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1 Introduction 

The nonperturbative vacuum of QCD is densely populated by long- wave fluc­
tuations of gluon and quark fields. The order parameters of this complicated 
state are characterized by the vacuum matrix elements of various singlet com­
binations of quark and gluon fields, condensates: <: ijq :>, < : G~~->G~~-> :>, 
<: ij(aJ.wG~v >-2")q :>,etc. The nonzero q~ark condensate<: ijq :>is responsible 
for the spontaneous breakdown of chiral symmetry, and its value was estimated 
a long time ago within the current algebra approach. The importance of the 
QCD vacu urn properties for hadron phenomenology have been established by 
Shifman, Vainshtein, Zakharov [1]. They used the operator product expan­
sion (OPE) to relate the behavior of hadron current correlation functions at 
short distances to a small set of condensates. The values of low - dimensional 
condensates were obtained phenomenologically from the QCD sum rule (QCD 
SR) analysis of various hadron channels. 

Values of higher - dimensional condensates are known with less accuracy 
since usually in the range of applicability of QCD SR the static hadron prop­
erties: lepton widths, masses, etc} are less sensitive to respective corrections. 
The whole series of power corrections characterizes the nonlocal structure of 
vacuum condensates. 

Nonlocality of the quark condensate is characterized by the parameter [2] 

.\'- <: i'jD'q :> ,- <: qq :> ' 
(1) 

where DJ.l = 8/1- igA~Aa /2 is a 'covariant derivative. This quantity is treated 
as average virtuality of quarks in the QCD vacuum and characterizes the space 
width of quark distribution. By the equation of motion in the chirallimit the 
parameter A~ is also related to the mixed quark- gluon condensate 

-(· G" .\") <: q zgap.v p.v2 q :> 
m~ = -~~~--"--~­

<: qq :> 
,2 m 2 

"' - 0 ,-2. (2) 

This quantity has been estimated by QCD SR for baryons to m6 = 0.8 ± 
0.2 GeV2 [3], and the lattice QCD (LQCD) calculations yield m6 = 1.1 ± 
0.1 GeV 2 [4]. Within the .instanton model the mixed condensate has first 
been obtained in the single instanton approximation in [5]. Recently, similar 
calculations has been performed in a more advanced instanton vacuum model 
(6] with the result 3 m6 ~ 4, where Pc is the characteristic size of the instanton 

p, 
3The result given in [5] differs from a correct one by factor 1/2. 
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fluctuation in the QCD vacuum. Below, we reproduce this result in another 
way. As for the nonperturbative properties of gluons in the QCD vacuum, new 
precise LQCD measurement of the gauge - invariant bilocal correlator of the 
gluon field strengths has become available down to a distance of 0.1 fm [7]. 

As it has been proposed in [2], the nonlocal properties of vacuum conden­
sates are of principal importance in the study of the distribution functions of 
quarks and gluons in hadrons. There, it has been shown that this problem 
can be correctly considered only if a certain nonlocal form of the vacuum con­
densates is suggested. Physically, it means that vacuum quarks and gluons 
can flow through the vacuum with nonzero momentum. To construct the sim­
plest ansatzes for the shape of the non local condensates, in [2, 8] some general 
properties of these functions and the restricted information about their first 

deriVatives have been used. 
On the other hand, in QCD there is an instanton [9, 10], a well - known 

nontrivial nonlocal vacuum solution of the classical Euclidean QCD field equa­
tions with the finite action and size p. The importance of instantons for QCD 
is that it is believed that an interacting instanton ensemble provides a realis­
tic microscopic picture of the QCD vacuum in the form of "instanton liquid" 
[5, 11, 12] (see, e.g., a recent review [13]). It has been argued on phenomeno­
logical grounds that the distribution of instantons over sizes is peacked at a 
typical value p, "" 1.7 GeV- 1 and the "liquid" is dilute in the sense that the 
mean separation between instantons is much larger than the average instanton 
size. Moreover, the quark Green functions are dominated by zero energy modes 
localized around the instanton. The effects of condensate nonlocality within 
th~ instanton liquid model have implicitly been used in QCD SR for the pion 
[14] and nucleon [15], where they appear as exponential corrections to the sum 
rules along with power corrections typical of the local OPE approach. 

