


L Introductlon
Non-commutative differential caiculus on quantum groups initiated and

thoroughly worked out by Woronowicz [1].1s up to row a. subject of ac-
“tive discussions and development. Though meeting sorhe problems (2, 3,

4, 5, 6] with non-clasgical dimensionalities of spaces of higher-order dif-
ferential forms (which, in its turn, siimulated very interesting alternative

approaches [7, 5, 8]), original Woronowicz's construction remains highly .

attractive due to both its rich algebraic structure and useful applications.
Probably, the best known realization of this scheme is bicovariant differ-
ential calculus on the GL,{N) quantum groups 9, 3, 10].

Closely related but somewhat parallel to Woronow;cz s construction is
another project (3, 7, 11, 12] that, in particular, has produced a bicovariant
algebra of four types of elements: functions on a quantum group, ‘differ-
ential forms, Lie derivatives along vector fields, and inner derivations - by
exact analogy with classical differential geometry. However, this scheme,
as it is, does not seem to be fully motivated by the Hopf-algebraic nature
of non-commutative differential calculus. .

In the present paper, we suggest an extension of Woronowicz’s axiomat- 7

ics which naturally involves Lie derivatives and inner derivations in a way
that respects the Hopf algebra structure of the whole scheme. Actually,
in the framework of Woronowicz’s noncommutative dlﬁ'erentla.l ca,lculus
[1, 10] one deals wzth the dlfferentlal complex

A e ST, W

- where A is a Hopf a.lgebra. (of functions on a quantum group), [ is its -

_bicovariant bimodule, I[? = AT is its second wedge power, and so on.
Exterior differential map-d [ [ — [+ s assumed to obey the Leibniz
rule

d(ab) = (da)b+adb ™ . (2)
and the nilpotency condition d o d = 0. Brzezinski [13] has shown that

Tr=AdleMae... — (3)

. also becomes a (graded) Hopf algebla. with respect to (wedge) multiplica-
tion and natural definitions of coproduct and antipode. In what follows,

we want to demonstrate how this Hopf structure can be used to build
an associative noncommutative bhicovariant algebra containing functions,
differential forms, Lie derivatives and inner derivations. Similar algebras
have been introduced and studied by several authors {3, 11, 14, 12] (and
the idea to a use cross-product for constructing bicovariant differential
calculus is due to [7]). Probably, the closest to ours is the approach by
P.Schupp [14]. However, some of our results and, especially, starting points
appear to be different. So, we propose the construction described below as
entirely Hopf-algebra motivated (and, we believe, natural} new approach
to the problem. '

11, Cross-product of dual Hopf algebras

Notions of mutually dual Hopf algebras and their cross-product will
actively be used throughout this paper. Let us recall the corresponding
terminology and basic definitions [15, 16, 17, 18, 7]. Let A be a Hopf
algebra with associative multiplication, coassociative coproduct '

DA AQA, Ale)Zan®ap), Alab)= Ala)A(b) (4)
(we will use the notation

an) @ ap @ ag) = (ARid)o Ala) = (id® A) o A(a), (5}

and so on, for multiple coproducts), a counit

e A—C, elab) =¢la)e(d), elam) e = eneley)=a, (6)
and an invertible antipode
S:A— A, S(ab)=5(b)S{a), A(S(a)) = S(ag)) ®S(am),

6(5(6&)) = E(CL) N S(a(l))a(g) = a(l)S(a(g)) = e(a) . . (7)
Algebra A* is a Hopf dual of A with <-,->: A*® A — C being a duality
map, if

<zy,a>=<zr@u,Ala)>, <z,ab>=<A(z}),a@b>,

<z, l>=¢(z), <l,a>=¢le), <S(z)a>=<z,5(a)>. (8)
Here and below a,be A z,y € A",



One can define left and rigilt coﬁ;;riaﬁt: actlons A*e A and A 4 A* by
L= ag) <T,a)>, adiza(g)gm,d(1)> . (N
As ursu'al, lgft and ;ight actions imply
| | (zy)pa=cv(yea), as(zy)=(aaz)ay, (10)
whereas the covariance (or generalized differential property) means
2o (ab) = (20> @)y b), (ab) ez = (aaza)(Baza), (1)

i.e., the A*-actions respect multiplicative structure of A, or, in other words,
A is a left {right) A*-module algebra. '
One can use (e.g., left) action (9) of A* on A to define on their ténsor
product A ® A* the cross-product algebra A x A* [15, 18, 7). This is an
associative algebra with the cross-multiplication rule given by -

za = (z() > e)z2) = <), 2(2)> 41)Z(2) (12)

