


1 Introduction- , . : S

An important problem in the theory of strong interactions is to daICulate, from the first principles
of QCD, hadronic wave functions ¢, (z), ga‘,(z) . gaN(zl,;rz,zs) etc. These phenomenological
dlstrrbutlons of partons on the fraction zP of a hadron mormentum P naturally appear;as aresult
of applymg “factorization theorems” to hard. excluslve processes [1, 2, 3, 4]. They.: accumulate all
the necessary information about non-perturbative long-distance dynamics of partons in hadrons.
The standard QCD sum rule (SR} calculation of light meson wave functions (WF’s), firstly
introduced by ‘Chernyak and Zhrtmtsky (C&Z) [5] and recently re-estimated by Ball and Braun
(B&B) for p-meson {6}, implicitly assumes that the correlation length A of vacuum fluctuations is
large compared to a typical hadronic’ scale’~ 1/m,,. Thus, one can replace the original nonlocal
objects like M(z?) = (g(0)E(0, z)q(z)) ! by the constant (§(0)g(0))-type values, Based on this
hypothesis, the well-known QCD SR ‘approach [7] has been applied in [5] to calculate the ﬁrst
two moments (¢¥) = f) (p(z)(2z Z1)¥dz with- N = 2 and N = 4 for WF’s'of light mesons. ‘And
just from these moments the whole WF’s ha.ve been reconstructed which are now referred to as
C&Z WE’s. : : R S
But now 1t is knOWn that hadromc WE’s are rather sensitive to the wrdth of the function
M(2?) [8, 9, 10] and the crucial parameter A - m, .~ 1., Therefore, one should: use nonlocal
condensates (NLC’s) like M (22) whose forms reflect the: complicated structure of -the QCD
vacuum. Certainly, these objects can be subsequently expanded over-the local condensates
(q(O)q(O)) (@(0)V24(0)), etc. and one can feturn again to the standard SR by, truncating this
series (here V,, is the cova.rla.nt derlvatlve) Our strategy is to avoid such an expansion because
we lose in this way an important physrcal property | of non-perturbat1ve vacuum — the possrbllxty
of vacuum quarks and gluons to flow through vacuum with non-zero v1rtuahty (k%) 75 0.
Indeed, the average v1rtuallty of vacuum quarks AZ is not small and can be extracted from QCD
SR analysis [8]
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that is AZ is of an order of the typical hadromc scale [11) m? ~ 0.6 GeV2 An estlmate:f : T A ,\2 in

o
the framework of the instanton quuld model [12] yxeld similar number

Careful 1nspectlon of consequences of such an approach to QCD SR for pion WF [8, 9, 13] has
revealed that the introduction of the correlatlon length A~/ into condensate dlstrlbutrons
produces much smaller values for the first moments ‘of pion WF 'than C&Z valies. This leads to
the shape of the pron WF strongly different from the C&Z shape ‘and’ close to the asymptot1c
WF ¢*(z) = 6:(1 z) [4] e, px(z) mp® () Later, thxs WP was confirmed by 1ndependent
con51deratlon of the QCD SR’ dlrectly for px(z) based on the non—dxagonal correlator [14] and on

" the advanced smooth dlstrlbutron functlon for the quark nonlocal condensate The final effect
obtamed by both the ways was due to the main phy51cal reason — vacuum correla.tlon length
~ 1/Agis of an order of 1/m,. ‘ g B

Our goal here is to show that in"the case of QCD SR for the p-meson channel the 51tuatlon
is similar: all the predictions of the standard QCD SR/(C&Z ones for the longrtudmal case [5]
and B&B ones for the transverse case (6] — we call them Local QCD SR) for moments (v Yo
with N > 2 could not be approved We apply the NLC s formalism' to calculate the diagonal

- correlators for p-meson currents,’ 1ntroduced in (5], and construct generallzed SR including O(a,)-
radiative correctrons to obtain WF s of twrst 2. The first ten moments of longitudinal WE’s
of p- and p’ -mesons and of transverse WF s of e and bl-mesons are estimated (Table 2) and
the models for them (see Figs. 2—5) are suggested As a byproduct we predlct the lepton decay
constant I and est1mate the mass of p -meson. The calculatlon techmque 1s the same as in

i~

'Here E(0, z) = Pexp(i f dt,. (t)‘r.) is the Schwmger phase factor reqmred for ga.uge invariance.
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Refs. [8, 9, 15]; therefore, the corresponding details are missed below but we shall keep the
connectlon w1th the plon case through the text. :

