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lntroductio~ 

Let { vCil, i = I, ... , n} be a "barycentric basis" in a Cartan subalgebra ~ C 
sl(n). Viewed as operators in then-dimensional complex space V =IC", v(i) 

can be realized as real traceless diagonal n x n matrices: 

(') . 1 n (') 
( v ' ); = b;j - - * L v ' = 0 . 
. n i=l 

(0.1) 

Let further {p;}f=1 span the dual Lie algebra f. Introduce the traceless 
diagonal matrix 

n 

[Pi , Pj] = 0, L Pi = 0 . (0.2) 
i=l 

We define a Hecke-type qu~ntum dynamical R-matrix R.(p) as a. map from 
~• to End (V 0 V) satisfying the twisted braid relation · 

R12(p)R.23(p -vi)R12(P) = R.23(p- vi)R12(p)R.23(p - v1) (0.3) 

and the Hecke condition 

R(p)2 =JI+ (q- q)R.(p), - -1 q := q . (0.4) 

(Although the notation is taylored to the special case in which the parameter 
q takes values on the unit circle, we shall not use this property in the main 
body of the paper.) The subscripts in (0.3) refer to the, by now standard, 
tensor product notation of Faddeev et al. (see, e.g., [l]); in particular, R.23(p­
vi) E End (V03 ) has matrix elements 

(0.5) 

The twisted braid relation (0.3) is equivalent to the quantum dynamical [2, 
3] (or deformed [4]) Yang-Baxter equation (QDYBE) for the matrix R(p) 
related to the braid operator R.(p) by R.(p) = P R(p) where P stands for the 
permutation operator Px1Y2 = y1x2, x, y EV, P2 = 1. Abusing notation we 
shall also refer to Eq.(0.3) by the above abbreviation. The term "dynamical 
R-matrix" for R.(p) is suggested by the fact that in the physical applications 
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its arguments play the role of ( commuting) dynamical variables and that 
fl(p) satisfies a finite difference rather than a purely algebraic equation. 

The important concept of a quantum matrix algebra A = A(fl(p). R) 
(Sec.5) can be introduced as a ( complex) associative algebra with 1 generated 
by rational functions of qP•, i = 1, ... , n, and the (noncommuting) entries of 
an n x n matrix a= (a~) satisfying the quadratic exchange relations 

fl(p) a1 a2 = a1 a2 fl , (0.6) 

where R = R~:%; in the right hand side is a constant (i.e., p-independent) 
solution of (0.3), (0.4), and all entries in a matrix row ai = {a~}~=l are 
acting equivalently as shift operators for p: 

pai = ai(p+v(il) or Piki = ai(Pik+o}-ot) for Pjk=Pi-Pk• (0.7) 

Remark 1 It has been pointed out [5, 4] that, in the su(2) case, the matrix 
a generates the q-Clebsh-Gordan coefficients while fl(p) plays the role of a 
"quantum 6)-symbol" [6, 7, 8]. 

Remark 2 Eq.(0.6) is related to the one with indices 1 and 2 interchanged, 

R(p) a2 a1 = a2 a1 fl , (0.8) 

by the substitution fl--t pflp, fl(p)--+ Pfl(p) P. Itis, on the other hand, 
formally obtained from 

Ra:2 a1 = a2 a1 fl(p) . 

by the substitution a= a-1
; the same substitution relates (0.8) to 

fl a:1 a:2 = a:1 a:2 fl(p) . 

Since 

R(p\1 = p R(p)P 

(0.9) 

(0.10) 

(0.11) 

satisfies conditions of the same type as fl(p), we can start with either of 
these relations. 

The QDYBE, introduced by Gervais and Neveu [2) for the exchange al-
. gebra associated with the Liou ville equation and applied to the zero mode 
algebra [5] of the Wess-Zumino-Novikov-Witten (WZNW) model [9, 10, 11] 
is attracting ever more attention. Its classical counterpart, introduced in [3] 
(see also [12]} has been displayed in [5] for the sl(2) case and in [13] for an 
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arbitrary si~1ple _Lie algebra. The quantum R(p) is central to a continuing 
study [4] of q-deformed cotangent bundles on· group manifolds and qua~­
tum model spaces. A quasiHopf-algebraic point of view is taken in [14, 15] 
where R(p) is obtained by a Drinfeld twist of the constant R-matrix. Felder 
[16] explores the more general case of ( classical and) QDYBE depending 
on a spectral parameter and finds elliptic solutions of this equation. These 
solutions are applied in [l 7] to quantize Calogero-Moser and Ruijsenaars­
Schneider models. A class of SL(nlm)-type solutions of the QDYBE (and 
related trigonometric solutions of the eqi.iation with spectral parameter) are 
described in [18]. A more mathematically minded approach to the subject 
in terms of "~-algebroids" is being developed in [19]. 

The present work was motivated in part by earlier study [20, 21, 22] of the 
canonical quantization of the WZNW model (following [6, 10, 5, 11, 23]). It 
was noticed, in particular, that the exchange relations [21] for the chiral zero 
modes a~ that diagonalize the Uq(sl(2)) monodromy matrix can be written 
in the form (0.8). As a result, the operator realization of the chiral group 
valued field was understood as a quantization of the ( deformed) classical 
Poisson bracket relations of [13] thus opening the way to its generalization 
for SU(n). Here we show that a special solution of the QDYBE (0.3) yields 
a new matrix representation of the Hecke algebra. We concentrate on a 
general study of the Hecke algebra properties of this solution and the ensuing 
properties of the quantum matrices satisfying (0.6) relegating applications to 
the WZNW model to a subsequent publication [24] which is highlighted in 
Section 6. A central result is the computation of the quantum determinant 
of a and the (based on it) evaluation of the inverse quantum matrix. 

The paper is organized as follows. We review and· extend in Section 1 
results of Gurevich [25] on quantum (anti)symmetrizers and illustrate them 
in Section 2 on the known example of a constant R . We proceed in Section 3 
to a study of a family of S L(n )-type dynamical R-matrices and describe two 
types of symmetry transformations for this family: the twist transformation 
(a version of Drinfeld's twist for dynamical R-matrices) and the canonical 
shifts. In Section 4 we show that these dynamical matrices provide a new real­
ization of the Hecke algebra. This allows to define" dynamical" (p-dependent) 
analogs of quantum antisymmetrizers, including the Levi-Civita £ tensor. In 
Section 5 we study the quantum algebra A, define the quantum determinant 
det (a) and compute the inverse matrix a- 1 . We demonstr~te that A pro­
vides a realization of a reflection equation algebra which is interpreted as 
a quantum monodromy algebra in the WZNW theory. An Appendix is de­
voted to deriving some useful identities for the parameters determining the 
solution of the QDYBE found in [18] and to computing the normalization of 

the dynamical Levi-Civita tensor. 
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1 Hecke algebras and q-antisymmetrizers 

In this Section we collect some basic notions on Hecke algebras and describe 
the q-antisymmetrizers technique which is to be applied later on. We follow 
closely the approach of D. Gurevich (25]. 

In the present context by a Hecke algebra 1lk( q) we understand a ,C.,"­

algebra with generators l,91,92, ... ,9k-l, a nonzero parameter q E <C; and 
defining relations 

where q := q-1 . 