In this paper, we start· a systematic discussion of nonlocal condensates 
within the instanton model of the QCD vacuum. As a fi"rst step, we calculate 
average virtualities of quarks and gluons in the QCD vacuum in the single 
instanton (SI) approximation. Next, we attempt to obtain the correlation 
functions f(v) which describe distributions over virtuality v of quarks and 
gluons in the nonperturbative vacuum. The approximation used works well for 
large virtualities, but fails in the description of physically argued distributions 
at small virtualities (or long distances). The reason is that in order to have 
a realiStic model of vacuum distributions, the important effects of long- wave 

vacuum configurations have to be included [16]. 
The paper is organized as follows. In the second section, the general prop­

erties of nonlocal condensates are briefly discussed. The quark and gluon av­
erage virtualities A.2 are estimated within the single instanton approximation 
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in the third section. To guarantee the gauge inVariance, we have introduced 
the Schwinger E- exponent as an operator element of the nonlocal vacuum 
averages. In the fourths section, we analyze the space coordinate behavior of 
non local condensates. The main asymptotics of the correlation functions f(v) 
at large virtualities v are derived~ We also demonstrate insufficiency of the SI 
approximation to obtain the realistic behavior at large distances. There, we 
point out the physical reason for the failure of the approach used in the large 
distance region and suggest a way to solve this problem. 

2 The quark and gluon distribution functions in the 
QCD vacuum 

To hegiri, we outline some basic elements of the approach with the nonlocal 
vacuum condensates. The simplest bilocal scalar condensate M(x) or, in other 
words, the nonperturbative part of the gauge- invariant quark propagator has 
the form (in the below definitions we shall follow works [2, 8]) 

M(x) =<: q(O)E(O, x)q(x) :>=<: q(O)q(O) :> Q(x'). (3) 

Here, E(x, y) = Pexp (i J; A"(z)dz") is the path-ordered Schwinger phase 
factor (the integration is performed along the straight line) required for gauge 

A" 
invariance and A~'(z) = gA:(z)2. ln the same manner, we will consider the 

correlator D""·'"(x) of gluonic strengths G"v(x) = gG:v(x) ~" 

D""·'"(x- y) =<: TrG""(x)E(x, y)G'"(y)E(y, x) :>. (4) 

The correiator may be parameterized in the form consistent with general re­
quirements of gauge and Lorenz symmetries as [17, 8, 18]: 

D""·P" (x) ; 4 <: g'G' :> {(g"pYvo- Y"aYvp)[D(x 2
) + D,(x2

)] + (5) 

+ i!D1(x2
) 

(xpXp9vu- XpXu9vp + XvXu9pp- XvXp9Jiu) 8x
2 

}, 

where <: G2 :>=<: G~v(O)G:v(O) :> is a gluon condensate, and Q(x2 ), D(x') 
and D 1 (x 2

) are invariant functions that characterize nonlocal properties of 
condensates. 

The vacuum expectation values (VEV) like <: qq :>, <: g2G 2 :>, 
<: ijD

2q :>, ... appear as expansion coefficients of the correlators lv!(x) and 
D"w,pu(x) in a Taylor series in the variable x 2 /4. The coordinate dependence 
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of the scalar condensates Q(x2 ) and D(x2 ), normalized at zero by Q(O) = 1 
and D(O) + D 1 (0) = 1, can conventionally be parameterized similarly to the 
well - known a-representation for the propagator 4 

Q(x') 1
00 (x') (1) da = exp - j - -, 

o 4a q a a 2 
(6) 

D(x2
) + D1 (x 2

) 
roo (x') (1) da 

Jo exp 4a /g ~ a 2 · 
(7) 

