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1 Introduction 

Hope of solving fundamental problems of cosmology of the early Universe by help of quantum 
gravity [1, 2, 3, 4, Sj has stimulated the development of the Hamiltonian apprOach to the theory 
of gravity and cosmological models of the Universe. A lot of papers and some monographs 
(see, e.g. [6, 7]) have been devoted to the Hamiltonian description of cosmological models of 
the Universe. The main peculiarity of the Hamiltonian theory of gravity is the presence of 
nonphysical variables and constraints due to the diffeomorphism invariance of the theory. Just 
this peculiarity is an obstacle for the solution of the important conceptual problems 
- interpretation of the wave function and its non-normalizability , 
-relations between the observational cosmology (the Hubble law and red shift) and the Dirac 
observables in the Hamiltonian description of the classical and quantum cosmologies. 

One of the possible solutions of these problems in the Hamiltonian approach is to reduce the 
initial constraint system to the unconstrained one by the full separation of pure gauge degrees 
of freedom from physical ones (8]. In the present paper, we would like to apply the recently 
developed method of the Hamiltonian reduction of singular systems with the full separation of 
the gauge sector [9, 10] to a standard cosmological model of the Universe filled in by dust and 
radiation to investigate the problems listed ·above and to compare our reduced quantization with 
the extended approach [3, 4, 5]. 

In section 2, the Hamiltonian version of standard model identical to classical cosmology 
is given together with the Wheeler-DeWitt (WDW) equation which follows from the model 
presented. 

In section 3, we apply the Hamiltonian gaugeless reduction developed in [9, lOJ to construct 
the Dirac observables in the classical theory. 

Section 4 is devoted to quantization of the reduced system. 

2 The Hamiltonian version of the Standard Model 

Let us consider the Friedmann standard model beginning from the Hilbert - Einstein action 

J 4 [ <•IR(g",) l w ::::: d xFY 1611"0 + Cmatter . (1) 

I?ollowing Friedmann we suppose the homogeneous distribution of the matter described by ,the 
Lagrangian C.matter and, therefore, use the Friedmann - Robertson - Walker (FRW) metric 

(ds) 2 = a2(t)[N;;'dt 2 -7;;dx'dxi]. (2) 

Here a(t) is a cosmic scale factor, /ijdxidxi is the metric of the three-dimensional space of the 
constant curvature (we shall call it the "conformal" one) 

(3) -- - -6k . -R('y,1 )- - 2 , k- 0, ±1. 
r, 

(3) 

In this paper, we restrict ourselves to a closed space k::::: +1 to avoid difficulties connected with 
an infinite volume and boundary conditions. In this case, the parameter r 0 characterizes the 
volume of the three-dimensional conformal space 

v, = j d3x,(4 = 2~2r~. (4) 
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We kept the variable Nc, in (2), in contrast with the Friedmann formulation of the standard 

model, where the component Ne is removed by the definition of the Friedmann time in comoving 
frame 

dT = a(t)N,dt. (5) 

Variable Nc allows us to preserve the main peculiarity of the Einstein theory (in the considered 
case)- the invariance with respect to reparametrization of the--Coordinate time 

t -+ t' = t'(t) (6) 

and to reproduce the Einstein - Friedmann equation for the homogeneous distribution of dust 

and radiation by the variation of the Einstein- Hilbert action (1) for the FRW metric [11, 12] 

W = j dt { ~ llA, - [p.a- ~:,.(p.a)J- N,H.,(p., a, ?in, Mo)} (7) 

The Lagrangian of the matter and the corresponding energy 1-lc are chosen to reproduce the 

equation of state of radiation with dynamical variables (P,(t), A,(t)) and dust- at rest (in th<~ 
comoving frame (5)) with the total mass Mv: 

_ (p~ ka
2 

) 1i,(p.,a,1in,Mo)-- 2(3 + 2rl(3 +a(t)Mo+1in (8) 

1 ~ 2 2 2 
?in= 2 L../ll +w, A,). (9) 

I 

The constant f3 is 
6 31fr~ 

{3 -= Vc S~G = 2M'j,
1
' (Mp, = 1.22 1019GeV). (10) 

We kept here also the time surface term of action (1). 
It is easy to verify that the Variation principles applied to the_ action (7) reproduce the 

Friedmann evolution of the Universe (filled in by matter with equation of state for dust and 
radiation) in the cornoving frame (5). 