(multiplicat.ion inside A and A* does not change). A cross-product is

not a Hopf algebra but exhibits remarkable A*module and A—comodule“

properties |7, 19]. . . _ o .
First, A x A* is covariant under the right A*-action of the following
form:
right A*-action: adz =ap) <z,¢0)>, yaz=y<z,1>=c¢(x) ?1,3)
to be extended on arbitrary products in AxA* by the covariance condition

(pg) az = (paz)(gazm), pqge(Ax A*).- ‘(14). .

Surely, this needs to be consistent with (12). Let us check it:

(ye) a2 = (y azmy)e 92(2)) = e(z))y < T2), 21) > a(2)
ST, apy > Yagz) =<2, 00) >< Yy 43) > ¢e)¥e)
= e(z)) < 21), 8(1) >< Y(1), 43) > A2Y(2)
=< gy, tz) > (eqy 1zl 2 2@) = (< ¥ e > ¢yye) 2z . (15)

It is known [18] that a covariant right action F a H of a Hopf algebra
H on an algebra F implies a covariant left coaction F — H* @ F of the
Hopf dual #* on F. The correspondence is defined by

fah=<h, fO > fO (16)

where a coaction is assumed to be f — f) & O with b € H. fYe 7,
I f® € F. For coactions, *covariant’ still means ‘respecting multiplica-
tion’. This is expressed by 4
(fg) — fMgM @ OO, (17)

In our case. the left A-coaction dual to (13) is
left A-coaction: a-— Ala) = qGag, y—1Qy. {(18)

The very last relation explains why the elements of A* are called left-
invariant in this situation.

Further, 4 x A* Is covariant under a left A*-action and also under its
dual right A-coaction. Explicit form of the A*action is taken to be the
well-known Hopf adjoint, ' '

B.d 7 -
Top=aqpSleg), peAdxAr, (19)
which is evidently covariant:
ad . . ad ad
T v (pg) = rpaS(rm) = 1ypSlee))emeSey) = (2 plag S q).

Moreover, for p = a € A one shows [20, 7] that

acl — -
Tbka= a‘(l)(tb(:l)(g)) = aq) <.’F“),(l(2)> 2?(2).5(;17(3))

= e(@g))aq) <y em>=ap) <z, ag>=ava, (20)

Le.. we recover the left action (9) and can rewrite (19) as
left 4*action: TP =any <x.qp>, wvy=rgySleg). (21)

The corresponding dual right A-coaction is deduced from the general rule
[18] analogous to (16), which relates left action H o F with right coaction
F FeHA™

hog=<h. g > 4O g—=9d%ag¢®, heH, gt e H, g0 e F,



and is explicitly given by [7]
right A-coaction: a -+ Ala) = aqy D agpy, y — (€7 ¥ yGreq,, (23)

where {¢,}.{¢”} are dual bases in A and A". Note that in both (18) and
{23} the coaction on the A-part of AxA” is just a coproduct.

Being the covariant (co)actions, eqs. (13),{18),(21) and (23) charac-
terize Ax A* as a left (right) (co)module algebra. It is in this sense that
the cross-product algebra A x A* may be called bicovariant [7, 19]. Of
course. this bicovariance is merely a reflection of the underlying Hopf al-
gebra structure of A.