9i 9i+l 9i = 9i+l 9i 9i+I 

g/ = 1 + ( q - q) 9i 

9i9j = 9i 9i 

for 1 < i < k - 2 - - ' 
for 1 $ i $ k - l, 

if Ii - ii 2 2, 

(1.1) 

( 1.2) 

(1.3) 

We shall consider the set of idempotents A(i) E Hk(q), j = 1, ... , k, 
associated with single column Young diagrams containing j nodes - the so 
called q-antisymmetrizers. Their inductive definition is given by 

A(l) = 1, A(j) = [~]A(j-l) (qj-l - (j - l]gj-1) A(j-l). (1.4) 

Here [j] = (qi-qi)/(q-q) and we assume (j] -f. 0, for j = 2, ... ,k. Note, 
that A(k) is a central idempotent in the algebra Hk(q). 

Equivalently, one may write 

A(j) = [~]-A(2,j-l) (qj-1 - [j - l]g1) A(2,j-l)' (1.5) 

where we have adopted the notation A (i,j), 1 $ i S j, for the central idempo­
tent of the subalgebra 1l;,j(q) C 'Hj(q) generated by the subset l,g;, ... ,9j-l· 
In particular, A(I,j) = AU), A(j,j) = l. 

Remark 1.1 All the subalgebras Hi,r+i(q) C 1lk(q), i = l, ... , k-r, are 
isomorphic by definition. Moreover, they are related by inner Hk( q)-aut~ 
morphisms. For example, the automorphism cp;: 1l;,r+;(q)-+ 1l;+1,r+i+1(q) is 
given by 

c/>;(t) = 9i9i+I · · ·9r+i t (9i9i+I • • -9r+i)-l , Vt E Hi,r+i(q). (1.6) 
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The term q-aritisymmetrizer for the elements A(i) isjustified by the.fol-· 
lowing properties: 

(g; + q)A<il = A<i>(g; + q) = 0 
. A(j) A(i,I) = A(i,I) ,4(i) = A(j) 

for 1 $ i S j - 1 , 

for 1 S i ::;· l S j . 
(1.7) 
(1.8) 

Remark 1.2 Replacing q by ( ..:..q-1) in (1.4) leads to another sequence of 
projectors, called symmetrizers. Abstractly, inside the Hecke algebra, it is a 
matter of convention - which projectors one calls symmetrizers, and which -
antisymmetrizers. We use the common convention. However, on the level of 
representations, when one can calculate the ranks of projectors and see which 
sequence of projectors terminates, the distinction between symmetrizers and 
antisymmetrizers becomes meaningful. 

Consider a representation Pw.k : 1lk(q) -+ Aut(W) of the algebra 1lk(q) 
in a vector space w,. 
Definition· 1.1 We shall say that Pw,k is a represJntation of height n in one 
of the following two cases: 

a) n < k and the conditions 

are fulfilled, or 

b) n = k and 

PwAA(n+l)) = 0 , 

rankPw,k(A(n)) = 1 , 

· rankPw,n(A(n)) = 1. 

(1.9) 

(1.10) 

Remark 1.3 The notion of height of a Hecke algebra representation was 
introduced in (25] for the special case ·of the representations generated by 
constant R-matrices. There it was named the rank of the R-matrix. We 
have changed the name here in order to avoid a possible confusion with the 
standard notion of rank of a matrix: Note that the use of the term 'height' 
is suggested by the fact that imposing condition (1.9) for the representation 
Pw,k results in vanishing of any central (and primitive) idempotent related to 
a Young diagram ( standard tableaux) containing. more .then n boxes -in one 
of its columns. 

Remark 1.4 In view of Remark 1.1, the whole sets of q-antisymmetrizers 
{PwAA (i,n+i))}i=l, ... ,k-n and {Pw,k(A (j,n+j-l)) L=1, ... ,k-n+1 satisfy conditions 
(1.9) and (1.10), respectively. 

Remark 1.5 Instead of using (1.9) one can impose the cond_ition 

A(n+l) = 0 (1.ll) 

5 



at the algebraic level. This is the way how generalized Temperley-Lieb­
Martin algebras are defined (cf. [26]). Below we present several useful equiv­
alent forms of this condition. 

Lemma 1.1 The condition ( 1.11) is equivalent to any of the following nla­
tions 

A(n)9n·••929I = (-1r-1q[n]A(n)A(2,n+1)' 

9I92•••9nA(n) = (-l)n-,lq[n]A(2,n+l)A(n), 

9n•••9291A<2,n+I) = (-1r-1q[n]A(n)A(2,n+I)' 

A<2,n+I)9I92··•9n = (..:...1r- 1q[n]A12·n+I)A(n), 

A(n)A(2,n+I)A(n) = [nJ-2A(n), 

A(2,n+I) A(n) A(2,n+I) = fnJ-2 A(2,n+I) . 

( 1.12a) 

(1.12b) 

( 1.12c) 

(1.12d) 

( l.12e) 

( l.12f) 

Proof. Applying repeatedly (1.4) for the q-antisymmetrizers that appear as 
last factors in the resulting products and using (l.7L (1.8) we find 

A(n+I) - _l _A(nl(qn - [n]9 )A(n) 
[n + l] n 

= [n ! l] {qnA(n) -A(n)9n(qn-l - [n -1]9n-i)A(n-l)} 

= [n ! l] { A(n)(qn - qn-l9n) + A(n)9n9n-i(qn-2 - [n - 2]9n-2)A(n-2)} 

_ 1 A(n) ( n n-1 + + ( l)n ) - [ n + 1] q - q 9n · · · - 9n9n-l • • • 91 . (1.13) 

Next, we apply A(2,n+1) to the both sides of Eq.(1.13). Using again (1.7) 
and (1.8) we obtain 

A(n+I) = -[ -1
-

1
A(n) {q[n]A(2,n+l) + (-lt9n9n-l · • .g1A(2,n+l)} • 

n+l 

T k. . h 1 . ( )A(2 n+I) A(n)( ) a mg mto account t e re at1on 9n9n-l ... 91 ' = 9n9n-I ... 91 
which is a consequence of (1.1) we end up with 

A(n+I) = - 1
-{q[n]A(n)A(2,n+I)+(-ltA(n)9n9n-I•··9I} · 

[n+ l] 
(1.14) 

This proves the equivalence of Eqs.(1.11) and (1.12a). A similar argument 
using iteratively a substitution of the first q-antisymmetrizer in the right­
hand side of (1.4) implies the equivalence of (1.11) and (1.12b). Condition 
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(I.I l) is transformed to the forms (l.12r) and (l.12d) in the same manner 
starting from Eq.( 1.5 ). 

To show equivalence of ( 1.11) to ( L 12e) and to ( l.12f) one should employ 
Eqs.( 1.4) and( 1.5 ), respectively. We shall treat the case of ( l.12e) here. 

Consider the difference 

[nJ2.4(n)_-l(2.n+l).4(n) __ 4(n) = .·l(u) ([nj2.4(2.u+I) _ 1) .4(n) 

= .4(u) {[11].-tl2·"'(q"-1 - {11-:- l)g,,).4(2.11) - 1} _4(11) 

= [n .:_ 1].41"1(q" - 9n).41"1 = [n - l)[n + l).4(n+I), 

where we have again used the definition (1.4) and the relations (1.8). Corri­
paring the first and the last lines of the calculation we deduce the equivalence 
of conl:litions (1.11) and (1.12e). ■ 

Eqs.( l.12a-f) display properties of the rank 1 idempotents Pw.1 (A(n)) that 
arf' hidden i11 ( 1. 11 ). In fact, they are the basic technical tools which one 
needs to effectively deal with the height n Hecke algebra representations. 

