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1. Let us consider a system.of ordinary differential equations
Ty = 'Un(x):;lrts‘n <N, ; (1)

where v,(z) are the components of the vector which determines the flow on the state
space 'V, — T R i
To the system ( ) reduce the Hamiltonian equations of motion with M degrees of

freedom O R T O o
‘ 0H RISTRR ’ o
i = —— = m’H s ) \ -
g B {q_: } | ()
OH ‘ :
Pm = f@;,{pm,H},
1<m<M,

where for the functions A and B on'the phase space the bracket is defined as

ik
{A, B} = A(84r, Bpm = Opm Do) By *Ogm = 5

B0n (3)

and summation is assumed {as usual and as in the following text) under the repeated
indexes. Indeed, for this it is enough to put together ¢’s and p’sin;,., ... ...

T = ($1,$2, :th) (qhq?v ,QM,PlaPh---;pM)

of the point of the N = 2M- d1menswnal pha.se spa.ce The rlght hand 51de of the
system (1) in this case has the form . e

0H

Uy = Cﬂmg, 1 _<_n‘m _<_2M,

where the symplectic matrix € is '

A
‘=\-1.0
I is the M x M—dimensional unit matrix.
2. The system (1) can be extended to Hamiltonian one [1}. Let us consider the

following Lagrangian:

ok

LW (4)

s=/mma+@&n
with the equations of motion o
N En = ’U,.("I)‘="{I,.,H2}2, : - 5
! T g ‘xavm ) B .
Pn = —Pm oz = {PmHZ}h
1<n,m< M,
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where the second-level Hamiltonian, H;, and the corresponding Poisson bracket are

H; = puva(z), (6)
s
{AyB}2 = A(gznapn— 5;;.‘5:")-8

Let us see that the systems (1) and (5) are equivalent [1], i.e. the general solution
of the system (1) defines the general solution of the system (5)." That the general
solution of (5) defines the general solution of (1) is obvious. Let us take the system of
equations for variations

. avﬂ - ‘
Yn = a_z:ym- (7)

If the general solution of the'system (1) is
n = fﬂ(t1 €C1,C2y ey CN), Cnp = fn_l (t1 Ty, T2y 0y :tN)v (S)
then the general solution”of the system (7) will be ’

A

g o
Y= 5 (9)

where, ¢, ¢z, .., N and kl,kg, ky are’ arbxtrary constants
The system conjugated with (7) S

Vibavm PR
has the followmg mtegrals of motxon
O iw
A =pnr—, 1<n <N, 11
i = Pmige SRS R (11)

Indeed, according to the systems (7) and (10), thgt‘qygr_yl_ﬁ't_y‘

h = payn ' (12)

is conserved. Inserting the solution (9) into (12), we obtain
afm afm B »
h= 'm m 3 ny . : .
Pn e Fn = = (p PR ; (13)

‘so, as the constants k,, are arbitrary, the quantities in the bracket are also constants.
Now from the system (11), when the matrix

(A,,,,.):(%)i | - (14)

is invertible, i.e. in the case of the general position, the quantities p, are uniquely
defined via the integrals k., and general solution of the system (1):

3. Let us pose an inverse problem: define the (ndn—linear) S)’étem (1) via (linear
sub-)system (5),(10). The quantities (11) represent N independent integrals of the
(sub-)system (10). Let us prool that these integrals uniquely define the system (1).

Indeed. we have

M, Oh, . ohy .

0 = /,1 - = m Lins
' ol + M P D

1<n<N, - (16)
1 the case of general position, when the mteglals hy, are (functionally) independent,
or in simpler terms, the matrix ‘ P

