

СООБЩЕНИЯ OБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Дубна

N.Makhaldiani*, O.Voskresenskaya

ON THE CORRESPONDENCE BETWEEN THE DYNAMICS WITH ODD
AND EVEN BRACKETS
AND GENERALIZED NAMBU'S MECHANICS

[^0]1. Let us consider a system of ordinary differential equations

$$
\begin{equation*}
\dot{x}_{n i}=v_{n}(x), 1 \leq n \leq N, \tag{1}
\end{equation*}
$$

where $v_{n}(x)$ are the components of the vector which determines the flow on the state space F^{N}.

To the system (1) reduce the Hamiltonian equations of motion with M degrees of freedom

$$
\begin{gather*}
\dot{q}_{m}=\frac{\partial H}{\partial p_{m}}=\left\{q_{m}, H\right\}, \tag{2}\\
\dot{p}_{m}=-\frac{\partial H}{\partial q_{m}^{\prime}}=\left\{p_{m}, H\right\}, \\
1 \leq m \leq M,
\end{gather*}
$$

where for the functions A and B on the phase space the bracket is defined as

$$
\begin{equation*}
\{A, B\}=A\left(\stackrel{\leftarrow}{\partial}_{q_{m}} \vec{\partial}_{p_{m}}-\stackrel{\leftarrow}{\partial}_{p_{m}} \vec{\partial}_{q_{m}}\right) B,: \partial_{q_{m}} \equiv \frac{\partial}{\partial q_{m}} \tag{3}
\end{equation*}
$$

and summation is assumed (as usual and as in the following text) under the repeated indexes. Indeed, for this it is enough to put together q 's and p 's in

$$
x=\left(x_{1}, x_{2}, \ldots, x_{2 M}\right)=\left(q_{1}, q_{2}, \ldots, q_{M}, p_{1}, p_{2}, \ldots, p_{M}\right)
$$

of the point of the $N=2 M$-dimensional phase space. The right-hand side of the system (1) in this case has the form

$$
v_{n}=\epsilon_{n m} \frac{\partial H}{\partial x_{m}}, \quad 1 \leq n, m \leq 2 M
$$

where the symplectic matrix ϵ is

$$
\epsilon=\left(\begin{array}{cc}
O & I \\
-I & O
\end{array}\right)
$$

I is the $M \times M$-dimensional unit matrix.
2. The system (1) can be extended to Hamiltonian one [1]. Let us consider the following Lagrangian:

$$
\begin{equation*}
S=\int d t p_{n}\left(\dot{x}_{n}-v_{n}(x)\right) \tag{4}
\end{equation*}
$$

with the equations of motion

$$
\begin{align*}
\dot{x}_{n}= & v_{n}(x)=\left\{x_{n}, H_{2}\right\}_{2} \tag{5}\\
\dot{p}_{n}= & -p_{m} \frac{\partial v_{m}}{\partial x_{n}}=\left\{p_{n}, H_{2}\right\}_{2} \\
& 1 \leq n ; m \leq M
\end{align*}
$$

where the second-level Hamiltonian, H_{2}, and the corresponding Poisson bracket are

$$
\begin{align*}
H_{2} & =p_{n} v_{n}(x) \tag{6}\\
\{A, B\}_{2} & =A\left(\stackrel{\leftarrow}{\partial}_{x_{n}} \vec{\partial}_{p_{n}}-\stackrel{\leftarrow}{\partial}_{p_{n}} \vec{\partial}_{x_{n}}\right) B
\end{align*}
$$

Let us see that the systems (1) and (5) are equivalent [1], i.e. the general solution of the system (1) defines the general solution of the system (5). That the general solution of (5) defines the general solution of (1) is obvious. Let us take the system of equations for variations

$$
\begin{equation*}
\dot{y}_{n}=\frac{\partial v_{n}}{\partial x_{m}} y_{m} . \tag{7}
\end{equation*}
$$