The properties and the role of the correlation functions f(v) have been 
discussed in detail in [2, 8]. The explicit form of f(v) completely fixes the 
coordinate dependence of the condensates and can be determined in the future 
QCD vacuum theory. Evidently, j(v) ~ o(v), oPl(v), ... , would correspond to 
the standard VEVs <: ijq :>, m~, ... , while the behavior f(v) ~ const would 
simulate free propagation. We expect that the realistic f(v) occurs somewhere 
in between these two extremes. Thus, it is a continuous function concentrated 
around a certain finite value A2 and rapidly decaying to zero as v goes to 0 or 

co. 
The correlation function J, (v) describes the virtuality distribution of quarks 

in the nonperturbative vacuum [2]. Its n-moment is proportional to the VEV 
of the local operator with the covariant derivative squared D' to the nth power 

roo v" j (v)dv = 1 <: ij(D')"q :>. 
lo ' r(n+ 2) <: qq :> 

(8) 

It is natural to suggest that VEVs in the r.h.s. of (8) should exist for any n. 
It means that the decrease of f(v) for large arguments has to be faster than 
any inverse power of v, e.g., like some exponential 

J,(v) ~ exp(-const · v) as v -t co. (9) 

The two lowest moments give the normalization conditions and the average 

vacuum virtualities of quarks A~ and gluons A~ 

1
oo 1oo 1 <· qD'q ·> 

J,(v)dv = 1, · v J,(v)dv = · · 
0 0 2 <: qq :> 

>.' - q 

=2' 
(>.; o= 0.4 GeV2

, QCD SR [3]), 

1
00 100 1 <: c:.D'c:. :> >.~ 

f 9 (v)dv = 1, vf9 (v)dv = G' =' -. 
0 0 2 <: :> 2 

(10) 

(11) 

4 0ne has to remember that in this work we make use of the Euclidean space and x
2 < 0. 
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Note that the quark correlator (3) has a direct physical interpretation 
in the heavy quark effective theory (HQET) of heavy - light mesons as it 
describes the propagation of a light quark in the color field of an infinitely 
heavy quark [5, 13]. This behavior has been analyzed in detail in [19]. There, 
it was demonstrated that for large distances lxl the correlator is dominated by 
the contribution of the lowest state of a. heavy- light meson with energy A,: 
Q(x2 ) ~ exp ( -Aqlxl). This law provides the behaviorpf f(v) at small v 

J,(v) ~ exp( -A;/v) as v-+ 0. (12) 

In the case of gluon correlator (5) the correlation length L9 has recently been 
estimated in the LQCD calculations [7]. The quantity A9 = 1/ L 9 plays a 
similar role as Aq, i.e. D(x2

) ~ exp (-A9 Ixl) for large lxl. It is formed at typical 
distances of an order of 0.5 fm and describes long range vacuum fluctuations 
of gluon field. 

In works [20, 21], the arguments in favor of a definite continuous dependence 
of f(v) have been analyzed and different ansatzes for these functions were 
suggested which are consistent with the requirements {9), {12). In particular, 
one ansatz has been constructed by the simplest combination of both these 
asym ptotics 

f.(v) ~ exp (- ~; - a; · v) {13) 

with the parameters A, o= 0.45 GeV and a; o= 10 Gev-'. This ansatz has been 
successfully applied in QCD SR for a pion and its radial excitations [21], and 
the main features of the pion have been described: the mass spectrum of pion 
radial excit~tions rr' and rr" which is in agreement with the experiment and 
the shapes of the wave functions of" and rr' which have been confirmed by an 
independent analysis in [2, 20]. Thus, we will regard the form (13) as following 
directly from the pion- phenomenology. Below, we·wm make S?me conclusions 
about the form of the correlation function J,(v) using concrete solutions for 
the instanton field and quark zero mode around it. 

