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OGOoOILUEHHbIH OCIMIIATOP:
HHBapHaHTHas anreGpa U MexXOa3HCHBIE pa3fioXeHUS

PaccMaTpuBaeTcs KBaHTOBOMeXaHHYecKas cHcreMa, ofobluamwias OObIYHEBIH
H30TPONHbIH TAPMOHHYECKHIA ocHH/LIATOP. Briuucnensl Ko3GHIHEHTb pa3iio-
KeHHs MeXIy MOJSPHBIM M JeKapToBbIM Gasucamu mis D=2, a TakxXe Mexnay
JEeKapTOBBIM H LIWIMHAPUYECKHM, LIUTHHAPHYECKMM M cdepuyeckuM OasucaMH
s D =3. [lokaszaHo, 4TO cOOTBETCTBYIOIUHE KO3(HIHEHTH BhIpaXawTcs 4epes
o6061teHHble kKoatpuunenTt Knebma—Iopaana rpynmel SU(2), npomonxeHHble
0 CBOMM HHIEKcaM B oOnacte JeHCTBHUTENBHBIX 3HaYeHHA. C TOYKH 3peHHs
HHBApHAHTHOH KBafpaTHYHOH anreOphl MCCIEAyeTCa CyNepHHTerpupyeMocTh 0606-
IEeHHOro ocuwaTopa wis D =2,

Pa6oTa BrinonHeHa B JlaGoparopuu Teoperudeckoii ¢puznku uM.H.H.Borono6o-
Ba OHSIN.
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On a Generalized Oscillator:
Invariance Algebra and Interbasis Expansions

This article deals with a quantum-mechanical system which generalizes
the ordinary isotropic harmonic oscillator system. We give the coefficients
connecting the polar and Cartesian bases for D =2 and the coefficients connecting
the Cartesian and cylindrical bases as well as the cylindrical and spherical basés
for D=3. These interbasis expansion coefficients are found to be analytic
continuations to real values of their arguments of the Clebsch—Gordan coefficients
for the group SU(2). For D =2, the superintegrable character for the generalized
oscillator system is investigated from the point of view of a quadratic invariance
algebra. : |
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1 Introduction

During the last 30 years, superintegrable dynamical systems have been the object
of considerable interest (see [1-10] and references therein). In particular, numerous
works have been devoted to the search for dynamical invariance algebras (especially
quadratic algebras) of nonrelativistic systems with potentials presenting singular-
ities. Such systems are important in various fields (e.g., Aharonov-Bohm effect,

Dirac or Schwinger monopoles, confining problems, supersymmetry, etc.).

It is the aim of this paper to investigate the system with the potential
V=SV, V.= Q“ 1Pi P=k2_1 (1)

a) 2 a 4

where @ > 0 and k2 > 0 (a = 1,2,---, D). This system was already discussed for
D = 2 by the late Professor Smorodinsky and his collaborators [1] from a classical
and quantum-mechanical point of view. We shall be concerned here mainly with
D =2 and 3 for which the spectrum of the Schrédinger equation

HU = EU, H:_%AH/ | @)

shall be given. Emphasis shall be put on interbasis expansions in terms of analytic
continuation of Clebsch-Gordan coefficients (CGc’s) for the group SU(2). As another
important result, we shall introduce a quadratlc invariance algebra. in the D = 2
case.

2 D-dimensional case

We briefly consider here the D-dimensional case in Cartesian coordinates. We start
with' D = 1 and look for a solution of the one-dimensional equation (2) for' the
potential Vy, see (1), with 1 = z and k; = k. The resolution of this equation, with
the conditions ¥(z) — 0 as'z — 0 and oo, leads to the normalized wave function

. . ) Q%n' S 2 %ik Q +k 2 oo
U, (z;1k) = F(n:l:k-f-l)(VQz) exp( | z)L (Qz%), neN  (3)

where LY is an associated Laguerre polynomial {5]. The normalization is such that
2/ U (3; 1 k) U (75 £E)dz = b | ()
0 :

The discrete energy spectrum is given by

E=Q0n+k+1),
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Only the sign + may be taken in front of & when k>3 For 0 < k < %, both the
signs + and — are admissible. For k = (1)~, due to the connecting formulas [11]
between the (even and odd) Hermite polynomlals H,(z) and the Laguerre polyno-

mials, L( 2)(12) and by putting p = 2n + 1 for the sign 4+ and p = 2n for the sign
—, we immediately have

1) &) o (32 o

We now deal with the D-dimensional case. In this case, the Cartesian wave func-
tion, that vanishes when z, — 0 and oo (¢ = 1,2,---, D), is

Wn(x;k) prn,, z,,,:l:k )

a=1

where n = ny---np with ns € N, x = 24,---,2p and k = +k),---,+kp. The
energy is

D
E=Q |20+ D+ (k)

a=1

where n =n; + ny+---+ np is the principal quantum number.