I1I. Woronowicz’s differential complex as a Hopf algebra

Let us now recall the basic definitions of the Woronowicz noncommuta-
tive differential calculus [1, 10]. First, a basis {w'} of left-invariant 1-forms
-should be chosen in the bimodule T' in (1). Any element p € T’ can be
uniquely represented as p = aw', ¢; € A. Next, one specifies commuta-
tion relations between functions and differential forms,

e = (fiva)w, (24)

the coalgebra structure of T',
Alw') = 1®wi+wj®r;-, (25)
and a differential map d: A — I': _
da = (xiv @)w'. (26)

Here ¢ is arbitrary element of A, 1" € A, y;and f‘ belong to A*. The
Hopf-algebra consistency (or bxcovarlance) condltlons of the calculus are:

@id)o A=(d@A)o A A(rj)mr,-@rk, (27)
wlab) = (wa)b = A(fj) = fieff, (28)

Awa) = AW)A(e) = (feari=rilacfi),  (29)

d( )=(da)b+adb = A_(X{)-:Xj@fg"'l@xi, (30)

— aaxi= (0 a)r], (81

Aod=(d@1+1@d)oA
supplemented by the formulas '

e(fi) =8, e(i) =8, SUDF=8..56Hri=5, (32

w.hich are obtained from the properties of counit and antipode. Worono-
wicz’s theory asserts that every set of elements {r?, f7, Xi} obeying egs.

(27)-(32) gives us an example of a bicovariant differential calculus on the
Hopf algebra A.

For illustration, let us derive {31) (cf. {21]).
Alda) = Al{xi > a)w*) =< Xir @(z) > (@) @ a(g))(wj ®rj- +1®w)

= agy’ & (xi ag)r; + oy ® (i > agw’, (33)
dagy @ ag + g © dogy = (x> a)e’ @ agey + ay ® (v ag)’
= agy < Xi, G > @' B a) + am) @ (xi b gy’
= aw’ © (a2) 9 X:) + ¢y @ (X > @)’ (34)
Independence of {w'} yields

@) ® (xiv e@)r = apy ® (0@ 1Xs)- (35)

Acting on both sides of this equation by £ ® id, we come to (31).
Consider now the graded Hopf algebra (differential complex) I'" gwen
by (1).(3) jointly with its dual (I*)*: :

R (N LS S ’

! ! $ (36)
A& &

(vertical arrows indicate non-zero duality brackets implied by grading‘).
Analogously to (12}, an associative algebra G = I' x4 (I'*)* can be intro-
duced using the cross-product construction (here (I')* = A* @™ @ ...).
We place G in the center of our approach. It means that we assume the
following guiding principle:

All cross-commutation relations among functions, forms, Lie deriva-
tives, and inner derivations are to be chosen according to the rules (12)
of a cross-product algebra. In other words, given Woronowicz’s calculus
{and, hence, the Hopf algebra I'* ), we then have to use only standard Hopjf-
algebra technique I'* = (I'')* = I'*%(F*)* to construct the whole algebm of
these four types of elements.

The resulting algebra is bicovariant by construction. Its bicovariance
in the sense of Woronowicz’s left and right covariance {1] is implied by



the Hopf-algebra nature of I'* [13], whereas its bicovariance in the sense
of Schupp, Watts and Zumino, expressed by egs. (13),(18),(21) and (23),
proves to be an inherent feature of the cross-product (see Sect. 2), and
stems, at the very end, from the same Hopf structure of I'*.

IV. Explicit form of commutational relations

* It only remains to put all the relevant objects in the corresponding
‘boxes’. We already know that functions and I-forms are situated in A
and I, respectively. Owing to (18), one may consider A* (acting on A
from the left) as an algebra of left-invariant {and A x A* - of general)
~ vector fields on a quantum group A. It is generally accepted 3, 7, 11, 22
that Lie derivatives £, along a (left-invariant) vector field 2 € A* must be
related with its action on arbitrary elements of G:

Ln 5 h S ' (37)

which, due to (20), reduces to ordinary left action (9) ho p for p € I,

It seems also natural to relate inner derivations with elements of I'*
[14]. We propose the following definition [23]. Let v € I'™* be determined
by fixing its duality bracket with a general element of ',

<y, aw’ >=¢(a)di, (38)
and <y, p>=0for p € A, T%,T°,... . Then we can define a basis of inner
derivations {z;} as follows:

o= Y al>d (39)

(the same comment as for eq. (37) applies). Here we make no attempt
to associate some 15 € I with any & € A*, for it looks unnatural in the
context of our approach (see, however, [11, 24] for a discussion of such a
possibility).