2 : Generalrzed sum rules for the p—meson channel Vs the stan-
dard versron '

For the hel1c1ty-zero meson MI/\I Z0'= = Mg, ML = p, the leadlng twist WF is deﬁned as

R d(zmu(oi

—fM,p,. / dzeon ,:(z,),. B

. e oo ,
A=
(e“, 0(p) e p,‘/mML at p, —. oo, where E“(p) is the polarlzatlon vector) lnfornnnon about

L(z) can be obtained from ‘the correlator: I(,,O)(q ) of: vector currents V(,L)(y) see. c.g.-[5]:

/dye“”‘(OlT{ (o)(y)V(n)(O)}lo) (241)"+2 1(,,0), V(n)(y) (y)z (zV)"u( )’ (3l

where z =07 The correspondmg formula for the- umt llEhClty state ML = Ml,\[_l, ML =
p, bl has the form: &+ R : o : :

Moments of these functlons goT'(::) are extracted from the correlat : ( 2) of tensor currents

)(y) [5 6]

/dye’q%ow{Tz:J(y) )(0)}IO> v—z(zq)"“J(,,o), T(n)(y) ()a (=9)"u(y).  (5)

Thls correlator J(,,O}(qz) contains the COIltl‘lbllthIl from states w1th dlﬁ'erent parity (see anal-

ysis in [ ]) Therefore the presence of a contamlnatlon from bl—meson (JPC =1+ ) in'the
phenomenologlcal part of SR is mandatory i -,

... The theoretrcal “condensate” «parts for both the correlators — I(,,O) in (3) and J("U) in (5)
— contaln the same 6 un1versa1 elements as, for the pion case. The1r relative (to pion case)
contr1but1ons A3y (z; M?) to SR for WF's goM(z) are collected in Table 1..The diagram origins
of these elements Adr (z M 2) are descrlbed in detail in [8 9]. The dlrect SR formulation for
WF allows one to construct 1mmed1ately a “daughter SR” for any functronal of par(z) (not
only for moments (EN ))- Let us write down the final SR’s mcludlng WE’s of P meson and next
resonances A and bl in phenomenologlcal parts .' Y B .
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where sé’ T are the eﬁ'ectlve continaum thresholds in the L and T cases respectlvely Perturbatxve
spectral dens1t1es oy (z s) have been presented 1n an orde of O(a,) in [8, 9] for the I case
and in [6] for the T case (see Appendlx B) Radiative corrections amount to 10 % of: p”'"
Contributions A®r(; M*) depend on a specific form of NLC’s M(z%), ..., ete. .
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To_ construct SR for \ s, 1t is useful to parameterlze these NLC behavrours by the “dis-
tribution functlons” (8, 9 14] a’la a-representatlon of propagators eg. fs(v) for the scalar
condensate M(2%)? o

: L estiig e e gl ST o;, : N
M (zz) = (tj(O)q(O))/ €%/ f5(v) dv, where / fs(v)dv =1, / vfs(v)dv = 7‘1;— -(8)
0 . Jo : S TN .

The function fs(r) and:other similar functions fr(v) describe distributions of vacuum ‘fields

“in. virtuality v for every type of NLC. They completely determine the RHS of SR’s in (6) and

(7): The general forms of elements:A®p(z;M?) as functionals of fr(v) will be published in
a separate paper. For the standard (constant) condensates' (G(0)G(0)): and (g(0)¢(0)) these
distributions are of a trivial form, e.g. , fs(v) = é(v) (Appendix A). To involve the condensates
of higher dimensions into consideration ; one should use the contributions to fs(v) proportional
to the derivatives of é-functions — &(v)’, §(v)",... Tt is clear that in the absence of the QCD
vacuum theory merely models of real distributions may: be sugg'ested for these.distribution
functions f(v): However, for the purpose of QCD"SR’s for'moments (€V) we need ‘a rather
rough information about the fr(v) behaviour. Therefore; we: ‘apply here the simplest ansatz
8, 9], like fs(r) = &(v — AZ/2), to take into account only the main effect ~ the non-zero average
virtuality of vacuum fields. One may consider such a form of fs(v) as the result of fesummation
of the subset of the above mentioned contributions ~ & (V){" connected with the smgle scale ,\2
(8, 9].. The corresponding expressions for A®g,s,v,1;(z; M?) are collected in Appendlx A
Now let us take the limits A2 —.0, A®p(z, M2) = Apr(z, M2)and g5 (2, 5) = pF"(2; 5)
for SR in eq.(6) to return to the standard approach (see these reduced.elements in-Appendix).
We.try to inspect the subtle points and the range of validity of C&Z SR. These authors extracted
(€2Y) exactly in the same way as the f, value (and B&B limit themselves to extraction of only
(€%)). - However, the nonperturbative’ terms in their. sum rule (p’-contribution is omitted for
simplicity) have a completely different N-dependence compared to the perturbative one and, a
priori, it is not clear whether a straightforward use of the N = 0 technology can be justified