If the general solution of the system (1) is

$$
\begin{equation*}
x_{n}=f_{n}\left(t, c_{1}, c_{2}, \ldots, c_{N}\right), c_{n}=f_{n}^{-1}\left(t, x_{1}, x_{2}, \ldots, x_{N}\right) \tag{8}
\end{equation*}
$$

then the general solution of the system (7) will be

$$
\begin{equation*}
y_{n}=\frac{\partial f_{n}}{\partial c_{m}} k_{m} \tag{9}
\end{equation*}
$$

where, $c_{1}, c_{2}, \ldots, c_{N}$ and $k_{1}, k_{2}, \ldots, k_{N}$ are arbitrary constants.
The system conjugated with (7)

$$
\begin{equation*}
\dot{p}_{n}=-p_{m} \frac{\partial v_{m}}{\partial x_{n}} \tag{10}
\end{equation*}
$$

has the following integrals of motion:

$$
\begin{equation*}
h_{n}=p_{m} \frac{\partial f_{m}}{\partial c_{n}}, 1 \leq n \leq N \tag{11}
\end{equation*}
$$

Indeed, according to the systems (7) and (10), the quantity

$$
\begin{equation*}
h=p_{n} y_{n} \tag{12}
\end{equation*}
$$

is conserved. Inserting the solution (9) into (12), we obtain

$$
\begin{equation*}
h=p_{m} \frac{\partial f_{m}}{\partial c_{n}} k_{n}=\left(p_{m} \frac{\partial f_{m}}{\partial c_{n}}\right) k_{n}, \tag{13}
\end{equation*}
$$

so, as the constants k_{n} are arbitrary, the quantities in the bracket are also constants. Now from the system (11), when the matrix

$$
\begin{equation*}
\left(A_{m n}\right)=\left(\frac{\partial f_{m}}{\partial c_{n}}\right) \tag{14}
\end{equation*}
$$

is invertible, i.e. in the case of the general position, the quantities p_{n} are uniquely defined via the integrals h_{n} and general solution of the system (1):

$$
\begin{equation*}
p_{n}=h_{m} A_{m n}^{-1} \tag{1.5}
\end{equation*}
$$

3. Let us pose an inverse problem: define the (non-linear) system (1) via (linear sub-system (5),(10). The quantities (11) represent N independent integrals of the (sub-)system (10). Let us proof that these integrals uniquely define the system (1). ludeed. we have

$$
\begin{equation*}
0=\dot{h}_{n}=\frac{\partial h_{n}}{\partial t}+\frac{\partial h_{n}}{\partial p_{n n}} \dot{p}_{n}+\frac{\partial h_{n}}{\partial x_{m}} \dot{x}_{m}, 1 \leq n \leq N \tag{16}
\end{equation*}
$$

In the case of gencral position, when the integrals h_{n} are (functionally) independent, or in simpler terms, the matrix

$$
\begin{equation*}
\left(B_{n m}\right)=\left(\frac{\partial h_{n}}{\partial x_{m}}\right) \tag{1i}
\end{equation*}
$$

is invertible, i.e. the Jakobian $J(h / x)$ of the vector h with respect to the vector x is nonzero:

$$
\begin{equation*}
J(h / x)=\operatorname{dct} B \neq 0, \tag{18}
\end{equation*}
$$

from the system (16) we uniquely define \dot{x}_{n} :

$$
\begin{align*}
\dot{x}_{n} & =-B_{n m}^{-1}\left(\frac{\partial h_{m}}{\partial t}+\frac{\partial h_{n}}{\partial h_{n}} \dot{p}_{m}\right) \tag{19}\\
& =\frac{J\left(h_{1}, h_{2}, \ldots, h_{m-1}, h_{n}, h_{m+1}, \ldots . h_{n}\right)}{J\left(h_{1}, h_{2}, \ldots, h_{n}\right)}\left(\frac{\partial h_{n}}{\partial p_{m}} h_{l} A_{l k}^{-1} \frac{\partial c_{k}}{\partial x_{m}}-\frac{\partial h_{m}}{\partial t}\right) ;
\end{align*}
$$

and consequently define the system (1). If we take another equivalent system of integrals, c.g. when h_{1} takes the form

$$
\begin{equation*}
h_{1}=t\left(x_{3}, x_{2}, \ldots, x_{N}\right)-t \tag{20}
\end{equation*}
$$

and the remaining integrals do not depend explicitly on t, the system (19) reduces to the system of equations of Nambu's mechanics [2].