The equations of motion for variables of radiation A, P1 

. } 81in 
At= Nc{1ioAt = Nc aPt 

lead to the integral of motion 

. d 

; P, = N,{1i" P,) = - N 81in 
c 8At 

1-ln = dt1tn = 0 => 1-ln leq.m. =En. 

En being a value of 1-ln on the equations of motion. The equation for variable Nc 

cw 
fJNe =0 :::::? 1-le(Pa,a,En,Mv)=O 

(11) 

(12) 

(!3) 

is treated as a constraint and allows us to express the momentum Pa in terms of the cosmic scale 
factor a and parameters En, Mv 

I a' 
Po(±) = ±p(a, En,Mn) = ±(2(3)1 2[aMo +En- 22"]112• 

r" 
(!4) 
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The evolution of the scale factor a in the comoving frame (5) follows from the equation for Pa 

bW 
-~o 

cp" 
f3ada 

ada _ada = !!!!.. -=> dT(En,a) = p(a, En. JJn) -=> aNdt = dT .B (15) 

and completely reproduces the evolution of observables in the standard Friedmann model of the 
Universe. These obscrvablcs arc 

the r('d shift as a function of the present time To 

zo(1;,dp) = (1"a~~)j \-I= llodFf' + 
a o I· c 

and a distance between the Earth and a cosmic object 

dF(T) = n(T)d" 

whc1·e de is a distance in the conformal space with stationary metric Atij and 

is the Hubble parameter. 

/1
0 

= _1_da(To) 
n(1;) d1; 

On the other hand, the quantization of the scale factor 

h d 
i[pa,u]=ft; Pa----->fia=ida 

r:onver\.s the energy balance equation ( 13) into tlw Wheeler· DeWitt. l.'quation [:~ . . J] 

[-~!:.__ ~ En 
2af3 da2 + f3 2r~ - --;;:- MnN'wvw = 0 

(16) 

(17) 

( 1R) 

( 19) 

(20) 

(for the Einstein energy (8) in the comoving frame version H.s = H,fa ). 

The main problem of our paper is to find the connection between thP classkal Frit'dmann 
observables ( 5), ( 16), ( 18) and the wave function of the UniversP ( 20) and to Pstablish a 
bridge between the observational and quantum cosmologies. 

3 The Dirac observables in classical and quantum theories 

The Einstein- Hilbert action ( 1) (and, of course, its Hamiltonian version (I)) dpsnihPs tiH' 

first class constrained system aCcording to the Dirac classification [8]. 

T'o construct the Dirac observables [8] of the first class constraiJl('d :>ystPms. WP fulfil gaup;P· 

less Hamiltonian reduction [9, 10] by using the canonical transformation to lll'W \"ariahi<'S. so 
that the constraints become new momenta. • 

Thus, instead of the extended phase space Nc, a, Pa, At, P1 and t.hf' initial. art io11 i11variant 
under n~parametrizations of tlw coordinah-' time (t 1------> l' = t'(t)), W<' hopC' to p;Pt thP r<'dlln'll 

phase space which contains only the fields of matter described by 1-h<' rf'dllfPII llamiltonian. 

These quantities (the fields of matter and the rf'fluccd Hamiltonian) an' invari<nlt uudt'r thl' 
time repara.metrizations and, therefore, arc the Dirac ohservablt>s [8] by df'finition. 
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By means of the canonical transformation 

(p,a) ~ (Il,ry); {p.,a}lln.n) =I (21) 

we convert the gravitational part of the Einstein -- Friedmann constraint ( 13) to the new 

momentum 

(
p

2 
ka

2 
) 

{3
" +-2 {3 -aMo=fl. 