2In dcnvmg these sum rules.we can always make a Wick rotatlon, i.e., we assume that a.ll coordinates are
Euclidean, 2% < 0. - :



for higher N (for definiteness, we consider here only the p-meson (longitudinal) case; the same
arguments work also in the pion case, see criticism in [9, 10, 13]).

2 —m3 /M2 3M? —an /M7 _
(52" e ygemiim AR "=
3M2 ((Cl,/ﬂ')GG) (4N 7) (\/Cl_,qq> (9)

(N +1)(N + 3) 1207

The scale determining the magnitude of all hadronic parameters including sy (the “continuum
threshold” [7]) is eventually settled by the ratios of condensate contributions to the perturbative
term. If the condensate contributions in the C&Z sum rule (9) had the same N-behavior as
the perturbative term, the N-dependence of (¢¥ ) would be determined by. the overall factor
3/(N+1)(N +3) and the resulting WF ¢(z) would coincide with the “asymptotic” form ¢9(z).
However, the ratios of the (gg)- and (GG)-corrections to the perturbative term in eq. 9)
are growing functions of N. This results‘in reducing the predictable power of the local QCD
SR’s with the growth of N. In order to reveal consequences of this effect more clearly, let us
consider the so-called SR fidelity windows, i.e. regions of the Borel parameter M2 where one
should obtain valid SR. predictions. In accord with the QCD practice [7] these fidelity windows
are determined by two conditions: the lower bound M? - by demanding that relative value
of the (GG)- and (gq)-contributions to OPE series shouldn’t be larger than 30%, the upper
one M? — by demanding that relative contribution of higher states in the phenomenological
part of SR shouldn’t be’ larger than 30%. Suggestmg 1ndependence of the threshold of N
(s s & 1.5 GeV?) we have in the case of N = 0:' M2 = 0.4 GeV2 M2 =1.34 GeV2 But
for N = 2 we have M2 = 0.73 GeV?, M? = 1.34 GeV?, and for N _4—even M? =15 GeV?,
Mi =1.34 GeV?, That is, the ﬁdellty window shrinks to empty set in the last case. C&Z
-suggest that s; ~'1.9 GeV? and s4 = 2.2 GeV2. It is hard to i 1magme such a strange type of a
spectral model, but there are no principal objections.
In our opinion, there is no need to propose such an exotic spectral model (sn = so+const-N),
because :the, reason:for this “exploding” behaviour of Local SR is quite evident, ‘namely, a
‘completely different dependence on N of the perturbative (the first term in the second line of
Eq.(9)) contribution and. of condensate ones. And the origin of this difference is also clear: as
was explained in a series of papers [9, 10, 13] this is due to.Taylor expansion of initial nonlocal
objects like (§(0)E(0, 2z)¢(z)) in powers z" The first constant term-of this expansion, ({g),
produces an (N)P-dependent term in SR (9); the next term, an N-dependent and so on.
.. On:the contrary, the NLC terms A®r(z; M?) in (6) and. (7) lead to the moments (¢V)
. whlch well decay with N-growth; so. phys1cally motivated N mdependent continuum threshold
. sk naturally appears. in the SR processmg ! P .
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"3 The moments and the models of the wave funct1ons

Before analyzmg the results of processing of SR (6) and 7) for the moments (£V)y, let us con-
. sider the peculiarity of the QCD SR-structure, represented in Table 1. Opposite to the 7-meson
case the contribution of.the numerically most significant “four-quark condensate” A®dg (z ‘M?)
-[8] is equal to zero (for the T'.case, see sign at A®r;) or even-has the opposite sign (for the L
case) For this reason the role of a vacuum interaction for the p-meson is weaker than for ‘the
- pion.. As-a consequence of such an SR structure the nonlocal effects partially compensate them-
~.selves:. Therefore, the extracted values of (£2)as in‘the framework of NLC SR don’t drastically
differ from the results of B&B, obtained in the standard. -way 3.~ However, the sensitivity and