3 Vacuum average virtualities in the single instan­
ton approximation 

Let us consider an instanton solution of the classical Yang- Mills equations in 
the Euclidean space [9]. It is well known that in the vicinity of the instanton the 
quark amplitudes are dominated by the localized mode with zero energy [10]. 
We will consider the expressions for the instanton field and quark zero mode in 
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the axial gauge A"(z)n" = 0 since in this gauge with the vector n" = x"- y" 
the Schwinger factor E(x, y) = 1. The expressions in the axial gauge for the 
instanton ( +) ( anti-instanton (-)) field 

A"(ax) (x) = R(x )A*•g)R(x )+ + iR(x )&"R(x )+, 

G"v(.x)(x) = R(x)G"v( .. g)R(x)+, (14) 

and the quark zero mode 

W!,(x) = R±(x)W:",,(x), (15) 

where 

lxl Xq 
a(x) = arctan---;~~"' vx2 +p' vx2 +p' R±(x) = exp [±i(xf')a(x)], 

have been introduced in [22]. In (14) and (15) the expressions for the instanton 
and quark fields in the regular gauge are given by 

A'!.~,9 (x) 
=t=a 2xv 

'f/pv x2 + p2, 

w;,, ( x) <p.,,(x)~±, 

4p' 
) "" , a;:, .. ,(x = -"'"v (x' + p')' 

p 
<p.,,(x) = rr(x' + p')3f2 

(16) 

(17) 

In (14) - (17), x = (x4 , x) is a relative coordinate with respect to 
the position of the instanton center z. The solutions (14) and (15) are 
given within the SU(2) subgroup of the SUo(3) theory (ra are the correspond­
ing generators normalized according to Tr(r.r,) = !o"') and the following 

notation is introduced: ,.,;; = €4apv ± ~EabcEbc~-'v are the t'Hooft symbols, 

e~± = ~'YYv 1 ~ 1 ' Ur;fr!'u+ with r± = (±i, f'), and U is the matrix of 

color space rotations. 
In the SI background in the zero mode approximation the bilocal quark 

and gluon condensates acquire the form 

M,(x) =<: i/(ax)(O)q(ax)(x) :>= (18) 

= -I>~ j d'zj d!1Tr[W:!',(x- ~)W:!',( -z)], 
± m• 

D""·'"(x) =<: G(ax)"~(O)G(ax)pu(x) :>= (19) 

= :
2

(9"p9vu- 9"u9vp) l:.n~ J d'z J d!tGi',~(ax)(x- z)Gi,~(ax)(-z). 
± 
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Here, nZ is the effective instanton j anti - instanton density. The collective 
coordinate z of the instanton center and its color space orientation are inte­
grated over. In the SI approximation the term in (5) with the second Lorenz 
structure does not appear. This fact is due to the specific topological structure 
of the instanton solution. Both the Lorenz structures will appear in the r.h.s. 
of (19) if one takes into account the long-wave background fields [16]. 

The averaging over the instanton ori-entations in th€ color space is carried 

out by using the relation j dHUbau:c = ~c 0d0b, where Nc is the number of 

colors. Using the definitions (3) - (5) and (18), (19) we obtain 

Q.,(x') 

Dax(x 2
) 

(20) 8p
2 100 drr'joo dtcos[fi(arctan(!.:!fl)-,- arctan( h))] 

rr o -oo [R' + t']'/ 2 [R 2 + (t + lxiJ 2]3/2 ' 
= D(x 2

) + D 1 (x 2
) = (21) 

dt1- ~sin 2 [fi(arctan(!.:!fl)- arctan(hJJ] 24 '100 100 _P . dn·' 
7r 0 -00 [R 2 + t2 ]'[R' + (t + lxiJ']' ' 

where R2 = p2 + r2
, r = IZ1, t = z4 . In the derivation of these equ~tions we 

have used a reference frame where the instanton sits at the origin alld x!J is 
parallel to one of the coordinate axes, say J-l = 4, serving as a "time" direction 
(i.e., x = 0, x 4 = lxl). Expression (20) corresponds to that derived in [5, 23] 
and expression (21) was derived in [24]5 . 

In the derivation of (20) and (21) the following relations between the quark 
and gluon condensates, on the one hand, and the effective density nc = n+ +n-, 
(n+ = n-) and the effective quark mass m;, on the other hand, have been used 

<: q(O)q(O) :>=_!!c._ 
m•' 

q 
<: g2G 2 

: > = 32JT2n 0 • (22) 

These relations are valid in the mean field approximation of the instanton liquid 
model [13] and provide the normalization conditions in (18) and (19). Let us 
emphasize two features of expressions (20) and (21). 