In the rest of the paper we make use of a special type of representations 
of the algebi-as 1-lk(q) for which the representation space is given by /,-th 
tensor power of an ( 11-dimensional. in the case of S l ( n)) vector space l:: 
lf" = \/Ok. These representations are generated by constant or dynamical 
R-matrices of Hecke type. The representations we are dealing with have the 
specific feature that their height, when defined (i.e., for k ~ n ), coincides 
with the dimension of the space V 1

• Below we first illustrate the genera.I 
notions introduced above on the well known case of constant S'L(n)-type 
R-matrices relegating the study of dynamical R-matrices to Sections 3 and 
4. 

2 Representations generated by a constant 
R-matrix of SL(n) type 

The R-matrix corresponding to the Drinfeld-Jimbo deformation of S l( n) 
[27, 28) is an opera.tor acting in a tensor square of an n-dimensional vector 
space V a.nd given by 

f{tt02 = q,\''1"2 o"''oL>2 + (q- -q) 0 {)<lJ{)L>2 /Jilli 1h /J, ,,2n1 /J, /32 • (2.1) 

1 In general, t.his need not. be t.hc case. Examples wit.h height. p # dim I/ were con• 
st.ruct.ed in [25]. · · 
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(no summation in the right-hand side) where the indices o, f3 take values 
from 1 ton, and 00 p = {l if o > /3 , 0 if o::; /3 }. 

This R-matrix is a particular representative of a family of constant Hecke 
R-matrices, - i.e., it satisfies the braid relation and the Hecke condition 

R12ibR12 = ibR12R23 , 
k2 =JI+ (q- 7i) k. 

(2.2) 

(2.3) 

Eqs.(2.2),(2.:3) imply that the matrices R12 , R23 generate a representation 
of 1i3 (q) in V03 . For an arbitrary k the representation Pn.k : 1ik(q) -+ 
Aut(VOk) generated by a constant Hecke R-matrix is defined by 

Pkk(g;) = R;;+1 · (2.4) 

For representations Pk,k generated by the R-matrix (2.1) we have 

height Pk,k = n if k ~ n. 

The rank 1 q-antisymmetrizers p R k (A< i,n+i-I l) are most conveniently described 
in terms of q-analogu~s of ( co- an'd contravariant) Levi-Ci vita tensors which 
are solutions of the equations 

fl0 i
0

1+1E·Q1··-/31P,+1--•0n = --qcOJ-·-0,0-1+1---0n 
;3,1'3'1+1 

E R,13•13•+ 1 = - -qE a1---/31 /3i+t··•on _o 1_o;+J OJ---Oj0 1+1··•0n, i=l,2, ... ,n-1. 

It is straightforward to prove that these equations have uriique ( up to nor­
malization) solutions. The rank 1 condition (1.10) follows as a corollary. 

In the special case of representations Pk k generated by the R-matrix (2:1) 
the only nonvanishing components of the' €-tensors have pairwise different 
indices _o 1 , 02, ... On , and can be chosen as 

co102··•on = qn(n-1)/2 (-q/(a) , e - ( .. )f(a) 
0102,--0n - -q . (2.5) 

Here £(a) is the length of the permutation a = (;, ::
2
::::::J. 

The rank 1 q-antisymmetrizers are expressed in terms of the €-tensors as 

. (A(i,n+i-1)) __ l_ li: .. n+i-1) . . · _ 1 . k _ + l 
PR,k - [n]! E €(1. .. n+•-II , Z - , ••• , n . (2.6) 

Here (by analogy with the matrix notation) we substitute the vector space 
indices of c:-tensors by their labels: a; -+ i. The "bra" and "ket" notation 
of €-tensor indices is used in order to distinguish labels of matrix spaces 
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from those of vector spaces. One should have in mind the following symbolic 
decomposition for the matrix space label: i = Ii} 0 (ii• For example, the 

equation A; uli) ( = A1\ 1 ulil) = vii) is to be understood as Lf3; A1{ uf3; = v0
i. 

Finally, we shall adapt for Pi'l k those formulas (1.12a-f) which will be used 
in Section 5. Written in terms of the c:-tensors the relations (1.12b), (1.12c), 
(l.12e) and (1.12f) assume the form 

P
. (g g ),,.11. .. n) = R• R• ,,.II. .. n) _ q ,,.12 ... n+l) Nil) 

R,n+l 1 · • · n c. - 12 · · · nn+l'- - '- {n+II , 

P
. (g g ),,.12 ... n+l) = R• R• ,,.12 ... n+l) _ q ,,.II. .. n) Kln+l) 

R,n+I n • · · 1 '- - nn+l · · · 12c. - c. (11 , 

KN=NK=I. 

Here the matrices N and K are defined as 

NII) 
(n+ll -

(-l)n-1 
[n - 1]! €(2 ... n+Ilell. .. n) , 

Kln+i) 
(11 

(-1t-l 
[n -1]! €(1...n1cY···n+I) , 

and for the €-tensors given by Eq.(2.5) we have just 

N=K="JI.. 

3 SL(n)-type dynamical R-matrices 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

We now turn to the dynamical R-matrix defined in the Introduction. In 
order to present the QDYBE in a form suitable for our purposes we shall 
introduce a set of commutative variables 

n 

Xi, i = l, ... ,n, [Xi, Xi]= 0, fl Xi= 1 
i=l 

which play the role of elementary shift operators for p; 

pXi = Xi (p + v<i)). 

(3.la) 

(3.lb) 

The elements Xi and qP• provide a realization of (the Weyl's form of) the 
canonical commutation relations. Note that in concrete applications they 
can be naturally identified with ( a subset of) dynamical variables of a model 

(see, e.g., [5]). 
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Let us arrange the auxiliary .variables Xi into a unimodular diagonal 
matrix, 

X = diag{X 1
, ••• ,Xn}, det(X) = 1 . (3.2) 

The Hecke-type dynamical R-matrix is characterized by the following set 
of relations: 

R12(p)(X1R23(p)X;-1 )R12(P) = (X1R23(p)X;-1 )R12(p)(X1R23(p)X;- 1
), 

(3.3) 

R(p)2 = lI + (q- q)R(p)' (3.4) 

R12(p)X1X2 = X1X2R12(p). (3.5) 

Here the first and second relations are the dynamical Yang-Baxter equation 
and the Hecke condition, respectively. A condition of type (3.5), although not 
always imposed on dynamical R-matrices, is also necessary in our treatment. 
As we shall see below, it ensures that conditions (1.3) for the Hecke algebra 
representations generated by R(p) are satisfied. 

Following [18] we shall consider dynamical R-matrices of the form 

il~~~~(p) = ai1i2(P) oj~o;; + bi1i2(P) o;:o;! , i1,2, J1,2 = 1, ... , n (3.6) 

(there is no summation over repeated upper and lower indices in the right 
hand side); in order to have a unique decomposition in terms of the unit 
and the permutation matrices in the tensor square of spaces we impose the 
condition b;;(p) = 0. This special class of p-dependent Hecke R-matrices will 
be called dynamical R-matrices of an SL(n)-type 2

• 

The unknown functions a;i(P), b;i(P) in'the Ansatz'(3.6) are to be fixed 
by the conditions (3.3-3.5). The Hecke condition (3.4). gives 

b;; = 0 , b;i + bii = q - q , for i I j , 

a;j aii - b;j bii = 1 , for i -:/ j , 

a7; - ( q - q) a;; = 1 . 