*Note here, that results of 7" case in original CZ work shouldn’t ‘be taken as a pattem for standard SR -~ there
is an error in sign of quark condensate contribution, see [18 6].
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stability of NLC SR are much better than for the standard one, compare the accuracy for the
first moments in Table 2 (errors are depicted in brackets following a standard mauner). This
allows us to estimate the first ten moments in both channels for p-, p’- and b;-mesons. We have
determined the following values for practically N-independent continuum thresholds: s§ =~ 2.4
GeV? and sT = 2.3 GeVZ. Fidelity windows for the L case are: 0.6 GeV? < M? < 2.1 GeV? for
all N =0,2,...,10. And for'the T case they are: 0.5 GeV2 < M2'< 2, 0 GeV? for N = 0 and
10GeV2<M2<19GeV for N = 10.

Table 2. *

The moments (£¥)pr(u?) at p? ~'1 GeV?

Type of SR fM(GeVZ) N=2 | N=4 | N=6 | N=8 | N=10

NLC: pb | 0206(3) | 0.218(5) | 0.093(4) |0.049(3) | 0.029(1) | 0.019(1)

B&B: pl | 0.205(10) | 0.26(4) - - - -

C&Z: pb 0194 | 026 0.15 - - -

NLC: pT | 0.176(4) | 0.225(5) | 0.079(4) | 0.031(3) | 0.009(1) | 0.0020(3)

B&B : pT | 0.160(10) | 0.27(4) - - - -

C&Z : pT 0.200 0.15 < 0.06 - - -

NLC: b | 0.160(5) | 0.27(1) | 0.185(5) | 0.140(5) | 0.116(4) |.0.090(5)

B&B : b7 | 0.180-0.170 - - - T -

NLC : p'| 0.145(5) |0.330(16) | 0.215(10) 0.158(7) 0.118(6) | 0.094(5)

The ranges of stablllty within. these ﬁdehty wmdows almost c0111c1de with these wmdows
starting at lugher values of M2. For example, in the L case these ranges start for all N, at
M? ; +0.2 GeVZ, ahd in the T case they start at MZ_T(N) + 0.1 GeV2,

Another evidence of the efficiency of NLC SR is the estimate of the p’-meson mass. First,
the p’-resonance with tabular mass m, = 1465 MeV was inserted in SR (6) to improve the
stabllxty But at the second step m, was estimated from our SR see Fig.1. 1t appears to be
rather close to the exper1mental value [19]:

mj,"“* =1524E54 MeV , - m7’ = 1465£22 MeV. (10)
Possible models of WF’s correspondmg to the moments in T'lble 2 have the form

Lz, 1) = p(z) (1+0.043- c"/”(s) 0.027- C¥*(¢) = 0.055 - Csf’(g)), (11)
;;}""*'(z',,ﬁ) = ¢™(2) (1+0054 C”f(g) 0.20-03/2(5)f0.070-c?/’(5)) (12)

"C&Z give all moments normalized to the normaliza mou point g = a(l() Ml V. luu we ]msc ut these moments
normalized to the normalization point g =1 GeV

@



oy n?) = ¢™(2) (1+0.38-C37(¢) +0.414- CF(9)),
o5 "Nz ) = e™(x) (1-0206-C37%() +0528- CY(g)) (19)

where £ = 12z and p? ~ 1 GeV? corresponds to an average value of M2. To check the reliability
ot em(z)
T

of these models, let us estimate the functional / i‘PM] = dz that oftenappears in the

calculations of different form factors, see e.g. [20]. It is clear that I{p] is a new independent (of
moments (£V)r) quantity. Besides, the values of I[py] allow us to discriminate better different
models for the same @ps. The I[pas) can:be obtained in two different ways: (i) from QCD SR
(6) adapted to I[pr] by integration with weight 1/z; (ii) by direct integration of the WF models
(11, 13). As it is seen from Table 3, the agreement of both kinds of the results for /["] is rather
good for the pr-case (the discrepancy is smaller than 7%) and worse for the p'L-case.

Table 3.