First, it is important that the factors cos( ... ) or sin 2 ( ... ) in the numerator 
of integrands reflect the presence of the E factor in the definition of the bilocal 
condensates. 

Second, the correlators Q(x 2
) = Q.,(x2

) and D.,(x 2 ) are gauge- invariant 
objects by construction. Therefore, the Same expressions for the corrclators 
can be deriVed using any other gauge. But the axial gauge used seems to be 
the most adequate in this case. 

5 We are grateful to A. Radyushkin who communicated us this reference. 
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From (20) and (21) one may derive the average virtualities of vacuum 

quarks and gluons in the SI approximation which characterize the behavior of 

nonperturbative propagators at short distances in the instanton field 

)..'=-8dQ •• (x) r 
q d 2 = 2-

x p~' 
)..' = _ 8 dD.,(x) = 24 ~ 

9 . dx 2 5 p~' 
)..' = 12).,, 

g 5 q' 
(23) 

In expressions (23) for A2 ,·factor 8 arises from the expansion of correlators in 

the variable x 2/4 and also due to the definition of ).,~(g)> (10) and (11). The 

result for A~ in (23) agrees with the value for the mixed condensate derived in 

[6] if the relation (2) is used. 

We see that our result coincide numerically with that derived from the 

QCD SR, (10), if the effective size of the instanton is approximately chosen 

as Pc"' 2 Gev- 1 

)..; "'0.5 GeV2
, )..; ""1.2 GeV2

• (24) 

This value is quite close to the commonly accepted typical instanton radii 1. 7 

GeV- 1 chosen to reproduce the phenomenological properties of the instanton 

vacuum (see review [13]). The recent analysis of the instanton vacuum parame­

ters given in (25]leads to the "window" for the Pc value- Pc = 1. 7-2 GeV- 1 It 

is interesting to note that gluons are distributed more compact than quarks in 

the QCD vacuum as it follows from (23). To demonstrate this it is instructive 

to compare the short- distance correlation lenghts for quark 1, = ~ ,; 0.28 

. 
~ 

fm and gluon lg = ~ ,; 0.18 fm distributions in the QCD vacuum (p, ,; 2 
).., 

GeV-'). 
We ignore the effects of radiative corrections to the condensates connected 

with a possible change of normalization point Jl where the condensates are 

defined. These effects as well as the effects due to non-zero modes contribu­

tions are not very important. Thus, the SI approximation works fairly well 

in describing virtuality of vacuum quarks (gluons) and nonlocal properties of 

condensates at short distances. In the next section, we are going to study the 

shape of non local condensates in more detail. 

The relation of the quantity AZ to the combination of VEVs of dimension 

six has been obtained in [18] (see also [19]): 

)..; <: 93 jG3 :> 
2 = <: 9'(J' :> 

<: 94J' :> 
<: 9'G' :>, 

(25) 

where<: 9 3 jG3 :>=<: 93 f"''G;vct,c;, :>, J' = J;J; and J; = q(x) '; 'Y,q(x). 

This formula is analogous to (2) for quarks and relates short distance char­

acteristic {23) of nonlocal gluon condensate D(x) to the standard VEVs of 

8 
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higher dimensions. The estimation <: g' JG3 :>,; -

2 
<: 92G 2 :> following 

5p, 

from (23) and (25) (without the second numerically small term) coincides 

with that obtained in [1, 5] in a different way. The latter relation in (23) and 

the expressions for)..~, {1), and .>-z, (25), allow us to obtain .a.new parameterless 

relation 

<: 93 JG3 :> = 3 <: ij(i9(JpvGpv)q :> + <: 94J 2 :> 

<: 9'G' :> 5 <: ijq :> <: 92G2 :>' 
(SI approximation) 

(26) 

and then to estimate a poorly known value of<: 93 fG3 :> 

<: 9
3 
JG

3 
:> "' (0.45 ± 0.12) GeV' · 

<: 9'G' :> 

To obtain this. value, we have used the approximation <': g4J 2 :>::::::: .....:.~g 2 <: 

9iiu :> 2 [1] and the estimation for m5 [3]. 
The expressions for Q.,(x) and D'"(x) may be considered as generation 

functions to obtain the condensates of higher dimensions in the SI approxima­

tion. From a technical point of view this procedure is more convenient than 

the direct calculations of them. In Appendix A we present some new relations 

for quark VEVs of dimension seven and gluon VEVs of dimension eight in the 

SI approximation. 

