few words about longitudinal waves. In the multi-time world plane
electromagnetic waves possess longitudinal components [10]. Gravita-
tional waves have also such components. Indeed, in the linear approxi-
mation (2) there is a remarkable analogy of the electromagnetic tensor
F,, and the curvature tensor R,g,,. The latter can be splitted into three

groups of components

Eij = Rijsapin, Mij = (1/4)ik €jmn B™7H2 (31)
Gi; = (1/4)€ikt €jmn REFIHHIM 343 (32)
which are similar to the electric, magnetic, and ”time-magnetic” fields
Ej = Fipys, Hi= (1/2)ijx F*, (33)
Gi = —(1/2)eijx Fit3k+3 (34)

(see {10, 16]). The fields £, H, G satisfy relations analogous to the
generalized multi-time Maxwell equations ® and, therefore, as in the case

5In particular, the identities

Fuw=-Fuu, O0uFo+0vFsu+08,F, =0

of electromagnetic field, the gravitational field should have the longitu-

dinal components.

4 Gonclusion

The multi-time gravitational waves differ in many aspects from one-time
ones. In particular, interesting effects are stipulated by the longitudinal
wave component. In fact, most of the differences cannot be observed
at the level of recent experimental accuracy. For thie time being the
question is an unpretentious registration of gravitational pulses from any
enormous cosmic events, therefore, one may hope to fix only the p‘o'ssible
difference of the detector émplitude' oscillations in perpendicular direc-
tions. However, the observation of only this effect would be an intrigue
indication of the existence of hidden time properties and .would be a pow-
erful booster of further experimental investigations. The absence of the
effect is also an important result making more precise our ideas about
the most puzzle property of our world, the time.
We wish to thank B.F.Kostenko for the usefull discussions.
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