Asymp.WF | SR [here] | WF [here] | WF [B&B] | WF [C&Z]

Ie}) 3 31401 29" 354 438
1{e5) -3 47402 | 538 . -
Hlg7) s | — | 2 | 36 _

These models confirm the property of NLC SR about closeness of WF's of a meson in the “ground
state” to asymptotical WF (due to nonlocality effects), proposed by Radyushkin [13], in respect
of % .a(2) (see Fig.2) and WF @, T wod(z) (see Fig.3). The curve oL ¥ mod(%) oscillates around
the asymptotic WF curve, so one ma.y conclude that they practlcally c01nc1de in an order of the
uncertainty of SR. The function o7 mod(") is close to the B&B model and is not too far from
the asymptotic one as well. One may expect that WE’s of resonances would oscillate by analogy

with the pion resonance 7’ case [14] Indeed, the shapes of WF's ¢ ""Od(a:) and <p (z) for”

resonances look similar to the WF .

4 Conélﬁsidn R c e

Our basic interest in the present paper is to explore the well workmg method of NLC QCD SR in
analysis of WF’s in the p-meson vector and tensor channels. As was noted in the previous papers
[8, 9, 10, 14,.13] just in problems of nonlocal characterxstlcs of hadrons such.as wave functions,
form factors,... one should use.the formallsm of nonlocal condensates Let us summarize the
main results of this paper: - : : :

1. The generalized sum rules for WF’s of the p-meson and related resonances with nonlo-

cal condensates are constructed With using the simplest ansatz [9] for nonlocal quark
“condensates ‘we obtain new estimates for-the first teri moments of the p-meson and its
resonance WF’s. It should be emphasized that analogous evaluation within the standard
QCD SR approach is impossible. L

[N}
o
1

Borel M~2

Fig. 1: Extracted squared mass of the p’-meson (in GeV?): dashed line - so = 2.4 GeV?, solid
line — 50 = 2.5 GeV?, dotted line — so = 2.6 GeV?2. b i R

Borel ¥*2

Fig.2: Longitudinal wave function of the p-meson: solid line —from NL QCD SR, dotted line —
asymptotic WF, dashed line - C&Z WF.
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Fig. 3: Transverse wave function of the p-meson: solid line — from NL QCD SR, dotted line - 1t

asymptotic WF, dashed line - B&B WF.
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fig. 5: Transverse wave function of the bi-meson: solid line . from NL QCD SR, dashed line
asymplotic WU, ‘

Borel M™2 ‘

Fig. 4t Longitudinal wave function of the p’-meson: solid line — from NL QCD SR, dotted line
— asymptotic WF.




2. We suggest the models for (see Figs.2-5) WF’s of p-, p’- and b;-mesons. The form of
the obtained longitudinal p-meson WF is not far from asymptotic WF (this conclusion
noticeably differs from the results of the Local QCD SR {5]), while the tensor p-meson WF
is similar to the naive model of Ball-Braun [6].

3. As a by-product we predict the lepton decay constant fy = 0.145 £ 0.005 GeV? and
estimate the mass of the p’-meson, m, = 1524154 MeV, which is now under experimental
investigation [19).

The wave functions obtained here are crucially important for calculations of semileptonic form
factors in heavy-light decays of mesons in the framework of the light-cone sum rule approach,
see e.g. [20].
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Appendlx ‘
A Expressions for nonlocal contributions to SR. "

For vacuum distribution functions fr(v) we use the set of the\simplest ansatzes: ’
Cfsw) = s(v-a2) s fu) = & (v-a2) C(A)
frlan, e 0n) = 6 (ar - 22/2) 6 (a2 —22/2) 6 (as = A2/2) . (A2)
Their meaning and relation to initial NLC’s have been discussed in detail in [8, 9, 15] The
contributions of NLC’s A®r(z, M?) corresponding to these ansatzes are shown below; the limit
of these expressions to the standard (local) contributions sor(z M?) - 220, Adp(c, M? ) -

Apr(z, M?) are also written for comparison. Here and in what follows A= /\2/(2M2) A =
1-A: ; - .

A®s (2,M?) = :;154 AIZZ {0(z>A0>2)z[c+ (8 -2)In(@)]+ (> 2)+
+4(1 > AY (A >z > A) [A + (A - 222) In(B)]}, (A.3)
Bes (=,07) = f;—is( (2) + (2~ ); |
Ay (oM7) = W (z8'(z - B) + (Z - 2)), : (A.4)
Apy (2,M?) = % (28 (2) + (2 - 2)); (A.5)
Adr, (z,m?) = 348 {[J(z ~2A) - §(z - A)] (— - 2) 61> 24) + 624 > z)-
0(z>A)H(z>3A—-1)%[K—G—}——gj]}+(£—)z), (A.6)