. B e
dhy, .
(an) = (OT”:) (l‘)

is invertible, i.e. the Jakobian J(h/x) of the vector h with respect to the vecfor x is
nonzZero: . .
J(h/x) =detBB £ 0, (18)

from the system (16) we uniquely define &,:

oh,, Oh, . ) Lo
al ap,, Apy ‘ (19)
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and consequently define the system (1). If we take anolher equivalent system of. inte-
grals, e.g. when h; takes the form i
hy = t(;r;,.rg.,‘...,.l‘,\r) -1, . P (20)

and the remaining 1nteg1als do not depend e\p11c1tly on t, the system (10) reduces to
the systern of equations of Nambu’s me rchauics [2]

dhy Ohs ™ Ohn

(21)

i’n' = Cungng.my 5 4 e
TN Oy, Oy Oy
= {a,, hahs, .. b,
where N-nar bracket [3] is defined as
y e o d 11 042 ().‘lN .
{A17‘4‘2-~~~7<'A1N} =t Enpngenpy - (22)
()1”l 81,,1 "D
= J{A/x)
Let us consider a simple example:
o= 2t (23)



The general solution of the equation (23) is

.t . Y
T = N 24
q~ 1- .T()t,v ® ( )
_ T
To = 1+at

The equations for variations (7) reduce to

gy = 2uy, (25)
the conjugated system (10) reduces to

p = —=2ap, (26)

the general solution (9) reduces to

Oz k . ’
y = w—k=———=(1+at)k, (27

the integrals (11) reduce to
h = h(t,p, )=p(l+ It)za (28)

and equations (16) reduce to

. Oh  Oh. Ok
=h= — =2 r— ) = 2
O0=h=grt bt ppd=2plltat)i—q ) 0. (29)

So the linear equation (26) and the integral (28) define the non-linear equation (23).
4. Let us consider [1, 4] a general first-order system with the Lagrangian

L=M(@dn—Hlg) (30)
and equations of motion
e
Momgm = a0 31
= Ogn 3D
where
0A,, O0A,
am = -=). 32
M, ( (7%- an ( )

When the matrix M is invertible, from (31) we obtain

. L 0H
i o= Mg (33)

{qu},

Y

where the bracket is
{4, B} = A 5% o 5qm B. (34)

In this case it is known [5] that Dirac’s approach [6] to the ﬁrst order system (32)
(with constraints) gives the same results.
Let us see that our system (4-5) belongs to the class of models (30), with invertible
matrix M (32). Indeed, unifying the phase space coordinates
(Ilv ey TNy D1y ooy PN) = (qh ) q2N) = dq,
and comparing expressions (4) and (30), we get
An = Qn4N, An+N=0, 1Sn.<_N7 ) (35)
H = gunva(qrs s gw).

Now we see that our models (4)‘b’elong to the first class systems (30); our”eqvuations
of motion (5) are of the type (33); the (symplectrc) matrix M has the (only nonzero)
elements

Mn,n+N =1=- n+Nn,y 1 S n S N . (36)

and is invertible, M~! = — M.

5. Note that Hamiltonization of the system (1) in the form (5) gwes the basis
(for the variational formalism) of the theory of optimal processes * [7].-Then, in the
supersymmetric models [8] some of the variables r are real, others are grassmann.
When the grassmann parities of the variable z,, and coniugated with them variable p,
are the same, the Hamiltonian (6) is even and the bracket (6) is the even Poisson-Martin
bracket [9]. When the grassmann parities of z,, and p, are different, the Hamiltonian
(6) is odd and the bracket (6) is the Buttin odd bracket- [10].

In this paper, we solve in general form the problem of the correspondence be-
tween the descriptions of Hamiltonian (supersymmetric) models (2) (first level) and
extended:models (4 - 6)(second level). We showed that the (integrals (11) and) lin-
ear (sub)system (5),(10) determine the initial (non-linear) system (1) in the form of
(generalized) Nambu’s equations (19) (21).

~ Note also that the paper [11] gives the description of the hydrodynamlc invariants
by a supersymmetrlc extension of the phase space and odd bracket. In the paper
[12] a correspondence between descriptions by even and odd brackets of a model of
supersymmetric quantum mechanics [13] is shown. The particular case of the equation
(19), when only the integral /iy is time-dependent, has been considered in .[14]. The
latter paper contains also several examples of the illustrations.

It is a pleasure to thank Professor R.M. Muradyan for ref.[3], Doctor L. V. Amirkhanov
for suggesting the example (23) and the members of the seminar © N M for stimulating
discussions. '
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