(3.7) 

(3.8) 

(3.9) 

The last equation has two solutions: a;; = ± q±1 for each i. Below we 
consider only the case a;;= q, Vi (the other cases correspond, in particular, 
to quantum supergroups and have been considered in (18]). Finally, the 
dynamical Yang-Baxter equation (3.3) and Eq.(3.5) impose the constraints 

a;i(p,, ... ,Pn) = a;i(Pii) , b;i(Pi, ... ,Pn) = b;j{p;i), 
2In (19] these R-matrices were called GL(n)-type R-matrices. We call them SL(n)-type 

R-matrices instead since we impose the additional condition I:?=1 Pi = 0 (see (0.2)) on 
the variables Pi·. 
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b;j bjk b1.; + b;1. bkj bj; = 0 , 

b .. (p .. + l) _ b;i(PiJ) q 
IJ IJ - - b ) , . q + ii(Pii 

(3.10) 

(3.11) 

where Pii := p; - Pi· For a;;= q the general solution of (:3.7) - (3.11) can be 
written as [18] 

lljj(p) = Ojj(Pij)fo(p;j) . b;j(p) = q - ~ij(Pij) , (3.12) 
. 

where fo(p) are expressed as the following ratios: 

, .. ( ) = f(Pii - 1,/Jii) /( /3) = -p + [p]/3 
',I) p f( . , 13 .. ) l p, q • 

PiJ> IJ 

(3.13) 

Here /3ii(Pii) = /3;;(Pii + 1). We shall consider /3ii as constant parameters 
since their functional dependence does not change any of the results below. 
The function f(p, /3) satisfies the finite difference equation 

f(p + 1, /3) + f(p - 1, /3) = [2]f(p, /3) (3.14) 

with the initial conditions 

f(0,/3) = 1 , f(l,/3) = q + /3. (3.15) 

Equations (3.14) can be deduced from (3.11). 
Not all of the remaining in (3.12), (3.13) parameters O:;j(]lij) and Pii are 

independent. The relations between them are given by 

o:;; = 1, o:;;(Pii)o:i;(pj;) = 1 , 

/3;; = 0 , /3ii + /3;; = q - q for i # j , 

/3;;/3jk/3ki + {3;,.(lkj/3ji = 0 . 

(3.16) 

(3.17a) 

(3.17b) 

An easy way to solve Eqs.(3.17a), (3.17b) is to make the substitution 

q-q 
/3;; = 1 - 7T'jj 

¢::> /3;j - q + <i for i I j · - ----=-- ' 7T'jj - /3ij (3.18a) 

We stress that the parameters 71';; are not fixed here and can be chosen as 

arbitrary constants. In terms of the new variables 7T'ij equations (3.17a), 
{3.17b) take the simple form 

11'ij 11'ji = 1 , 7T'jj 11'jk 11'ki = 1 , . (3.18b) 
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d 1 d b n;-1 · -1 r · . H an are so ve y 7r;; = k=i 11"kk+l = 7r;; , 10r i < J. ence, 

( -) nj-1 /3 
/3

. _ _ q - q k-i k 

•1 - nj-1 /3 nj-1 (/3 -) 
k=i k - k=i k - q + q 

for i < j, (3.19) 

where the remaining ( n - l) parameters /3; = /3; i+I are independenL 

We shall describe·two types of transformations on the set of SL(n)-type 
dynamical R-matrices. 

1. a simple version of twisting for dynamical R-matrices: 

• F'• • • • -I 
R(p) 21 ➔ R21 = F R(p) F , 

where F(p) = F12(P)Pi2 and 

F - Fi1i2( ) _ 0i1 0i2 ., •.. ( ) 
12 = i1i2 p - i1 i2 'l-'•1'2 p ' (3.20) 

(an analog of Drinfeld's twist, see [29)). An explanations on how this 
twist works is given in the two Lemmas below. 

Lemma 3.1 Let F(p) be an operator acting _in V 0 V. If 

• -1 -1 • • -1 • 
F 12 X1 F23 = A123 X 3 A123 (3.21) 

for some operator A.(p) acting in V 0 V 0 V and 

R(p)12 A123 = A.123 R(p)23 (3.22) 

then the matrix F.fl21 = FR(p)fr- 1 satisfies (a version of - see the 
proof) the QDYBE (3.3). 

Proof. Substitute F.fl21 in the QDYBE taking into account that the 
QDYBE has two more equivalent forms: 

• -1 • • · -I • • -1 • 
R(p)23 X 3 R(p)i2 X3 R(p)23 = X 3 R(p)12 X3 R(p)23 X 3 R(p)i2 X3 , 

R(p)21 x;-1 R(Ph2X1 R(p)21 = x;-1 R(p)J2X1 R(Ph1 x;- 1 R(pbX1 . 

The first equation results from repeated application of (3.5) to (3.3). 
The second equation is obtained from the first one by simply permuting 
the subscripts 1 and 3. · ■ 

Lemma 3.2 Let F12 be the diagonal matrix (3.20) where 1/Jii 1/Jji = 1 
and 1/Jii = 1. Assume that 1/Jii depends on Pii only. Then, Eqs. (3.21}, 
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(3.22) are satisfied by A = AA3P12 where the matri_x A .is diagonal, 

Aijk i:i i:i i:k th l b . . . b . abc = a;;koaoboc, e e _ements,a;;k emg given y 

a--k = , . r , . { 'lpik"P"k if i .../.. j 
•J ·,[V'ik(Pik + 1))2 if i = j . 

(3.23) 

Proof. The operator A 123 is symmetric in the first two indices, Ai23 = 
A213 which implies that it commutes with any R:.matrix of the form 
(3.6). Th~refoi-e, '(3.22) is satisfied. 

Eq.(3.21) can be checked directly. ■ 

These Lemmas demonstrate that the operator (3.20) indeed generates 
a twist leading to the changes a;; ➔ o;;t/JJ;, /3;; ➔ /3;; of the parameters. 
in (3.12), (3.13). 

2. canonical trans! orm0;tions of the dynamical parameters p; ➔ Pi + C;, 

where c;, i = 1, ... , n are arbitrary constants satisfying the condition 

Li=l Cj =0. 

We conclude the Section by a brief discussion of the structure of the 
family of SL(n)-type dynamical R-matrices (3.6), (3.12), (3.13). There are 
two essentially different domains for the parameters /3; of this family. 

a) /3; # 0 and /3; ¥ q - q, for all i. , _ . ._ . . 
In this case the whole family (!3:6), (3.12),·(3.13) can be generated starting 

from any particular representative with. the use of the, two types of transfor­
mations described above. 

Indeed, the parameters o;j can be excluded with the help of a twist. 
Then, performing a canonical transformation of the form 

j-1 ...: 
q2p;, ➔ q2p;, 7r;; = q2p;, II /3k - q + q for i < j , 

k=i /Jk 

for instance, one excludes the parameters /J;i from the Ansatz (3.6), (3.12), 
(3.13) and passes to a dynamical R-matrix with 

[p .. - l] ., 
fo(p) = [p;;] (3.24) 

(cf. (3.13) - (3.17b)). This R-matrix is the limiting case /3; ➔ oo o_f our 
family, and it is this type of dynamical R-matrix which is discussed in [5]. 
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b) Either all /3; = q - q, or all /3; = 0. 
We shall consider the first case /3; = q - 7j for which 

{ 
q - 7j for i < j 

/3;; = 0 for i ~ j (3.25) 

and put a;;(p;;) = const;;. In this case the R-matrix (3.6), (3.12), (3.13) 
becomes independent on the dynamical variables p; and is reduced to the 
constant R-matrix describing the multi parametric [30j deformations of G L( n) 
which are all twist-equivalent. 

With the particular choice 

a;;-{! for i < j 
for i = j 
for i > j 

one reproduces the standard SL(n)-type R-matrix (2.1). 