$$
\begin{align*}
\dot{x}_{n_{2}} & =\varepsilon_{m n_{2} n_{3} \ldots n_{N}} \frac{\partial h_{2}}{\partial x_{n_{2}}} \frac{\partial h_{3}}{\partial x_{n_{3}}} \ldots \frac{\partial h_{N}}{\partial x_{n_{N}}} \tag{21}\\
& =\left\{x_{n}, h_{2}, h_{3}, \ldots, h_{N}\right\}
\end{align*}
$$

where N-nat bracket [3] is defined as

$$
\begin{align*}
\left\{A_{1}, A_{2}, \ldots, A_{N}\right\} & =\varepsilon_{n_{1} n_{2} \ldots n_{N}} \frac{\partial A_{1}}{\partial x_{n_{1}}} \frac{\partial A_{2}}{\partial x_{n_{2}}} \cdots \frac{\partial A_{N}}{\partial r_{n_{N}}} \tag{22}\\
& =J(A / x) .
\end{align*}
$$

Let us consider a simple example:

$$
\begin{equation*}
x=x^{2} \tag{23}
\end{equation*}
$$

The general solution of the equation (23) is

$$
\begin{align*}
x & =\frac{x_{0}}{1-x_{0} t} \tag{24}\\
x_{0} & =\frac{x}{1+x t}
\end{align*}
$$

The equations for variations (7) reduce to

$$
\begin{equation*}
\dot{y}=2 x y \tag{25}
\end{equation*}
$$

the conjugated system (10) reduces to

$$
\begin{equation*}
\dot{p}=-2 x p \tag{26}
\end{equation*}
$$

the general solution (9) reduces to

$$
\begin{equation*}
y=\frac{\partial x}{\partial x_{0}} k=\frac{k}{\left(1-x_{0}\right)^{2}}=(1+x t)^{2} k \tag{27}
\end{equation*}
$$

the integrals (11) reduce to

$$
\begin{equation*}
h=h(t, p, x)=p(1+x t)^{2} \tag{28}
\end{equation*}
$$

and equations (16) reduce to

$$
\begin{equation*}
0=\dot{h}=\frac{\partial h}{\partial t}+\frac{\partial h}{\partial p} \dot{p}+\frac{\partial h}{\partial x} \dot{x}=2 t p(1+x t)\left(\dot{x}-x^{2}\right)=0 \tag{29}
\end{equation*}
$$

So the linear equation (26) and the integral (28) define the non-linear equation (23).
4. Let us consider [1, 4] a general first-order system with the Lagrangian

$$
\begin{equation*}
L=A_{n}(q) \dot{q}_{n}-H(q) \tag{30}
\end{equation*}
$$

and equations of motion

$$
\begin{equation*}
M_{n m} \dot{q}_{m}=\frac{\partial H}{\partial q_{n}} \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{n m}=\left(\frac{\partial A_{m}}{\partial q_{n}}-\frac{\partial A_{n}}{\partial q_{m}}\right) \tag{32}
\end{equation*}
$$

When the matrix M is invertible, from (31) we obtain

$$
\begin{align*}
\dot{q}_{n} & =M_{n m}^{-1} \frac{\partial H}{\partial q_{m}} \tag{33}\\
& =\left\{q_{n}, H\right\}
\end{align*}
$$

where the bracket is

$$
\begin{equation*}
\{A, B\}=A \stackrel{\leftarrow}{\partial}_{q_{n}} M_{n m}^{-1} \vec{\partial}_{q_{m}} B \tag{34}
\end{equation*}
$$

In this case it is known [5] that Dirac's approach [6] to the first-order system (32) (with constraints) gives the same results.