3 Two-dimensional case
3.1 Cartesian basis
In Cartesian coordinates (z1 = z, T2 = y), the wave funetion is
‘I’nlnz(z’y; iklaikZ) = “pnl (zaikl)q}ﬂz(y;ik2) (5)

Where V.., (with @ = 1,2) are given by (3). Note that we have the new constant of
motion

1 -4 KH-1%
N = 4_6 (D:: - Dyy + 1:2 _— y2‘ 4) (6)
(in addition to the energy), where Dag = —8,4 + Q2af is the Demkov tensor [12].

3.2 Polar basis

In polar coordinates (p,¢), the potential (1) reads

V= 922+L kf_i_i_kg“%
2p% \cos?p  sin’gp

2

_— (wrth n= np + m ﬁxed) i

for which Eq. (2) may be separated by seeking a solution in the form R(p)@( ).
This leads to the system of coupled differential equa.tlons .

, ki-1 k-2 1 2
(dW+A‘ —'—1——“~#) d =0, [—d,, (pd,,)+2E 02 2—A_ R=0 (7)
. . P p

cos?y  sinfyp

wherce A is a polar separation constant.
The solution ®(p) = @m(go, +ki, £ks) of the angular equa.tlon in (7) with the
condltlons

a0 =0)=0 T ®

is casily found to be -

= M(mth + )I(mEk+1)

X (cosgp)%ikf(sinw)%ik’P,&#k"ikl)(cos 2¢) . , (9)

where m € N and PL?) denotes a Jacobi polynomiul. The normalization is such
that : ’

4./2 B, (ip; 2k1, £R2) O (5 £hy y Hh2)dp = i . 7 .‘(10),‘-

Then the separation constant A s quantrzed as -
A=omahtb+1. )

"The radial solutiost R(p) = Ruym(p; £hr, £k2) in (7) is

R(p) = \/ f(n' ; T ) (\/ﬁ ) exe (—%;»2) A7) (19)

: where n, €Nis the radial qua;ntum number The function R sa.trsﬁes the orthogo- .

nallty relation -
. / Rn;m(l’; ki, iﬁk?)_Rn;,m(p;ikla tky)pdp = 5n:,np
The énergy E corresponding to the n 41 wave functions .

npm(Pv‘Paikl,ik2)— (p)q)(cp) o

E= Q(2n:|:k1:|:k2+2), ‘peN. a3



where n is the principal quantum number. Note that only the sign + in front of
ky and k; has to be taken when k; > 1 and k; > 1. In the case 0 < k, <
(with a = 1,2), Eq. (9) shows that for each n we have four levels corresponding
to (£ky,xk;). The degeneracy of the level with the principal quantum number n
is n + 1. This degeneracy is identical to the one of the isotropic oscillator in two
dimensions, for which the degeneracy group is SU(2).

For ki = k; = (3)”, we have A(z’ 3) =2m+2, A(-1,—3) = 2m and A(— ,—3) =
A(-L 3y =2m+ L Then by using the connecting formulas [11] between Jacobi

and Chebychev polynomials, we obtain the four following wave functions [3]

1 -
\I,Qﬂﬁm(p: 90) ﬁRTnJm(p) COS_ 2m‘r°a n=2n (14)

. 1 . .
Vont2zme2(pr ) = ﬁRznn,zmn(P) sin(2m +2)p,  A=2n+2 (15)

1 -
\I’2n+1,2m+1(p,<p) = 7—7—[_-R2n+1,2m+1(p) cos(2m -+ 1)(,0, n = 2n + 1 (16)

' 1 . -
Yonr2mr(p, ) = ﬁR2n+1,2m+l(P) sin2m+1)p, fA=2n+1 (17)

corresponding to the energy £ = (7 + 1). In Eqs. (14)-(17), we have
20(24)! ¢ 0
R,i(p) = 7,%%)!— (\/ sz) exp (—EP ) Lot (926°)

to be compared with the corresponding result for the ordinary circular oscillator.
To close this section, let us mention that :

1 k-1 k21 1 Bl g2 1
M=Z(_aw¢+ 14 ?24):1[[,34_(1;24_?12)(__1}_2__44_7_‘1)’21)] (18)

cos?p  sin’e

is a polar constant of motion, the eigenvalues of which are A (see (11)).