(3.26) 

Remark 3.1 In the intermediate cases (where only a part of the parame­
ters /3; are equal to O or q - q) the corresponding dynamical R-matrix R(p) 
contains the ( dynamical and constant) R-matrices described in a) and b) as 
submatrices. 

4 Representations generated by SL(n)-type 
dynamical R-matrices 

Now we are in a position to introduce the Hecke algebra representations 
associated with Hecke-type dynamical R-matrices. 

Proposition 4.1 Let R(p) be a dynamical R-matrix of the Hecke type. The 
matrices 

Pil(p),k(g;) = (X1X2 · · · X;-1)k,i+1(P)(X1X2 ... _X;-1f1 , i = 1,. •., k-1, 
_ (4.la) 

generate a Hecke algebra representation, Pil(v),k: 1-l.k(q) ➔ Aut(V®k). 

Proof. Obviously, equation (3.3) imply that the matrices Pil(v),k(g;) and 
Pil(v),k(9i+i) satisfy the braid relations (I.I). Then, the conditions (3.5) en­
sure that the matrices ( 4,la) satisfy (1.3) and, therefore, ( 4.la) represent the 
generators of the braid algebra Bk. Finally, the Hecke _conditions (1.2) for 
the generators ( 4.la) follow from the Hecke property (3.4) of the dynamical 
R-matrix (1.2). ■ 
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· Remark 4.1 In contrast with the case ofconstant Hecke R-rnatrix (2.4) the 
representations generated by a dynamical Hecke R-matrix are nonlocal; ln 
other words, the matrices PR(p),k(g;) act nontrivially as diagonal matrices on 
vj with j < i (and not merely on V;@ ½+1)- Only the representation of the 
first generator with i = I has the usual 'locality' property. 

Remark 4.2 One can construct representations equivalent to Pn(v),k in which 
some other generator is 'localized' instead g1 • For instance, the representa-

tion Pn(vl,k which localizes Pil(v),k(9k-il is given by 

Piliv,.k(tl = (X1X2 ... xd-1Pi1iv,.k(t)(X1X2 ... Xd , Vt E 11.k(q) (4.Ib) 

so that 
Pil<v>,k(g;) = (Xi+2••·xk)-1R;,;+1(p)(X;+2•••xk). (4.Ic) 

Note that in addition to t~e nonlocal property the representation matrices 

· of Pil(p},k depend explicitly on k. · 
From now on we shall restrict ourselves to discussing those representations 

Pil(p),k which are generated by the SL(n)-type dynamical R-matrices (3.6), 
(3.12), (3.13).- For k ~ n all these representations are of heightn. _The 
rank I q-antisymmetrizers are conveniently expressed in terms of dynamical 
£-tensors £11...n)(p) and £(1 ... n1(P), which are the unique (up to normalization) 

solutions of the equations 

PR(p),k(gi} £11. .. n)(p) = -q £11...n)(p) , 

£(1. .. n1(P)PR(p},k(g;) = -q£(1. .. n1(P), 
l~i~n-1. (4.2) 

The only nonvanishing components of these £-tensors have pairwise different 

indices i 1, i 2 , ••• , in and look like 

£i1i2 ... in(p) 

£; 1; 2 ••• in(P) 

{-1 t(<T} II Oji(Pji} II (iaib(Piaib) , 
(j,i)EJ(<1) 1$a<b$n 

(-1 )£(<1) II a;;(Pii) • 
(j,i)EJ(<1} 

Here ((a) is the length of the permutation a = (\/,:/::;;~ ) , and 

J(a) = {(ia,ib): a< b,ia >h}; 

(4.3) 

( 4.4) 

The dynamical £-tensors ( 4.3), ( 4.4) a.re normalized so that they would co­
incide with the constant e-tensors (2.5) in the case (3.25), (3.26). 
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Now the expressions for rank 1 q-antisymmetrizers in the representations 
PR(p),k are given by 

P
• (A(i,n+i-t)) _ 

R(p),k -

[;]! (X1 • • • X;_t)£li ... n+i-l)(p)£(i ... n+i-tl(p){X1 • • • X;_i)-l • ( 4.5) 

The numerical coefficient in this formula is calculated with the use of the 
relation 

E (p)£l1. .. nJ(p) = [n] 1 
(J. .. nl . ' (4.6) 

. : 

which is proved in the Appendix. 
We conclude the discussion on dynamical R-matrices by writing down for­

mulas (1.12a), (1.12d), and (1.12e), (l.12f) for the representation PR(p),n+I : 

£(1 ... nj(P)PR(p),n+l(gngn-l ... gi) = qKln+ll11(p)X1£(2 ... n+Jl(p)X,1 , (4.7) 

X1£(2 ... n+11(p)X,
1 PR(p),n+I (g1g2 · • • 9n) = q N

11
ln+11(P) £(1...nl(P) , ( 4.8) 

K(p) N(p) = N(p) K(p) = JI . (4.9) 

Here the matrices N(p), K(p) are defined as 

N
11

ln+1l(p) = 

Fin+!) (p) 
• 1\ (II 

<-1r-1 
[n - l]! X1£(2 ... n+Jl(p).X/1£JJ...n)(p) , 

<-1r-1 
[n - l]! £(1 ... n1(p)X1£l2•·•n+l\p)X,1 . 

(4.10) 

(4.11) 

For the SL(n)-type dynamical R-matrices the matrices N(p), K(p) are diag­
onal. Inserting formulas (4.3), (4.4) for the dynamical €-tensors into (4.10), 
( 4.11) and using ( 4.6), one ends up with the following expressions for their 
diagonal components: 

Nf (p) = (I<j(p))-I = II O:;j (p;j - Oji) fo(p;j) , 
#i 

where Oji= {l if j > i , 0 if j < i }. 

( 4.12) 

5 Quantum matrix algebra A(R(p), R): quan­
tum determinant and inversion formula 

We shall apply the above technique to the quantum matrix algebra A which 
is defined as follows ( cf. Introduction). 
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Definition 5.1 Let lF be the field of the complex meromorphic functions 
of the (commuting) variables Pi ,j = I, ... , n. Let R(p) be a dynamical R­
matrix of an SL(n)-type and R be a constant SL(m)-type R-matrix. Assume 
that both R(p) and R satisfy the Hecke condition {0.4) with the same value 
of q. Then A= A(R(p), R) is a complex algebra with I that is generated by 
lF and the mn elements a~ (i = l, ... ,n and a = l, ... ,m), satisfying the 
relations 

R(p )12 a1 a2 = ar a2 R12 , 

af(p) = Xf(p)X- 1 a, \/f(p) E lF, 

(5.1) 

(5.2) 

where X is a unimodular diagonal matrix (3.2) whose diagonal elements Xi 
satisfy (3.la), (3.Jb). 

Remark 5.1 The definition above is given for arbitrary m and n. However 
in the sequel we shall discuss the case m = n only. 

Remark 5.2 For the applications envisaged here, the field lF of meromorphic 
functions of Pi can be replaced by its subfield of rational functions of qPi (as 
stated in the Introduction). Then we should just require 

Xkqp;;(Xk)-1 = qP;;H;k-•;k 

instead of (3.lb). Note that for q a root of unity, q2h = 1 (cf. Eq.(6.8) below) 
Pii are only determined up to an additive integer multiple of 2h. 