The cross-product algebra we are seeking for, i.e., an algebra which
includes four types of differential-geometric objects, a,w’,L; and 1, is
implicitly contained in the above definitions. In order to make it more
transparent, we employ these definitions for obtaining a set of helpful re-
lations. '

To begin with, the dual differential map 4* is introduced by

<d0,p>=<b,dp>, pelt, 8el. (40)

It commutes with elements of A*,

doh=hod", ie, d'(h0)=hd0, he A", (41)

and transforms ¥; to y;:
Xi = dx’Yi . (42)
Both formulas are derived via duality:

<d'hB).p >=< b, dp >=< h © 0. A(dp) >=< h,pyy >< 8, dpgy >

=< h.pp) >< d*B,p{g_} >=<hOd0.Alp) >=< hd"@,p > (43)
(we used < h.dpy >=0), and

< d™vyia >=< v, da >=< Yio (v b a)? >=-g{y; b a)

= E(GU)) < Xinbg) =< y,a > . (44)
Further, to verify that the coproduct of 7 is given by

AN =10y +%8 f] (45)
it suffices to comnpute its bracket with a general element in AT+ T A
< Aly) —1@y-%af  a0bf+af Qe
=< i ab’ +afe > —e(a) < i, 0wk > — <y a0k < fie s
=<y e(five)w™ > —¢(e) < fFes= (e(ffve)—ele) < fFe>=0,

where a,b.c.¢ € A. A comparison of (45) with (25) displays a ‘left ap-
pearance’ of A(+;). Nevertheless, unlike the w' - case {25), wevprefer not to
use the words ‘left invariance’ here, to avoid confusion with the left invari-
ance under A - coaction (18) appropriate to any object in I'**. However,
a similarity of (45) and (25) enables one to show in a way quite analo-
gous to (1] that any element § € ' is uniquely represented in the form
& = h'y;, hie A
Now we are in a position to derive 10 commutation relations among

a € A, w €T, y; € A and v € ™. Three of them are alreagly present
in the original Woronowicz theory. They are: internal multiplication rule
inside the algebra A, €q. (24), and the recipe how to multiply w’. The

latter is unambiguously fixed in the framework of Woronowicz's scheme [1]
: O



but generally cannot be written down in a closed form (see [2, 10, 12}).
Another four,

xit ~ axi = {(x; 0 a)f? (46

)

ya—avi =0, (47)

it —wivi = Gl [5Gl =<t >, (48)

Y + whyi =[] (49)

are immediately obtained by the application of the cross-product rule (12)

to ["*»(I*)*. The remaining commutation relations require the use of the
duality arguments. Let us first derive a formula

yih = (1l o hyy; =< byl > hayy - (50)
We have _ -
< yih.aw* >=< 3w @ h,aq) @ amw" + a(l)wj ® a(z}rf >
=< . apw’ >< h,a@,rf >= st(a(l')) < h(l);am >< h(z),rf >
=<rfoh,a>=< rioh,ag) > E(a(g))éff
=<l h,ap) >< Yiy gy’ >=< (r] & h)y;,aw® > . (51)
Using (41) and (42), we come to analogous formula for x:
xeh = (r] o h)x; =< heyr] > hx; - (52)
This can be also proved by a direct calculation:
< xib,a >=< xi,ap) >< h,ag) >=< h, a9y >=< b, {x;v a)r;? >
=< by X b @ >< byl >=< by, ey >< X5 0) >< eyt >

=< rivh L1y > < Xis tqz) >=< (rl o h)x;,a > . (53}

It is worth mentioning that the same technique leads to a helpful formula

fih=(rt h a5 N =< -h(l)’S_l(rit) > ko fi < h(g),?’f > (54)

which cam be used, in conjunction with (52), to deduce the structure rela-’

tions of bicovariant differential calculus in the form given in [10,-25]:

M fals, (59)

Xi XJ JCJX!Xk Ct] \(k"
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o fif] = oS I} (56)

X f = oG (57)
Chnfl f + fixe = o5 xm o + Cirfo - (58)

Now we can list the remaining three commutational relations. One of
them is (55), and the other two are as follows:

YViXi — TXIT = Cf‘ﬂk, (59)

< ewnw" >=ela)(o" — 8767 (60)

Eq. (59) stems from (50}, whereas (60) is verlﬁed by a straightforward
calculation. -

Thus, we have completed the explicit construction of the eross-product
algebra generated by a,w!, yi and «;. '

V. Cartan identity

Remarkably, this quantum algebra exhibits some features which exactly
correspond to the well-known classical relations. First, the Lie derivatives
commute with exterior differentiation:

Lrod=doLy, heA~. - (61)

Really, prove it fora € A:
hoda = dagy < h,ag) >=dhva). (62)
Then, {rom | o
ho(dby .. dby) = (hqypdby) . = d(hqyoby)..