10

A‘PT‘ (I'Alz) = 1[:15 (6/ ) 2? - 1!)) oot .’ - Co A(»'
Ay (2,M°) = Mfz{“——_(z = Do > 24) <0(24 > 2)0(z > A)o(z > 34 - 1)-
1422 —4AY o I
T} +(EF =2, T e (AT)
) 24
Aer, (2, M%) = -2 @8 @)+ (5 2); _.
, s 345z , . . ERN
Ad MF = e 2 >4 P — —
Ty (r, ) AR {0(-A >ir)f(z > A)f(=z > 34 -1) [2 - 5]}
+{F = r) ; ; {A.8)
Ay, (r. .\1') - ”: (8 ( 4 (j- —~ )
. GGY S
AQ)U (J" \[") - \:\1 \I (O (r A) - (- J“ . L . » - t__\g)
Apg (J‘, ﬂ[‘) = \7(:17-; \([_5 (8 (F)~ (& =)
, , (.GGY Fe
Ad, (::,M ) = LG;MT " (A.10)

, for quark and gluon condensate we use the standard estlmates

Here :/15 = (fq
(v’«’;q}(o)qm)) ~ (o-zasLGe”V)\; 056 @—”7(.‘5?)2
( P i &

0.1 GeV?, normalized at p? ~ 1 GeV? [8].

~ 0.001 GeV4 [] and /\' l 4,.(] 4 :t

B Expressions for perturbative spec§réi densities

" o pert . , . ' o
First, p(z,5)7"" in an order of O(a,) was caleulated in[8, 9] but there was missed the trivial

term 21n [ f ] here we have restored it. The correspondmg term for the T 'caseé p(:r 5)’ xrt has
recently been present,ed in [6]."We ha\{e recalculated it and confirmed this answer: '

ey %za | . . | ) | ) | C (Bl)

P e, s) = 2—:_2:cf {1-{—&(—’;;)&: ( ’l‘ [I—sz—] +5— % +1n (z/z)) } ,v-i SN (B.2)

Ptz s) - =, 5—:—2—25 {1+ -é(—lsr)—ci(ﬂn [-’%] +6 ——'7%:: +Yln.2(-.i./z‘)iv+"|An(:2"1‘v)A)'};.('B.ié)v
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Bakynes A.IL., Muxaiinos C.B. ) E2-97-419
BonHosble hyHKIIHH P-ME30Ha M CBSI3aHHBIX C HUM ME30HOB
B nmpaBwnax cymm KXJI ¢ HeoKalbHBIMM KOHAEHCAaTaMH

@opManu3M HENOKATLHBIX KOHIEHCATOB NPUMEHAETC IS NOCTpOeHHs 0600-
weHnsx npasun cymm KXI (¢ yuetom paguanmonusix O(QL)-NOnpasox) s

BOMHOBHIX (ynKkumii TeucTa 2p-, p’- u b -me3onos. [1pu 0GpaGoTke npasui Cymm

BEKTOPHOIO KaHajla oueHeHa Macca p’-me3ona. JIng Bcex YKasaHHbIX Me30HOB
NONydeHbl nepsbie 10 MOMEHTOB BOMHOBLIX (DYHKIHI H IIPEUTOXEHBI COOTBETCTBYIO-
mMe MoRenu aas 9Tux yHkumii. PesynsTarsl cpaBHMBalOTCA C pe3ynbTatamu Uep-
Hsika — 2Kuruuukoro u bans — BpayHa.

PaGota BunonneHa B Jlaboparopuu teoperuueckoil pusnku uM. H.H.Borom:o-
Gosa OHSIH.

IMpenpunt O6BEIHHEHHOTO HHCTHTYTA SIEPHBIX HCccaefoBaHuil. JlybHa, 1997

Bakulev A.P., Mikhailov S.V. E2-97-419
The p-Meson and Related Meson Wave Functions
in QCD Sum Rules with Nonlocal Condensates

We apply the nonlocal condensate formalism and construct generalized QCD
sum rules (including O(a‘r)-radiative corrections) for p-, p’- and b -meson wave

functions of twist 2. As a byproduct we predict the lepton decay constant fp, and

estimate the mass of p’-meson. For all these mesons we obtain the first 10 moments
of wave functions and suggest the models for the last. These results are compared
with those of Chernyak and Zhitnitsky and of Ball and Braun.

The investigation has been performed at the Bogoliubov Laboratory of
Theoretical Physics, JINR.
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