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1. Let us consider a system. of ordinary differential equati,ons 

(1) 

where Vn ( x) are the compone_nts of the vector 'which determines the flow on the state 
space FN. . . . . , , . . , 

To the systeIIl (1) reduce the Hamilto~ian equ~tions of motion ~ith M degrees of 
freedom : · · · · · · · · " · ' · · · · 

(2) 

Pm ;, •l '·, 

where for the functions A and B on the phase space the bracket,is defined as 
,' ' ' ', , ; ,1; 

(3) 

and summation is assumed ( as usual and as in. the following text) under the repeated 
indexes. Indeed, for this it is enough to put together q's and p's in,,, 

of the point of the N = 2M-dimensional phase space. The right-hand side of the 
system ( 1) in this case has the form 

8H 
Vn = lnm-a' 

Xm 

where the syII1plectic mat~'1x ti is 

I. is the M x M -dimensional unit, matrix. 
2. The system (1) can be extended'to Hamiltonian one [l]. Let us consider the 

following .Lagrangian: 

with the equations of motion 

Xn = Vn(x)={xn,H2h, 

, 8vm { 'H} Pn = -pm-a= Pn, 2 2, 
Xn 

1 :=::; n,m :s; M, 

t)t,1,0::,1:\:;,~ft 1;1,:n.ryr ( 

1 O!\'!lfiH-ti 11n1.,~,;:~isni'.l J, 

tl 6HSilHOTEKA i 
~~ .........--.,_ 

(5) 



where the second-level Hamiltonian, H2 , and the corresponding Poisson bracket are 

H2 = PnVn(x), (6) 

{A,Bh 
+- ➔ f- ➔ 

= A(8xn8Pn - aPnaxn)B. 

Let us see that the systems (1) and (5) are equivalent (l], i.e. the general solution 
of the system (1) defines the ·general solution of the system (5). That the general 
solution of (5) defines the general solution of (1) is obvious. Let us take the system of 
equations for variations 

. 8vn 
Yn = 8xm Ym• 

If the general solution of the' system (1) is 

Xn = fn(t,c1,c2, ... ,cN), Cn = J;;1(t,x1,x2, ... ,xN), 

then the general solution' of the system (7) will be 

, ·afnk 
Yn·= Bern m, 

where, ci, c2 , ••• , CN fmd ·k1·, k2 , ;'.°.iki; are arbitrary constants. 
The system conjugated with (7) 

8vm 
·Pn = -pm 8xn 

has the following integrals cf motion: 

h 
8fm 

n = Pm Ben , 1 ~ n ~ N. 

Indeed, according to the systems (7) and (10), the q~an,tity 

h =PnYn 

is conserved. Inserting the solution (9) into (12), we obtain 

8fm (' 8fm) h = Pm-
8 

kn= Pm-
8 

. .. kn, 
Cn Cn 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

so, as the constants kn are arbitrary, ,the quantities in the bracket are also constants. 
Now from the system (11), when the matrix 

(
8fm) (Arnn)= 8en (14) 

is invertible, i.e. in the case of the general position, the quantities Pn are uniquely 
defined via the integrals hn and general solutiop of t~e system (1): 

Pn = hmA;;,~. (15) 

,2 

l 
'\ 

)l 

\ f 

'I' 

3. LP! us pose an im·erse problem: define the (non-linear) system (1) via (linear 
sub-)system (5 ),(10). The quantities ( 11) represent 1V independent integrals of the 
(sub-)system ( 10). Let us proof .that these integrals uniquely define the system ( 1 ). 
l11d,,,,cL WP have 

. iJh,, iJh,, . oh,, . . . 
0 = h,, =-;:, + -.)-1,,,, + -i) .r,,,. 1 ~ n .S ,\. 

ul ( Pm .l'm 
(16) 

Int he case of general position. ,dwn the integrals h 11 are (functionally) independent. 
or in simpler tenns, the matrix • 

( iJh") ( [],,,,,) = iJ.r,,, 
/ 
( I,) 

is invertible·. i.e. the Jakobia11 J(h/.r) of the VC'Ctor h with respect to tlw vector .r is 
nonzero: 

J(h/:r) = dctlJ cf. 0. 

from the system (16) we uniquely dPfiiw .i,,,: 

_ 1 iJhm ?Jh,, . 
-B,,,,,(--:--)1 + -.~-l'm) 

( 0/Jm 
:l',, -

J(h1, h2, , .. , hm-1, ,l'n, hm+I• .... hn) iJh,, / .· -I iJi•k oh,,, 
--'---------'----'--'-(-. - i1Au. -. - - -.-), 

J(h1, h2, ... , hn) op,,. iJ.r"' iJt 

(18) 