2 2r0 

Equations ( 21) and ( 22) have two solutions (fork= +1) 

a(fl, ry) [ Q r' l ±ii(fl,ry); ii(fl,ry) = v2fljS(ry) + Moj(l- C(ry)) , 

Po(fl, ~) ±p,(Il, ~); Po(fl, ~) = [ JW,BC(~) +MoroS(~))], 

where 
- T/ 1} 

S(ry) = sm-; C(ry) =cos-. 
ro ro 

(22) 

(23) 

(24) 

(25) 

In terms of the new canonical variables (II, ry) the action ( 7) for two solutions of cqs.( 21 ), ( 22) 

has the forms 

wl±) = J dt { ~ Pt~At- N,(1tn- fl) ± (fl~~ + ~D ~T(fl, ~))}, (26) 

where the function T(II, 1]) 

' T(Il,~) = j dxii(fl,x). (27) 

" 
coincides with the Friedmann time ( 15) in the parametric form ( 23),( 27), where En is changed 

by II. So, we get the following equations of motion for the "cosmic sector" ( 1], II, Nc) 

and for "matter sector" (A,, PI): 

owl±l = 0 => n = o 
0~ 

owl±) = 0 => n = 1tn 
8N, 

owl±l = 0 => N,dt = dry 
811 

owl±l 
~=0:::} 

d 
N,dtB1 = {1in, Bt); 

(28) 

(29) 

(30) 

(Bt = At, Pt). (31) 

Equations ( 29), ( 30) and ( 31) mean that the new cosmological variable 1J converts into the 

invariant time parameter of evolution of matter fields, and its canonical momentum II converts 

into the reduced Hamiltonian. Equation ( 30) determines the conformal time fJ· 
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The evolution of matter fields can be described by the reduced action ( 26) (on the solution 

of equations ( 29), ( 30) of the cosmic sector) 

n(t) 

W"'l±l(~)=! d~{~p~~~~ ±1iR}±~0 T(1iR,~). (32) 

The last term follows from the surface term, and it does not influence the equations of motion 

( 31 ). 
The Dirac observables, here, are the "matter sector" ( 31) and the conformal time ( 30). 

The partial variation of the action ( 32) (or ( 26)) with respect to this time ( 30) represents ihe 

Tolman version [13] of the total energy of the Universe filled in by radiation and dust i"n the 

conformal frame of reference 

l±l _ awl±) _ Mo 
Ev -- ary(t) -±(En+ 2a(ER, ~)). (33) 

In this frame interval is determined as 

(ds)b = d1]2 -lijdxidxj , (34) 

with a stationary space distance, in contrast with the comoving frame ( 2) with the Friedmann 

time ( 5) and observable interval 

(ds)} = dT2 - a2(T)'r;;dx1dxi. (35) 

The variation of the reduced action (32) with respect to the Friedmann time (15) leads to 

the Tolman version [13] of the Friedmann energy 

El±) _ _ awl±) _ ± (~ + Mv) 
F - aT(~) - a(ER,~) 2 . 

(36) 

The first term of this energy describes the conventional Friedmann evolution of the red shift of 

"photons" (16) in the process of expansion of the Universe in the comoving frame (35). 

Thus, the considered version of the Hamiltonian reduction also describes the conventional 

observables of the classical FRW cosmology provided the choice of the comoving frame (35) (this 

means the choice of a corresponding observer). The Friedmann observer, in the comoving frarr{e, 

sees stationary mass, while the wavelengh of a photon (therefore, the energy of radiation) are 

changing according to the red shift law (16). 
The Dirac observer, in the conformal frame (34), sees constant wavelength of a photon, while 

all masses in the Universe are changing so that the spectrum of an atom on a cosmic object at 

moment of emission 'l]o- dDfc differs from the Earth spectrum at moment _of observation T/o· 

As it has first been established by Hoyle and Narlikar [14] the red shift also exists in terms 

of the conformal time 

Zo 
ma(~o- do/c) -I 

ma(~o) 

a(~.- dofc) _ 
1 

a(~o) 
(37) 

We see that in any frame of reference the observables are "energy" and "time", but not the 

cosmological scale factor a and its momentum Pa. This fact explains the difficulty in comparing 

the Friedmann observables "energy- time" with the result of the WDW quantization in terms 

of a,Pa· 
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4 Quantization 

Let us quantize the theory ( 26). First at all note that the commutation relation i[fr, 17] = ft and 
the WDW equation in terms of the new variables 

(JI -1tn)'l!wvw ~ 0 (38) 

do not reflect all information of the classical theory, in particular, about two different solutions 
(26) with signs (±) and the dust evolution of the "observable red shift" (37). The latter is 
hidden in the surface term which contributes to the total energy (33). 

These peculiarities of the classical theory can be described, if we use the action (26) to 
determine the momentum II. 

i)£(±) Mv 
rr(±J ~ iii) ~ +(II + -

2
-a(II, ~)). 