Remark 5.3 More general matrix algebras are of interest in which the R­
matrices on both sides of the quadratic relations (5.1) are allowed to depend 
on possibly different sets of commuting variables p and p' 

R(p)i2 Q1Q2 = Q1Q2R'(p')i2 , 

while the shift properties assume the form 

(5.3) 

Pk1 Q~ = Q1 (Pk1 + oi - ot) , P\1 Q~ = QHP\1 + Ojk - 0J1). (5.4) 

Such A(R(p), R'(p')) can be treated in much the same way or reduced to the 
study of two matrix algebras of the above type setting Q~ = a~aJ , where <i 
and a satisfy exchange relations of the type (0.6) and (0.10), respectively (see 
(24]). Note that dynamical quantum groups (introduced in (16]) are defined 
by relations similar to (5.3) and (5.4) but with the dynamical R- matrices 
( and momenta p, p') related to each other by some equivalence transformation 
R'(p') = x-1 R(p)X. Another desirable modification of the matrix algebra 
(5.1) corresponds to the case when R is an SOq or Spq constant R-matrix. 
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In this case fl and R(p) satisfy a third order (Birman-Wenzl) condition 
instead of the Hecke property (1.2) and the QDYBE (3.3) have to be modified 
correspondingly. 

R~mark 5.4 The aigebra A differs from the ~ne con.sidei-ed in (33] whe~e 
the counterpart of a matrix b ·= x-ia (denoted by u~(w) in Eq.(11) of 
(33]) which commutes with p is used for ·changing the basis of chiral v~rtex 
operators. It is assumed in (33] that the elements of b only depend on p and 
hence commute among themselves while in our case this is not so. Indeed, 
the reflection equation subalgebi-a M(R), defined in Proposition 5.5 below, is 
non-commutative although its elements commute with the p's. The difference 
is essential: as a result, Cremmer and Gervais do not recover the standard 
(constant).SLg{n) R-matrix for n > 2 but introduce instead new solutions 
of the Yang-Baxter equation. One of the authors (I.T.) would like to thank 
J.-L. Gervais and E. Cremmer for an enlightening discussion on this point. 

The term "matrix algebra" 3 for the algebra A= A(R(p), R) is justified 
by the fact that we shall be able to (define and) compute the determinant 
of a - as a function of p - and to find the inverse of a . In the case of 
2 x 2 matrices the determinant of a was constructed in (4]' (see also (32]) 
for the special choice /3; ➔ oo, a;i = 1 of the parameters. We shall present 
the definition of the determinant in a general setting. 

Definition 5.2 Let a = lla~II be the matrix of generators of the algebra 
A(R(p); R). The determinant of the matrix a is given by 

1 -
d t( ) _ C' ( ) 11. .. n) e a - (n]! C-(1. .. nl p a1 a2 ... an c . (5.5) 

The meaning of this definition is made clear by the following three Propo­
sitions. The first and the third of them are the quantum analogues of the 
basic determinant properties. The second one allows to perform an SL( n )-
reduction in the algebra A(R(p), R). · 

Proposition 5.1 The product ( a 1 a 2 ••• an) intertwines between constant and 
dynamical c:-tensors: 

£(1. .. n1 (p )a1 a2 ... an 

a1 a2 ... an c:ll...n) 

det( a) C:(1 ... nl , 

£11...n)(p) det(a). 

(5.6) 

(5.7) 

Proof. First, observe that due to the relations (5.1), (5.2) the product of 
k matrices (a1 a2 ... ak) intertwines between the representations Pil,k and 

3 More conventional quantum matrix algebras have been introduced in [l, 30] and their 
matrix nature were further investigated in [25, 31]. 
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PR(p),k of the algebra 11.k(q). Indeed, 

= 
= 

(a1 • •. ak )PR,k(g;) = (a1 • •. ak )R.i(i+l) 

a1 • •• a;-1 (/l;(i+l)(p)a;a;+1 )a;+2 .. . ak (5.8) 

(X1 ••• X;_i)R.i(i+l)(p)(X1 •.• X;_i)-1(a1 .. . ak) = Pil(p).k(g;)(a1 .. . ak). 

In particular, one has 

(a, ... a,. )Pn.n(A1" 1) = Pn(pJ,n(.4.lnl)(a1 ... an) . 

Multiplying both sides by Pn,n(Alnl) from the right or by Pn,n(Al 11l) from the 
left and using projector property of the q-antisymmetrizer one comes to the 
equations 

PR(p),n(A(nl)(a1 • .. an) 

{a1 ... an )PR,n(A(n)) 

PR(p),n(A(nl)(a1 ••.an )Pfl,,.(A(n)) , (5.9) 

= Pil(p),n(A(n))(a1 . ·. an )Pn,n(A(nl) . (5.10) 

Finally, expressing (2.6), (4.5) for constant and dynamical q-antisymmetri­
zers in terms of the .s-tensors, one transforms (5.9), (5.10) to the forni (5.6), 
(5.7). ■ 

Proposition 5.2 The element det(a) of the algebra A(R(p), R) commutes 
with the generators Pi and its commutation with the generators a'., is described 

by 
det(a)a = K(p)adet(a), {5.11) 

where the diagonal mafri;r K(p) is given in (4:11), (,1.12). 

Proof. Consider the permutation of det(a) with an arbitrary function h(p): 

det(a)h(p) = C(1. .. nj(p)a1 ... an h(p)Elt. .. n) /[n]! 

= C(t. .. nj(p)(Xn ... Xi )h(p )(Xn ... X1 )-1a1 , .. an cjl...n) /[n]! ( 5.12) 

Since the only nonvanishing components of the tensor £(1. .. nl (p) are those with 
pairwise different indices and due to the diagonal structure of the matrix X 
one has 

C(1. .. n1(p)Xn ... X1 = £(1 ... n1(P) det(X) = £(1...n1(JJ) , 

where in the last equality the uni modularity of X (see (3.2)) is taken into 
account. Now we can complete the transformation of (5.12): 

det(a)h(p) = ... 

= h(p)£(1 ... n1(p)(X,. ... xi)- 1a1 .. . an -s 11. .. ll) /[n]! = h(p) det(a) . 
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This proves commutativity of det(a) and Pi•· 
Consider now permutation of det(a) with the matrix a. It is technically 

convenient to take a living in the matrix space with label (n+ 1): 

det(a)an+l = £(1. .. n1(p){a1 ... anan+l }cll. .. n}/[n}! 

= { £(1. .. n1(P).P.n(p),n+l (9n · •. gi)} a1 · ·. an+l {PA\+1 (gn • •. gi) cll...n)} /[n]! 

},ln+l) ( ) {x C' ( )X-1 } { 12 ... n+l)} ,:,-111) / = \ (ii P 1"(2 ... n+il P I a1 a2 · ·. an+l € n (n+II [n]! 

} ,ln+l) ( ) {C' ( )c-12 ... n+l)( )} d t(. ) ,:,-111) /[ = \ (II P a1 "(2 ... n+il P c- p e a n (n+I( n]! 

= (K(p)aK- 1) det(a) . 
. n+l 

The following formulae are used in the course of the calculation: (5.5) and 
(5.8) in the first line, (4.7) and (2.8) in the second line, (5.2) and (-5.7) in the 
third line, and ( 4.6) in passing to the last line. For clarity we put into braces 
those expressions which are to be transformed in the next step. 

Finally, substituting ll for the matrix K (see (2.12)) we obtain (5.11). ■ 

Corollary 5.1 The element 

~ = <let( a) TI 'PiiPii) , 
i<i f (Pii) . 