( 19) 

and consequently define the system ( J,). If we t~.ke another equivalent system of intf'
grals, c,.g. when h 1 takes the form 

h1 =l(,r1,,r2,••·••rN)-t, ,· (:20) 

and the remaining integrals do uot depend explici,tly on t, the system (HJ) reduces to 
thJ system of equations of Nambu's mcchauit:s [:2] · ' 

.l'n· 
i)hz i'Jh3 ahN 

E1m2 11~1 ... 1lN~~·••-:---). 
U.l n 2 U.l n 3 ( .l n,v 

(:21) 

{.r,., h2,,h3, ...• hN }, 

where N-nar bracket [3] is defi11cd as 

{A1,Az, ... ,AN} 
8A1 iJ,12 i'JAN 

Cnt n2 •. ,nr,; i);l"1lJ 8.1'112 ••• i).r11,\' 
(:22) 

.I( A/.r ). 

Let. us consider a simple' example: 

.r .rz. (:m 
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The general solution of the equation (2:3) is 

:r 

Xo = 

The equations for variations (7) reduce to 

y 

the conjugated system (10) reduces to 

p 

the general solution (9) reduces to 

, :ro 

1 - :rat' • 
X 

1 + xt 

2xy, 

-2.rp, 

ox k 2 y = -k =---=(I +xt) k, 
oxa (1 - x0 ) 2 

the integrals ( 11) reduce to 

h = h(t,p,x) = p(I + xt)2, 

and equations (16) reduce to 

. Dh Dh. oh. . 
0 = h =-;,- + ,=,JJ+ ,=,x = 2tp(l + xt)(x - x2

) = 0. 
ut up o:r 

(:H) 

(25) 

(2G) 

(27) 

(28) 

(29) 

So the linear equation (26) and the integral (28) define the non-linear equation (23). 
4. Let us consider [l, 4) a general first-order system with the Lagrangian 

L '= An(q)qn - H(q), (:30) 

and equations of motion 

oH 
. ---, Mnmqm - oqn (31) 

where 

Mnm = (oAm _ oAn). 
oqn oqm 

(32) 

When the matrix Mis invertible, from (31) we obtain 

<in M-1 oH 
nmoqm' (33) 

{qn,H}, 

4 

t 
J 

11 
\/ 

where the bracket is 

+- -1 --+ 
{A, B} = A Oqn Mnm Oqm B. (34) 

In this case it is known [5) that Dirac's approach [6) to the first-order system (32) 
(with constraints) gives the same results. ' 

Let us see that our system ( 4-5) belongs to the class of models (30), with invertible 
matrix M (32). Indeed, unifying the phase space coordinates 

(x1, ... ,xN,P1,••·,PN) = (q1,•:•,q2N) = q, 

and comparing expressions ( 4) and (30), we get 

An = qn+N, An+N = 0, 1 $ n $ N, 

H = qn+NVn(q1, . .-,qN), 

(35) 

Now we see that our models ( 4) belong to the first class systems (30); our equations 
of motion (5) are of the type (33); the (symplectic) matrix M has the (only nonzero) 
elements 

Mn,n+N = 1 = -Mn+N,n, 1 $ n $ N (36) 

and is invertible, M- 1 = -M. 
5. Note that Hamiltonization of the system (1) in the form (5) gives the basis 

(for the variational formalism) of the theory of optimal processes [7). Then, in the 
supersymmetric models [8) some of the variables x are real, others are grassmann. 
When the grassmann parities of the variable Xn and coniugated with them variable Pn 
are the same, the Hamiltonian (6) is even and the bracket (6) is the even Poisson-Martin 
bracket [9). When the grassmann parities of Xn and Pn are different, the Hamiltonian 
(6) is odd and the bracket (6) is the Butti,n odd bracket [10). • . . 

In this paper, we solve in general form the problem of the correspondence be
tween the descriptions of Hamiltonian (supersymmetric) models (2) (first level) and 
extended,models (4 - 6)(second level). We showed that the (integrals (11) and) lin
ear (sub)system (5),(10) determine the initial (non-linear) system (1) in the form of 
(generalized) Nambu's equations (19), (21). 

Note also· that the paper [11) gives the description of the hydrodynamic invariants 
by a ~upersymmetric extension of the phase space and odd bracket. In the paper 
[12) a correspondence between descriptions by even and odd brackets of a model of 
supersymmetric quantum mechanics [13) is shown. The particular case of the equation 
(19), when only the integral hN is time-dependent, has been considered in [14). The 
latter paper contains also several examples of the illustrations. 

His a pleasure to thank Professor R.M. Muradyan for ref.[3), Doctor I.V. Amirkhanov 
for suggesting the example (23) and the members of the seminar 0N M rr for stimulating 
discussions. 
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