(h(n)odb -d(hmoba) (63)

.and the Leibniz rule it foll()Wé that

ho (d(adby ... dby)) = dh s (a dby ... dba)), (64)

which is exactly (61).

Furthermore, the Cartan identity in the classwal form can be shown to
be valid: :
Ly, =doy+so0d. (65)

11



One needs to verify that
Xitp=d(vivp)+yiv(dp), peTl”. (66)
For p = ac€ A eq. (66) is almost trivial and follows from
| yira=0, ~yoda=yiva. (67)
Let.p=adb («,b € A). To show that
Xi > (@ db) = d(; > adb) + 4; v (da db) (68)
we calculate each term separately,

Xi > (adb) = aydbp) <1 @ xi+ Xx; @ f], a2 @ bg)>

= a(x; > db) + (x; » a_)(fej > db), , (69)
d{: > (adb)) = da (xi > b) + ad(xi v b), (70)
¥ v (dadb) = —~da (xiv b) + (x; > a)(f » db), Y

and then use (62).

At last, consider the general case p = adbB, B = de, ...de, , where
a,b,...,c,- & A:

xiv(adb BY = adb (x> B)+a(x;0db)(fiv B)+(xsea)(fiodb)(fiv B), (72)

yiv (adbB) = —adb(vio B) +a(x; > b)(fi » B), (73)
d(yiv (adbB)) = —dadb(yiv B) + a(x; + db)(f7 & B)
+adbd(y; v BY+da(x; v b)(ff v B) +a(x;» B)d(fi o B),  (74)
viv (dadbB) = dadb(vi> B) - da(x; » b)(f v B)

+ (xk > @)(ff o db)(f > B). (75)

After sum'ming this up, it remains to prove that

adb(x:v B) = adbd(y; > B), (76)

or

it (de ... dey) = d{v; o (dey .. dcn)) , (77).

12

that is the same problem at a lower level. Thus, the proof is completed by
induction. '

To conclude this section, we compare the duality < I'*, I > used above
(‘vertical® duality in (36) between l-forms and inner derivations) with a
duality << 4", T >> between vector fields € A* and differential 1-forms
€ T. The latter is a natural generalization of ordinary classical duality,
and is assumed as a basis of an alternative construction of bicovariant
differential calculus on the Hopf algebras in [22]. It is easily seen that
the dual differential map d* establishes a direct relation between these two
dualities in the following way:

<< dBp>>=<b,p>, 06el7, pcl. {78)

V1. Comparison with other approaches

Now the above results (mostly, the commutation relations (46)-(49),
(55), (59) and (60)) are to be compared with other approaches known in
the literature [3. 11, 14, 12]. To achieve this, it is convenient to chose
another set of generators for the ["“*.part of our cross-product algebra.
We switch from i, to \i. 3 defined by

| da = w'(x: b a), (79)
<ynwia>=e(a)dl, <Fp>=0, peATT® - . (80)
Introducing also ¢} € A* via
| w = wilghs a) (81)
and proceeding by complete analogy with Sect. 3 and 4 we obtain
Pl =S ), =l K=ol =4 (82)

Aleh) = P50k, AT = 70149107, M%) = TiOL4+0!0%; . (83)
As for commutational relations, in the {a,w}-sector they remain un-
changed, those between a,w and y,~ follow directly from (12),

Xitt — (‘,of ba)y; = Viba, (84)
(o) =0, (55)
13



s = ottt = G, #6)
| 5 4 ol = 8, )

where -
oH =<l >= (o7, O =< Xmri>=Culo™)i,  (88)

and those inside {x.7} look like

W% — SR = Chax, (89)
it — oM = CE iy, (90)
<Fiyj whwta > ea)( 60" + 8747 . (81)

Formulas (89).(90) are obtained with the use of
Xih=(har])%;, Fih=(harl)i, (92)

that can be derived similarly to (50),(52). The resulting cross-commutation
algebra conforms to Schupp’s paper [14].