We should use the class of th~ wave functions where the constraint (38) is fulfilled. 
Finally, using the operator 

ft(±) ~ ±!:!!_ 
'd~ 

we get for the wave function the following spectral decomposition 

'l!v(~IAt) ~ L [c.Ji,~j;",/(~) < EniAt > +<>ii,<~>k-;i(~) < EniAt >"] 
E, 

where < ER]AI > are the production of the Hermite polynomials, 

(±) Mv-
~E.(~)~ exp{±i(En~+ 2T(En,~)}, 

and a(±) are the operators of creation of the Universes with the total energy ( 33) 

1 
En~ I;wt(nt + 2), 

I 

(39) 

(40) 

( 41) 

(42) 

and quantum numbers of occupation n1 of a "photon" with the energy w1. We can express the 
observable red shift (37) in terms of the wave function with quantum numbers ( 42) 

where 

MER(~o) -1, 
z ~ ( !!D.) 0 

MER T/o c 

[ 
(+)•( 8 (+) l ME,~ ~E ~)~0 ~E (~)-En . 

R ~ 1J R 

(43) 

( 44) 

The V<J.riation of the wave function (41) with respect to the Friedmann time (15) leads to 
the energy of the red shift of a "photon" in the comoving frame of the Friedmann observer. 

_d_<i>(±)( ) _ ( En' Mv) (±J 
idT(~) E, ~ - ± a(T) + 2 <i>E•(~). 
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In contrast 'vith the \VDW wave function ( 20), eq. ( 45) establishes the direct relation of the 
Dirac wave function to the observables of the classical theory. 

The wave function ( 40) is normalizable for variables of the Dirac physical sector (A1, PI) 
and has clear physical interpretation. The wave function of the Universe is the conventional 
wave function of massless excitations at the conformal time multiplied by the wave function of 
<L particle at the Friedmann time with a half mass of the Universe. 

The corresponding functional integral representation of the Green function does not contain 
functional integration over the variable 1J (as it was excluded from the Dirac sector of physical 
variables) [15]. This conversion of the variable into the time parameter excludes the infinite 
gauge factor from the functional integral discussed by Hartle and Hawking [16]. 

5 Interpretation and conclusion 

TIH' aim of the J)fesent paper is to invf'st.igate relations between thE' Friedmann cosmological 
obscrvables and the Dirac physical ones in the Hamiltonian approach to quantization of the 
Universe using a simple but important example of the homogeneous Fniversc filh•d in by dust 
and radiation. 

An essential difference of the research presented here from the analogous papers on til<' 

Hamiltonian dynamics of msmological models is complete separation of the sector of physical 
invariant variables from the pure gauge sector by application oft he gaug<>less r£'dudion [9. I OJ. 

The main point. is that in the process of reduction one of variabl<'s convPrls into tiH' obsPrvahlt• 
invariant time. 'vVe have shown that this conversion of the variable to the tim<' param('IC'r leads 
to the normatizability of the wave function of the Universe and plays the roiC' of gaug<•-fixing for 
removing an infinite factor from the corresponding functional integral. The considC'rt•d rPduct ion 
allows us to give the definite mathematical and physical treatment of the waw funrtion and 
clarifies its relation to the observational cosmology. 

The choice of the conformal frame of reference was a crucial to construct tlw Dirac "ob­
sen·ablcs" in the generalized Hamiltonian approach. These "observabJp" an• contwct<'d with th<• 
Friedmann observables by conformal transformations with the cosmic scalP fartor. Howp\"<'r. 
these transformations have singularity at the beginning of the Dirac tim<'. From this point 
of view, the Dirac "observables" in the frame connected with the radiation s<•ern to lH' mon• 

ftmdamcntal than the Friedmann "observable;" in tiH~ comoving frame conn<'cl<'d with masSin• 
dust. 