4 Nonlocal condensates within the single instanton 

approximation. 

The aim of this section is to study the form of the distributions over virtu­

ality of quarks and gluons in the Sl approximation. To understand the main 

asymptotical behavior of correlators at short and long distances it is enough 

to inspect the expressions (3) and (4) dropping the Schwinger E fa.otor. We 

will also consider numerical effects connected with the neglect of this factor. 

To this goal, let us first calculate the correlators using the regular gauge 

and neglecting theE factor. The corresponding expressions are given by (20) 

and (21) with the changes cos( ... ) --f 1 and sin ( ... ) --f 0 in the integrands and 

are reduced to 

Q"•(x') = ~ ( 1 - 1 ) 
y' ~, 

(27) 

D""•(x') - 3 ( 1 + 2y
2 

, 

- 4y2 (1 + y') y~ln h/l+y' +YI ~1), (28) 
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where the dimensionless parameter y = ..3!:._ is introduced. 
2p . 

From (27) and (28) we easily find for the average virtualities 

3 1 
.:\~,reg = 2 p2 ' 

16 1 
'2 - -z, Ag,reg - 5 p 

which are about 30% less than the corresponding gauge - invariant "physi­
cal" values in (23). The same quantities (without E factor) calculated in the 
singular gauge look like 

9 1 
,2 = -z, 
Aq,sing 2 p 

96 1 
2 =-z· Ag,sing 5 p (29) 

Thus, we see that the gauge dependence is very strong a"nd the results derived 
withOut E- factors may be far from being correct numerically6 . 

Now, let us consider the correlation functions f(v) in the regular gauge. To 
this end, we make the inverse Laplace transform of the correlators (27) and 
(28) and obtain 

J;'•(v) 

J;'• (v) 

2p2 
· erfc(pvfv), 

3 (p'v) ( p'v) (p'v) 'ip2
• 2 exp -2 Ko 2 , 

(30) 

(31) 

where erfc(t) = 1-erf(t) is the error function and K 0 (t) is the Mac-Donald 
function. Then, it is easy to obtain large v asymptotics of these functions 

J;'•(v) = 2p
2 ~~:~rr ( 1+ 0 (D), 

J;'•(v) = ~p2e-P'"Jp2vrr (1+0 (~)), 

(32) 

(33) 

which reflect the behavior of the corresponding correlators in the region of 
small x. The same exponential asymptotics have physical correlation functions 
fq(g)(v) resulting from the gauge-invariant correlators (20) and (21). Thus, we 
can conclude that the model of nonlocal condensates in the SI approximation 
can reproduce the main exponential asymptotical behavior ~ exp( -a· v) of 
the physical correlation functions at large virtualities (short distances), and 
the phenomenological parameter a in Exp. (13) may be identified as a o= p,. 

As to the description of the small virtuality (long distance) region, this 
approximation fails since in that regime f(v -f 0) decays too slowly in contra­
diction with the physically argued "color screening" exponential asymptotics 

6 Note, that an estimate for>..~ calculated by non-gauge invariant manner (which is close 
to >..~,s;ng in (29)) is presented in [26]. 
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given in (12). In other words, the correlators in (27) and (28) decrease too 
slowly at large x. These conclusions remain valid for the physical case of gauge­
invariant correlat.ors (20) and (21), that is easily seen from the behavior of 
corresponding numerators of the integrands at large x. As it is explained in 
[16], the SI approximation considered in the present paper does not correspond 
to the real physical vacuum picture. We should take into account the impor­
tant long-wave background fields too. These fields modify the long-distance 
behavior of the correlators and lead to appearance of the "second scale" para­
meterS Aq and A

9
_ = 1/ L

9 
in quark and gluon distributions, respectively (see 

Exp.(12) and discussion there). This effect allows us to reproduce the long- and 
short-distance behavior of the physical correlators (13) in a complete form. 
It is also shown that the effect of long-wave vacuum fluctuations is not very 
essential for the values of Aq(g) related to short distances. 