(5.13) 

where f (Pii) = qf,;1 + [piil,Bii and the functions 'Pii are defined by the relations 

a:ii (Pii) = 'Pii (Pii + 1) 
'Pii(Pii) 

(5.14) 

belongs to the center oj the algebra A(R(p), R). The SL(n)-reduction in the 
algebra A(R(p), R) can be performed by imposing the condition~= l. 

Proof. We shall search for the central element in A(R(p), R) in the form 
~ = U(p) det(a), where U(p) is some function of p; which is to be fixed. As 
follows from the Proposition 5.2 the element ~ commutes with p; and its 
commutativity with the generators a~ imposes the following conditions on 

the function U 

XiU(p)(Xit 1 = U(p)Kf(p) , i = 1, ... ,n. (5.15) 

Now using (3.lb), (3.13) and (4.12) it is straightforward to check that with 
the choice (-5.13), (5.14) one satisfies conditions (5.15). ■ 

Proposition 5.3 Let the algebra A(R(p), R) be completed with the inverse 
determinant of a: (detat1 det(a) = det(a)(deta)-1 = l. Then the left and 
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right inverse of a is given by 

( -1 )II) (-l)n-l (d )-1 C' ( ) li...n) 
a (n+ll = [n -_l]! eta "(2 ... n+II P a2 ... an€ . (5.16) 

Proof. We first check that the expression (5.16) is a left inverse of a: 

( -1)11) (-1r-l (cl )-1 {C' ( ) } 11...n) 
a (n+ll an+! = [n-; l}! et a "(2 ... n+il p a2 ... an an+l € 

( l)n-1 • 
- (d t )-1 d t( ) IL .. n) Nil) . 1rll) = [n - 1]! e a e a €(2 ... n+1I€ = (n+il = Jl (n+ll . 

Here we have used successively Eqs.(5.6), (2.10) and (2.12). 
Checking that (5.16) is also a right inverse is slightly more complicated: 

( l)n....'.l · 
( -1)11) - { (d )-1} c- ( ) 11...n) a1 a (n+ll = [n-:- l ]! a1 et a "(2 ... n+ll p a2 ... an€ 

(-1r-1 

= [n - 1 ]! ( det a r 1 K1 (p) { a_1 £(2 ... n+11(P)} a2 ... a,. €11...n) 

(-1r-1 (d t )-1;, ( ) X c- ( )x-1 { 11...n)} = [n-l]! ea i.1p 1c-(2 ... n+11P 1 a1 ... anc 

= (detat1K1(p)N
11

ln+11(P) det(a) = n11
~n+11' 

where we have applied successively Eqs.(5.11), (5.2), (5.7), (4.10) and (4.9). 
• . I ■ 

The existence of inverse matrix a-1 is needed in many applications of the 
algebra A(R(p), R). As an example of such application we shall construct 
a realization of a reflection equation algebra M(R) (for definition of this 
algebra see e.g. [34] and references therein) in terms of the generators of 
A(R(p), R). We have to use here the foll!Jwing general property of SL(n)­
type dynamical R-matrices (which has been noticed in [5] for the SL(2) case, 
see also [4], [14],): 

Proposition 5.4 The dynamical matrix R(p) {3.6), {3.12), {3.13) satisfies 
the equation 

D1 R(p) D2 -l = R(pt1 0"12 , 

where the diagonal matrices D and a 

Di _ d, 0; ( )i1i2 _ 0i1 0i2 .. 
i = q i ' a 12 i1i2 - i1 i2 a,1'2 · 

are fixed by {5.17) as 

l•-dj = q-2p,j 'ITjj (i =J j) ' 
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(5.17) 

(5.18) 

(5.19) 



Ujj = q25,, (5.20) 

so that d; are functions of p. 

Proof. First of all we note that from the Hecke condition (3.4) (and (:3.7)) 
one can deduce 

R(p)-1 = (ai1; 2(p) - (q- ij)J;1; 2 ) J}!J}: - bi2i1 (p) JJ:J}~ , (5.21) 

Substitution of (3.6), (5.18) and (5.21) into (5.li) gives the following equa­
tions for the parameters u;; and d; 

Gjj = (aij - (q - ij)J;;) Uji , 

d: d· b b q ,- ' ij = - ji Uij • 

( 5.22) 

(5.23) 

Equation (5.22) leads to (5.20) while (5.23) is equivalent (in view of (A.7)) 

to (5.19). ■ 

Now we construct the matrix M 0 /3 which is diagonalized with the help of 
the matrix a~ and the spectrum of which is defined by the matrix D (5.18), 

(5.19) 
M = a- 1 Da . (5.24) 

It is clear that [D1 , D2] = 0 and therefore the spectrum of the matrix M 
gives a commutative set of elements. 

Proposition 5.5 The elements of the matrix M (5.24) satisfy a reflection 
equation of the form 

M2 fl-l M2 fl-l = fl-l M2 fl-l M2 , (5.25) 

and thus provide a realization of a reflection equation subalgebra M ( R) in 
A(R(p), R). The matrix elements of M satisfy the following exchange rela­
tions with the generators of A(R(p), R): 

[D2, Mi]= 0 , M1 a2 = q2fn a2 fl-l M2 fl-l . (5.26) 

Proof. Using (5.2), one can bring the commutation relations of the matrix 
D with the elements a~ to the form 

a1 D2 = q-2/n U12 D2 a1 , (5.27) 

where the diagonal matrix u12 is given by (5.18), (5.20). Eqs.(5.24) and 
(5.27) imply [D2, Mi] = 0. Then one proves (5.25) and the second relation 
in (5.26) by using (5.24), (5.1), (5.27) and (5.17). ■ 
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6 Application_to the SU(n) WZNW model 

As an application of quantum matrix algebras we briefly describe here a 
typical problem of the two dimensional conformal field theory in which such 
matrices arise (see [24] for more details). 

Let G be a connected compact Lie group and g = g( t, :r) be a map from 
the cylinder JR x § 1 into G which satisfies the Wess-Zumino-Novikov-Witten 
(WZNW) equations of motion. Th~ general periodic solution g(t,x) = 
g( t. :r + 2rr) of these equations factorizes into a product of group valued chiral 
fields 

gJ(t,:r) = u:;(J: - t)u8(;r + t) (classically, g,u,fi E G), (6.1) 

each of which satisfies a twisted periodicity condition; in particular, 

u(x + 21r) = u(:r)M, (MEG) (6.2) 

where M is the monodromy. 
Furthermore, the quantum chiral fields obey quadratic exchange relations 

[35, 6, 10, 11, 5, 23, 36, 20, 21 l 

u(y)iu(;r)i = u(.r) 1u(y)zR(.r - y) {::} Pu(yhu(:r)i = u(:r}iu(y)i.R(;r - y). 
(6.3) 

Here the matrix R(:r) is a solution of the the quantum Yang-Baxter equation 
whose x-dependence is given by a step function, while .R(.r) is the associated 
braid operator: 

R(x) = RB(;r) + ir 1 0(-:r), R(:r) = P R(;r) = il,'(x) (6.4) 

(c(:r) = B(x) - 0(-:r)). 
Since Renters Eq.(6.3) in pa.ir with P it should be normalized to have 

determinant <let R = <let P. For G = SU(n) this implies the relation 

' I ( . 2 ) • (") Rii+i = ijn p(g;) for 9; = -n + (q - ij)g; => <let R = <let P = (-1) 2 

(6.5) 
so that we have to renormalize R of (2.1) by multiplying it by q¼. (The 
resulting R has eigenvalues q1-¼ and -q1+¼ of multiplicities (n; 1