3.3 Connecting Cartesian and polar bases

According to first principles in quantum mechanics, we have

nlnz Z nine iklaikZ)wnpm (19)

where n, + m = n; + ny, = n. In Eq. (19), it is understood that the wave functions
both in the left- and right-hand sides are written in polar coordinates (p,). Fur-
thermore, by using the asymptotic formula for the associated Laguerre polynomials,
Eq. (19) yields an equation that depends only on the variable ¢. Thus, by using the

4

orthonormality pl()p(‘rty of tlx( function ) \\lth reqpect to the quantum nurnber m,’
we obtain .

W (ki k) = (1) B, (Eky, £k) ETY (Lky, £k,) (20)

ninz

where

s

K (ik,,ﬂ:z);2/2(si11¢)7"?+i%2*2( os )T HIEI PeEkER) (cos 90)de  (21)
0]

nyny

and

Br’:ng(iklaikZ): zm:tk]:tk2+1

\/ (n=—m)ml'mxkhkhke+ Dl(n+mEhk 2k +2) (22)

niln M m  ky + D(me ke + 1)l(ny £k +.1)T(ng £ kp + 1)

By making the change of variable = cos 2 and by using the Rodrigues formula {11}
for the Jacobi polynomial, Eqs. (20)-(22) lead to the integral representation

Wr (ki th)

nin2

_j@mtk k4 D —m)il(mthk 2k + Hl(n+mE k£ k4 2)
- milnatm!Il(m £ by + DT0m £ ke + 2)T(n £ by +.1)0(n2 £ ko + 1)

l m

1
. n d mtk k.
x 211,1+ng+'md:k|j:k2+l / (1 - 1) 2(1 + (E) d m (1 - (E) 2(1 + I) l]dz (23)

for the interbasis expansion, coefficients W7 (Lky, £k,).
liquation (23) can be compared with the integral representation [13] for the
CGe’s (abaf|ey) of the gronp SU(2). This yields
W (tky, tke) = (1) 7" (abaf|cy) (24)

711112

with2e =ny+ny 2k, 20 =ny+not ke, 2c=2mt kit ky, 20 =ny—nagt ky
and 28 = ny —ny + k. Since the quantum numbers in (24) are not necessarily
infegers or half of odd integers, the coefficients for the expansion of the Cartesian
basis in terms of the polar basis may be considered as analytical continuation of the
SU(2) CGe's. ‘ ‘ -

The inverse of Eq. (19), viz.,:

‘npm Z W:‘ :tk] 3 :th) 711712‘ ’ ’ (25)
n1 =0
follows from the ortlionormality property of the SU(2) CGe’s. Thus, the relation

W (:tkl, :tkg) = W"‘ (:tk',:tkz)

nym nyng

5



gives the expansion coefficients in (25). The SU(2) CGc’s can be expressed [13] in
terms of the hypergeometric function 3F5(1), so that Eq. (24) can be rewritten as
n!l’(ng + m Zt k2 + 1)

wm (:l’:kh :tk2) — (_l)nz

nyTig

nl!n2!m!F(n2 + k2 + I)F(n +m=+ k] + kz + 2)

Xst(—n——m:Fqu:h—l, ng, ml1>
—ny—ny, —ny—mFky :

By using symmetry properties for 3F5(1), we arrive at the expression

(=1)™n!
I(1 % k)

[(m £ by & by + DI (m by + 1)
x \/(;m thitk+1) nyinglmin,\I'(m £ ky + 1)

(:tkl, ik?) -

m ny

1) - (26)

« F(nlzi:k1+1)F(n2:i:k2+1) F ——m,m:tklztk2+1, — Ny
TntmEh £k +2) ° 1ik2,—n1‘—n2

Alternatively, by using the formula [14] connecting the Hahn polynomial h( > and

the function 3F3(1), we obtain

m'nP'I‘(m =+ kl + k2 +1)

nine

Wi (ky, k) = (—1)m\/(2m th k4 1)

x\/F(nl + by 4+ D) (ng £k + 1), N,

ikl) ' . + 1) -
T(n+mEhk thk+2) ("1"‘ f"_“ff)

in terms of Hahn polynomials.