5 Conclusion 

The instanton model provides a way for constructing of the nonlocal vac­
uum condensates. We have obtained the expressions for the nonlocal gluon 
<: TrG""(x)E(x,y)G'"(y)E(y,x) :>and quark 
<: q(O)E(O, x)q(x) :>condensates within the single instanton approximation. 
The average virtualities of quarks A~ and gluons .X~ in the QCD vacuum are de-

l 2 24 1 
rived. The results are A~= 2---z for vacuum quarks, and .:\9 = -2 for vacuum 

Pc 5 Pc 
gluons. The value of>.~ estimated in the QCD SR analysis [3] is reproduced at 
Pc ~ 2 GeV- 1 . This number is close to the estimate from the phenomenology 
of the QCD vacuum in the instanton liquid model [13, 25]. The model provides 
parameterless predictions for the ratio >.;/ >.~ = 12/5 and the relation (26) for 
the vacuum averages of dimension six. 

The calculations have been performed in a gauge - invariant manner by 
using the expressions for the instanton field and quark zero mode in the axial 
gauge [23]. It is shown that the usage of the singular gauge (in neglect.ing the 
Schwinger gauge factor E(D, x)) in the calculations of non - gauge- invariant 
quantities leads to a strong numerical deviation from correct values. 

The behavior of the correlation functions demonstrates that in the single 
instanton approximation the model of nonlocal condensates can well reproduce 

<lithe asymptotic behavior of the functions (13) at large virtualities (short dis­
tances). The results for nonlocal quark (20) and gluon (21) condensates are 
supported by the independent test of their local characteristics>.; and >.;. The 
latter may be obtained from standard VEVs calculated within the inst.anton 

model in [1], [5] and [6]. 
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Nevertheless, the approximation used fails in the description of the small 

virtuality (long distance) regime. The reason is the neglect of long - wave 

vacuum fluctuations in the single instanton approximation. In the forthcoming 

paper [16] we will prove that inclusion of the effects of these fluctuations cures 

this disease. 
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A Appendix 

d2Q(x2 ) d2 D(x2 ) 

Here, we present·the relations between the derivatives 'd
2 2 

and ~d' 2 2. X 2. X 

calculated in the SI approximation and the same quantities expressed via the 

quark and gluon VEVs obtained in [19] (below we put the current quark mass 

m, ~ 0) 

7 1 3Q7 
- ~Q7 

- 3Q7 + Q7 
--- 1 2 2 3 4 

120 p; - 4!24 < qq > (Sl approximation), {34) d'Q.x(x 2
) 

2!d2x 2 

d'D.x(x 2
) 

2!d2x2 

2 _1__ _ ~GL, + 23GL + 30G~ + 8q - 3G~ 
21 p; - 4!6G4 

(Sl approximati~B~) 

where the quark condensate basis was; chosen in the form 

Qi - < ifGwG""q >, Qi ~ i < ijG""(;""''q >, 
Q~ = < tjGI-'>.G;..vcr11vq >, Q! = i < ijDI-'Jvcrwq >, 

and the gluon condensate basis was chosen as 

G' 
c• I 
G~ 
( •8 J' 

< TrC 11vGJ-Iv >, @ 

< TrG 11 vGJ-IvGapGap >, G~ =< TrG 11vGapGJ-IvGap >, 

< TrGJ-IaGavGvpGpJ-1 >, G~ =< TrGJ-IaGavGJ-IpGpv >, 
i < TrJ"G""J" >, G~ ~ i < TrJ,[D,G""'G"v] >, G~ ~< TrJ"D'Jv >, 

and the notation Gf_j = G7- GJ is used. 
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