Let us see that our system (4-5) belongs to the class of models (30), with invertible matrix M (32). Indeed, unifying the phase space coordinates

$$
\left(x_{1}, \ldots, x_{N}, p_{1}, \ldots, p_{N}\right)=\left(q_{1}, \ldots, q_{2 N}\right)=q
$$

and comparing expressions (4) and (30), we get

$$
\begin{align*}
A_{n} & =q_{n+N}, A_{n+N}=0,1 \leq n \leq N \tag{35}\\
H & =q_{n+N} v_{n}\left(q_{1}, \ldots, q_{N}\right)
\end{align*}
$$

Now we see that our models (4) belong to the first class systems (30); our equations of motion (5) are of the type (33); the (symplectic) matrix M has the (only nonzero) elements

$$
\begin{equation*}
M_{n, n+N}=1=-M_{n+N, n}, 1 \leq n \leq N \tag{36}
\end{equation*}
$$

and is invertible, $M^{-1}=-M$.
5. Note that Hamiltonization of the system (1) in the form (5) gives the basis (for the variational formalism) of the theory of optimal processes [7]. Then, in the supersymmetric models [8] some of the variables x are real, others are grassmann. When the grassmann parities of the variable x_{n} and coniugated with them variable p_{n} are the same, the Hamiltonian (6) is even and the bracket (6) is the even Poisson-Martin bracket [9]. When the grassmann parities of \dot{x}_{n} and p_{n} are different, the Hamiltonian (6) is odd and the bracket (6) is the Buttin odd bracket [10].

In this paper, we solve in general form the problem of the correspondence between the descriptions of Hamiltonian (supersymmetric) models (2) (first level) and extended models ($4-6$)(second level). We showed that the (integrals (11) and) linear (sub)system (5),(10) determine the initial (non-linear) system (1) in the form of (generalized) Nambu's equations (19), (21).

Note also that the paper [11] gives the description of the hydrodynamic invariants by a supersymmetric extension of the phase space and odd bracket. In the paper [12] a correspondence between descriptions by even and odd brackets of a model of supersymmetric quantum mechanics [13] is shown. The particular case of the equation (19), when only the integral h_{N} is time-dependent, has been considered in [14]. The latter paper contains also several examples of the illustrations.

It is a pleasure to thank Professor R.M. Muradyan for ref.[3], Doctor I.V. Amirkhanov for suggesting the example (23) and the members of the seminar $\odot N M \pi$ for stimulating discussions.

References

[1] G.D. Birkhoff, Dynamical Systems, Amer. Math. Soc., Providance, R.I., 1927.
[2] Y. Nambu, Phys. Rev. D7 (1973) 2405.
[3] E.T. Whittaker, A Treatise on the Analytical Dynamics. Cambridge, 1927.
[4] L. Faddeev and R. Jackiw, Phys. Rev. Lett. 60 (1988) 1692.
[5] J. Govaerts, International J. Mod. Phys. A5 (1990) 3625.
[6] P.A.M. Dirac, Lectures on Quantum Mechanics, Yeshiva University Press, New York, 1964.
[7] L.S. Pontriagin et al., Mathematical Theory of Optimal Processes, Nauka, Moscqw, 1983.
[8] F:A. Berezin, Introduction to Superanalysis, Reidel, Dordrecht, 1987.
[9] I.L. Martin, Proc. Roy. Soc. A251 (1959) 536.
[10] C. Buttin, C. R. Acad. Sci. Paris 269 (1969) 87.
[11] D.V. Volkov, A.V. Tur, V.V. Yanovsky, Phys. Lett. A203 (1995) 357.
[12]. V.A. Soroka, In: Problems of Quantum Field Theory, Editors D.V. Shirkov, D.I. Kazakov and A.A. Vladimirov, Dubna, 1996.
[13] E. Witten, Nucl. Phys. B188 (1981) 513.
[14] I. Cohen, International J. Theor. Phys. 12 (1975) 69.

[^0]: *E-mail: mnv@ lcta.jinr.dubna.su