VII. R-matrix formulation of differential calculus on GL,(N)

To compare our formulas with analogous relations in [3], we consider
a specific realization [9] of Woronowicz’s differential calculus in case of
the quantumn group G'L,{N), and use the matrix representations for all
generators. Here A, A™ will be the dual Hopf algebras [26] described by
the relations

Rhh'T: =T;T Ry, AT)=TeT, £T)=1, (93)
RoLliLE = LELERy,, Rulily = LiLiR., (94)
ALF) =L o L* eIfH)=1, (95)
<T,Lf >=R, <N, l;>=R;}, (96)
<T,S(L})>=Ryy . <Ti,S5(L;)>=Rn (97)

(generators t{ € A and l*{ € A* form matrices T and L%, respectively),
where R is a special numerical matrix related to GL,(N) [26] which obeys
the Yang-Baxter

RizRisRas = RasRuaRis (98)

14

and Hecke N o - .
RS = (RYL 48 (=g—q™) (99)

conditions. Let us also introduce a numerical matrix D by |
Dy = Rpn, RyRD, = RIRD, = 568, - (100)
and fix the differential map d : A — I' via
dT'=T10 ' (101)

in terms of left-invariant Maurer-Cartan forms Q. Then the Woronow.icz
bicovariant differential calculus on G'Ly(N) is produced by the following
choice [9, 10, 12] of the elements r, f, x: '

. ; 1 - i g
= S, S TSEs =3O~ (DTSR, (102)

which serve to define the Hopf and differential structure of the calculus as
follows (note doubling the indices due to the matrix format used):

MO =109+ ® 1t ©(103)

= (fil om0k, o (104)

di™ = (P o )02 = 17O (105)

(the last equation implies < x7, 8 >= 5”5"‘) From (82) and (102) we get

ol = L5717, = [(D Dieh - (D7l (106)

and can now write down all commutational rela.tions in the matrix form.
If, before doing so, we perform one more redefinition,

J=—3D, X=-%D, Y=1-\X, (107)

so that . N
Y = 14507, (108)

we end up with a complete set of commutation relations in terms of ma- -
trices T,§2,Y and J:

15



R12T1T2 =TT\ Ry 3 (109)

T = TR} RS, (110)

R Ry = —R;llﬂgRl_zlﬂl , (111)

NI = ToRn YRz, (112)

1 Ri2Ya Ry = Ry Yo Ry, (113)

. J1Te = ToRy1 J1 Ry, (114)

1 RyaJz Ry + R12J2R21g1 = “)1'\*(1 — Rz Ry, (115)
Y1 RpYa By = R12Y2R21Y1 3 (116)
J1#1Yo Ry = Ry Ya Ry (117)
JiRipJy By = ~ Ry JoRan s (118)

“Several comments are in order. In this specific realization of the Woro-
nowicz calculus, it proves possible to present multiplication relations for
in a closed form (111). The commutation rule (116) for Y is often called
the reflection equation (27, 28, 29), and the related formula for X

- XiRi12 Xo Ry — RszRle = A" X1 R12 Ry — Ri3 R Xy) (119)

~ the quantum Lie algebra [1, 30, 7, 31, 32], because it generalizes classical
commutator in the Lie algebra of left-invariant vector fields. In terms of
T and Y, the left and right A-coactions in (18) and (23) take the form

M deded, YieY, ()
 right: G het, Y oYriesut. )
This shows explicitly that the algebra A* proves to.be left-invariant and
right-coadjoint-covariant.
Algebra (109)-(118) is exactly the GL,(N) bicovariant differential al-
gebra found in [3] and discussed further in [12]. We have shown that it
is produced just by application of the cross-product recipe to the original

Woronowicz differential complex, whose Hopf-algebra properties account
for bicovariance of the algebra. '

We are grateful to G. Arutyunov, T. Brzezinski, C. Burdik, R. Giachetti,
A.lsaev, P. Pyatov, J. Riembelinski and M. Tarlini for discussions.
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