3.4 Invariance algebra
Let us consider the following realization of the SU(1,1) generz_itors
1 I

(a) _
A =1

2
'Werthus ha.ve two 'copiest(for a ='1,2) of the Lie algebra SU(1,1) given by
L ) = ) = i ) = g

6

‘ k21 a1 ' .
(8,,% 0242 ) J(q') J£)+—2~Qz J(“) —(J; 81,,4—5)

with the Casimir operator
Qo = SIP — [ — LI = 5K = 1). (21)

Introducing the raising and lowering operators J:(:)‘= Jl(a) + iJé“), we get
&I = 258, 9, J(“’] 27 and Q, = [J&P - I - I I

As an irreducible representation of SU(1,1), the positive discrete series consists of
an infinite number of states. Each of these states will be denoted as |j,m,), where
My = Ja + e (na = 0,1,2,--). The eigenvalue of the Casimir operator is

Qa = ja(ja. - 1)

so that from (27) we have j, = (1 & ko). The matrix elements of the generators of
the group SU(1,1) may be obtained through

— SmEi Tt famakl)  (28)

IE\jama) = maljema),  JE|jama)
with J© |Jata) = 0. Let us now define
o Co=dW 4D oy =JW D , (29)

Equation (29) corresponds to the direct sum of the two SU(l,l) algebras for @ = 1,2.
The coupled basis |jm) satisfies

Coljm) = mljm) = (j+n)lim), -Qlim) =3(j — ljm) .
Given the values'j; and jz, the parameter j can take the discrete values

j=h+jp+geg geEN.

Tho«Cle_bsch—Gordan decomposition yields

ljm) = Z (jrijzmima|jm) |fimi) ® |jamz), m=mi+m;

mpmz

with 27, = 1 £ kg, 2m, = 2n, + 1'2 k, and 2j = 2¢ + 2 £ k; +k,. By using the

connection between the SU(1,1) CGe and the 35(1) function {15], one can obtain,

the same hypergeometric function as in (26). '
'Note that the Hamiltonian H of our two-dimensional oscillator system is

H=20C, .

From (28) and (29), we recover the spectrum of the system as glven by (13) w1th

n_n1+n2



Let us consider the two following operators
1
N=JM—J® M=Q +Q,+2J"JP s —g0y® 4 —

They commute with H. Indeed, they are nothing but the integrals of motion (6)
and (18). Moreover, let us define a third operator T via T = [N, M]. We have

2[00~ 1)

T=—1qDe= = yy) z+—m—(y3y+§)——2§1;2—(zaz+§).'

The operators N, M, T and H span a closed quadratic algebra since
— K}

20

hold in addition to [N, M] =T, [N H]=0and [M,H]=0.

“In the hmltmg case ky=ky = 2, we obtain a quadratic algebra too. In this case

1 1
= — = -L2 T=-—(Dzz—D
N 4Q(D” D,), M il 49( ) — 50,
Instead of N, L? and T, we can-consider N, L, and [N,L;]. In this regard, by

putting

or

(M, ) = ~2(MN+N M)+

1 :
H-N, [T, ]:—2’N7+2—Q§H7‘—4M—kf—kk§—1

DL,

: ' S
P]ZN, P2:§Lz,

|
Py = [P, P2 = 50Dy
we end up with the Lie algebra corresponding to the commutation relations
[Pk,Pl]:‘ieklumv ka£7m€ {1a273} .
Finally, goiﬂg back to the generic case for &y and k, we define
- L ,

and ‘ '

. inl)‘Jf) ‘ 3 J(I)J(2)
Viu k) (ne bz +1)

L+:

T V(e k) (ns £ Ry + 0
They act on.the eigenfunctions (5) of the Hamiltonian H as

C ’ 1_1 11\
LO\I]"I"Q = 5(”2_71'1)\111111121 Liqlmnz = \/an+ '2" + 5) (Tlg -+ 5 :t 5) q’n{:{:ln;:{:l .

The operators Lo, Ly and L_ generate the Lie algebra SU(2) with
[Lo,Li] :f:Li, (L+,L-}=2Lo

and are closely connected to our 1ntegrals of motion.