At the beginning of the Universe (at. time 11-----> 0) th<' energy of partid<'s at n•st {forming: 
the dust) in a. closed space becomes larger than their masses, and all dust <"OIIV<'rts into masskss 
excitations with wavelengths of an order of a conformal size of tlu• Univen;p r0 . For tlu•s<• <'xei­
tations the region of validity" of quantum theory coincides with the siz<' of t.lu• t:ni\'l'rs<'. Thus. 
at. the beginning of the Universe, the dust disappears and thP Frkdmaun obsN\'abl<•.s comu•ctpd 
with massive dust lose physical meaning. While the Dirac "obserwr" sc<•s tht- dos{•d span• /ill('d 
by the homogeneous massless excitations bounded all regions in the lJnivNsP. !-'or tlu• Dirac 
"observer" the difficulties of singularity and It orison do not exist. 
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XsenenHn3e A.M.' H np. _ E2,97-84 
OnHcaHHe" cppH.UMaHOBCKHX ua6mo.uaeMhiX. B KBaHTOBoi.f BceJieHHOi.f 

npH l10MOW}l 6eCK8Jm6pOBOl.JHOJ.i TaMHJTbtO~OBOH pe.uyKUHH yCTaHaBJTHBaeTC5:1 
. OTHowemte Me;>K.uy ¢pHDM<l.HOBCKHMH Ha6mo.uaeMbiMH B pacllmpHJOllleHc.s~ .BceneH­
HoH (3aKOH Xa66na H Kpactl6e CMememte) H .UHpaKOBCKHMH Ha6mo.uaeMhiMH 
B o6061UeHHOM raMHJTbTOHOB"OM l10.llXO.Ue llJl.SI ¢pH.llM8HOBCKOf.i KOCMOJIOrHqeCKOi.f 
fl..ta.llenH Bcenem:10H., JanoJIHem:JOi.f nbneBhiMH B036~eHHHMH, HMHTHpyim-!.tHMH 
pa,uHaUHJO. 

BhmoJI_HHeTcH nonHoe OTlleJieHHe qm3Hl.JeCKOro ceKTOpa aT Karm6poBo1.JHOrc>' 
11pH roMOlUH 6eCK8JIM6pOB01.JHOH rru.mnhTOHOBOi.f pell)'KUHH, B KOTOpOii rpaBHTa­
UHOHHaH lfilCTb l'aMHnhTOHOBOfi CBH3H npeo6pa3yeTC.H B HOBhlfi HMilYJlhC. 

Mhl noKa'JhiBaeM, l.JTO· 3Ta pe.uyKUHSJ ycTpaHHeT 6ecKoHe1.JHb!H Krum6poBo1.JHhlH 
ci>aKTOp H3 qJyHKUHOHaJih!Wro mnerpa.na, ·o6ecnelJJiBaeT HOpMHpyeMoCTh BOJJH.OHOH 
·cpyHKUHH 8ceJieHt!Oli OTHOCHTeJlhHO HI!BapHaufHhiX nepeMeHifhiX ci'H3WieCKOfO 
CeKTOpa, )leJiaeT ,HCUbiM _HX "i.JTHOWeHHe KJ!a6JilO)laTeJihHOH KOCMOJlOniH H Ubl.lleJIHeT 
KOHci'OpMHylO CJ:ICTeMy OTC1.JeTa. . 

Pa6oTa Bhmmmeua B Jla6opaTopHH TeopeTH1.JicKoH Qm.3HKu HM.H.H.Eoromo6o-
sa Ol·UIH. . 

npellpHHT 06"bCJUJHellHOrD HHCTHryt"a M}.(epHMX JiCCJJe}.(OB~HH~ . .Qy6Ha, 1997 

Khvedelidze A.M. et al. E2-97-84 
Description of Friedmann Observables in Quantum Universe 

The solution of the problem of describing the Friedmann observables 
(the Hubble law, the red shift, etc.) in quantum cosmology is proposed on the basis 
of the method of gaugeless Hamiltonian reduction in which the gravitational part 
of the energy constrain-t is _considered as a new momentum. We show .that 
the conjugate variable corresponding to the new momentum plays· a role 
of the invariant time parameter of evolution of dynamical variables in th"e sector 
of the Dirac observables. of the general Hamiltonian appriach. Relations between 

_these Dirac observables and the Friedmann observables of the expanding Universe 
are established for the standard Friedmann cosmological model with du.st 
and radiation. The presented reduction removes an infinite factor from the functional 
integral, provides ·the normalizability of the wave function of the Universe 
and distinguishes the Conformal frame of referenCe where the Hubble law is caused -
by the alteration of the conformal dust mass. 

The investigation has, been performed at the Bogoliubov Laboratory 
o( .Theoretical Physics, JINR. 
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