) and (~), 

respectively; thus the product of all n 2 eigenvalues of R is indeed (-1)(;) .) 
We expand, following [21] and [4], u(x) into a basis of zero modes that 

diagonalizes the monodromy matrix 1\-1 at least for "physical weights" (sat­
isfying Pin < h): 

u~(:r)=a~uf(.r,p), aM=Da, D;=l•Jj. (6.6) 
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Here di =; ~2Pi - 1/n + 1, p = {p;} are central elements of the reflection 
equation algebra M(R); in the quantum field theoretic representation at 
hand they form a commuting set of operators such that Eq.(0.7) takes place. 
The eigenvalues of the differences Pii+l ( = Pi - Pi+t) are natural numbers 
that can be identified with the extended weights, A; + 1 labeling the (finite 
dimensional) irreducible representations of SU(n) . The labels of the (;) 

dimensional fundamental representation are given by A!il = c5f, 1 ~ i,j ~ 
n - 1. Under these assumptions Eq.(6.3) implies exchange relations of the 
type 

R(p) a1 a2 = a1 a2 R.21 . (6.7) 

where R(p) obeys the QDYBE (0.3). QDYBE Hence, the results displayed 
in Sections .3 and 4 can be applied with slight modifications. (Since R(p) 

A I 
and R21 enter (6. 7) homogeneously, the factor ij'n of (6.5) cancels in the two 
sides.) Thus we can also apply the results of Section 5 to the ( chiral zero 
mode) quantum matrix algebra A of the SU(n) WZNW model. It should 
be noted that in this case q is a root of -1 associated with the level k su( n) 
Kac-Moody algebra: 

q= if , 7r 
[2) = q + q = 2cosh, h = n + k (2 n + 1) . (6.8) 

The eigenvalues qd• of the diagonal matrix D can be expressed as differ­
ences of conformal dimensions. Indeed, according to (21), the chiral vertex 
operators Uj(x,p) satisfy Uj(X + 21r,p) = u1(x,p) e2rri(Ah (p)-A h (p+v<,>>), where 
the matrices vU> and p are defined by (0.1) and (0.2). Here the conformal 
dimensions are expressed in terms of the SU(n) Casimir operator, 

1 2 n(n2-l) 
2ht::..h(P) = C2(p) = - . L Pik - 12 

n l~i<k~n 
(6.9) 

so that 

di = C2(P) - C2(P + vU>) = -2(plvU>) - lvU>1 2 = .!. - 1 - 2pj. 
n 

(6.10) 

Inserting this in (5.19), we deduce that 7r;j = I so that we arrive at the 
special solution (3.24) for R(p), allowing to present (6.7) in the form 
a;j(p)[p;j - 1) ata1 = (p;j) a1at - q'PaP•,a~at (here laf3 is equal 1 for a> {3, 
0 for a = {3 and -1 for a < {3). According to the analysis of Section 3 we 
can reduce (6.11) to the case a;1(P) = 1 by a suitable twist. 

An important consequence of (6.8) and (6.11) is the existence of an ideal 
Ih of A generated by n2 elements (a~)h such that the factor algebra A/Ih is 
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finite dimensional [24) . This allows to define a finite dimensional "Fock space 
representation" of A with a unique vacuum vector lvac > q>rresponding to 
trivial su(n) weight A;= 0 (p;;+1 = 1, i = 1, ... , n-1) such that a~ lvac >= 
0 for i > 1 , Ih [vac >= 0. 
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Appendix. Normalization of dynamical Levi­
Civita tensors 

The definitions (4.3), (4.4) lead to the expression 

£· . ( ) c:i, ... in(p) _ TI "· . 
i1, 00 ln P - ~'&a'&b (A.I) 

l~a<b~n 

(there are no summations over the indices ik), and the normalization condi­
tion ( 4.6) for the dynamical £-tensors follows from 

Proposition A Let fo = d - b;i where d is a constant (comparing with 
{3.12}, one gets d = q) and the elements b;j satisfy (3. 7), {3.10). Then the 
following identity holds: 

h = L TI fiaib = [k]d! > (A.2) 
Sk l~a<b~k 

where k ~ n, [k]d = W-<1->.t) (A = q - ij) and Sk denotes all permutations 
of indeces (ii, ... , ik) {ia -=!= ib for a -=!= b). Note that [k]d = [k] ford= q (as 
it is needed in (4- 6)). 
Proof We shall proceed by induction. Fork = 2 we have 12 = (;1; 2 + (;2 ;

1 
= 

2 d - A = [2]d. Let (A.2) is correct for some k (I < k < n), then fork+ I we 
derive 

h+i = L [dr (i1ik+1) TI fiaibl = 
Sk+I l=l l~a<b~k 
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k+l [ k+l -· . l k+l k+I 
= L (II{;,;,) L II · {iaib = h L II {i1ir • 

r=l l=l Sk a,lr,lb r=l l=l 
/f,r I '.$a<b:$k+l /f,r 

Therefore we should prove the identity 

k+ik+l -k+lk+I 

[k + l]d = E II{;,;,= L II (d- b;,;,). 
r=l l=l 

lf,r 

This identity follows from the relation 

m m 

r=l 1=1 
lf,r 

L II b;,;, = ,\m-1 (m ~ k + 1), 
r=l l=l 

/f,r 

(A.3) 

(A.4) 

which can be obtained by induction. Indeed, from Eqs.(3.7), (3.10) we have 
form= 2,3 

b;,;2 + b;2i1 = ,\ , b;2i1 b;3i1 + b;1i2 b;3i2 + b;.;3 b;2;3 = ,\2 
•. 

Then we deduce 

ft bi1i1 ~ bi2i1 (,\ m-
2 

- t ( ,\ -b;,;I) II bi1ir) = 
/=2 r=3 1=3 

/f,r 

m m 

= b;2;1 L b;,;1 II b;,;r = L (>,2 
- b;1; 2 b;ri2 - b;1;, b;2;r) II b;1;, = 

r=3 1=3 r=3 1=3 
lf,r /f,r 

m 

= ,\m-1 - L II bi1ir ' 
r=2 l=l 

/f,r 

which proves (A.4). Expanding the right hand side of (A.3) in power series 
of d and taking.into account (A.4) we verify the relations (A.3) and, thus, 
complete the proof. ■ 

One can reformulate the statement of Proposition A in more concise form 
( only in terms of elements fo) 

Proposition B Let fo satisfy 

fo,+ (ji = [2] = fo (jk (ki + fo (kj (ji (i-=/ j-=/ k-=/ i). 
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We nw,-iff thfsf conditions as 

k· k 

L II {;1;r = [k] for k = 2,3. 
•·=11=1 

- It,,· 

(A.5) 

Thrn, equation (.4.5) is also valid for 4 ~ k ~ n, and flit followi11g idrntify 

holt!.": 
h = L II {iaib = [k]! , (A.6) 

Sk l'.$a<b:$k 

wlurt Sk drnoff's all prrmutations o/tlu indices (i 1, •• '., ik) and ia -=/ ib Jo,­
a -=fa b. 

Proof The proof is similar to that of Proposition A. ■ 

Remark There are many other interesting relations among the elements b;j 

(:3.7). (:3.10) (as well as among fo). For example, one can easily deduce the 
identity 

b;. i2 bi2i3 ••. b;k-1 ik b;k i1 = ( -1 / b;,;k b;k;k-1 ... b;3 i2 b;2 i1 , 

which generalizes (3.10) and follows from the relation 

_ bi;(p) 2,,,1 _ .. 
b;i(P) q - rr,1 . 

(A.7) 

Note that we consider rr;1 as constants which are independent of p;. 
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