8

4 Three-dimensional case

4.1 Spherical basis

In spherieal coordinates (1.0, ), the potential (1) can be rewritten as

sz_+_1 1 k?_%+k3_% +k§“%.
2r? |sin?0 \cos?p  sin’g cos? @

Looking for a solution of Eq. (2) in the form R(r)O(8)®(y), we are left with the
system

, k-1 k-3
d, A% — i_ 2410 =
<( oo T costp  sin®yp ) 0 (30)
A kg
1 0d (J - =
[xm 5 o(sin 0dg) 4+ J(J + 1) T3 o 0] C] 0 (31)
1 J(J+1
[ﬁdr(rz(l,) + 28 — Q% — —(-—rT—z] R = 0. (32)

The solution () = P, (; £ky, ks) of Eq. (30), satisfying the boundary con-
ditions (8) and the normalization condition (10), is given by (9). The separation
constant A in (30) and (31) is quantized according to (11). o

The solution O(0) = O,,,(0; £k + ky £ k3) of (31) is (see [5])

o) = [20m 4+ g+ 1)L ky £ kg & ks3]gil(g + 2m & by L by & k3 + 2)
T(g ks + D0(q+2m + 2% ky & ky)

X {cos 0)%ik3 (sin0)* I’(,(A’iks)(cos 20)

which satisfies the boundary condition

and the normalization condition

-

x A
2 / @y (05 Lk, Hka, 2ks) O (0; £ ky, ko, £h3) sin 0d0 = 81y -
JO

The spherical separation constant J in (31) and (32) is

S | ‘

The solution R{r) = R, m(r; £ky, £ko, 2k3) of Eq. v(32) is

20en,! J Q el
R(r) = r 2 Y 2 2 2
") \ﬂ(‘lu-+2q+2m:i:k1:|:k2:i:k;;+3) (vars) °""< 2" ) L # (Q7)

9




with o o ) o
/ R, om (T3 k1, £ha, tk3) Ry qm (5 k1, ko, thy)ridr = bt
0 .

where n, € N is the radial quantum number.
The energy of the system is

3
E= Q(Qn, +J+ —) = Q(2n ;tlcl thkt k3+3), neN

where n = n, + ¢ + m is the principal quantum number. 1t corresponds to the

wave functions
\Pnrqm(ry 07 w3 j:kl) iklv ik:’) = R(T)O(O)@((p)

with n fixed.

4.2 Cylindrical basis

In cylindrical coordinates’(p, @, z)," we have

L, 1 (=L BRI\ ] k-l
- Q2 — 1 4 2 1) 4= 9222_*_ 4\
4 9 f +2p2 (cos2<p+sin2<p 2 ’ z?
The.C()rfesponding S‘chrédinger‘ equation may be solved by looking for a solution in

the form R(p)®(p)Z(z). By combining the results of Sections 2 and 3, we get
Z(Z) = \pns(z';ik-?)’ (D(Lp) = (Dm(@;ikl;j;kZ): R(p) 71pm(p7ik1’ik2) .

as given by (3), (9) and (12), respectively. The energy
E = Q0+ k4 b £ by +3)
corresponds to the wave functions : '
W vansy (5 02 23 by, £y, 2h3) = R(p)®(0) 2(2)

for which the principal quantum 'numb'er n=mn, +m+ n3'. i.s ﬁxed.,

4. 3 Connectlng Cartesian,: cyllndrlcal and spherlcal bases -

In the thrce dlmenswnal case, we have |

ni+ng - nptna-

ﬂlnzﬂx - Z n.m.g ikla ik?)q’n,,mngq \I/npmn:; - Z Vn n3 :tkla ikbikil) ‘e gm

q=0: : .

- where n; + ny =m + n, and'n, +¢ = n,, + ns. For the expanswn of the Cartesian
basxs over the spherical basis, we have :

ninzna

Vovrars = 37 it (b, ko, A Won ey

10

whiere ny 4+ ny + n3 = n, + ¢+ m. The coefficient W,’l’l‘m(j:kl,:i:kg) is identical to
the one found in the two-dimensional case. It is given by (24). Similarly, it is easy

to obtain

‘n ng(iklv ikZa iki’) ( )np-q ,b’ Iﬂ 10’7’> ) (34)
where 2a' = ny+n, ks, 2 = na+n,+2m+ 12k ky, 2 = 29+ 2m +
Itk tkythy. 20" =ng—n,thkyand 28’ = 2m +n, —n3+ 1+ ky + k. The
expansion cocflicients in (33) are given by the formula

O™ (thy, thy, 2hy) =

nynpng

(j:kl,j:kg) ! ne(Ehr, £ho, 1k3) (35)

"'1 n2

The value of the right-hand side of (35) follows from (24) and (34).
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