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Int’roducti(:)"r‘,l ,

Let {v{, i=1,...,n} be a "barycentric basis” in a Cartan subalgebra  C
sl(n). Viewed as operators in the n-dimensional complex space V = C*, v(?)
can be realized as real traceless diagonal n x n matrices:

=]

N 1 &
() =& — = 2y v =0. (0.1)
. ‘ n ' :

Let further {p;}%, span the dual L1e algebra h Introduce the traceless
diagonal matrix

p = piv® (E _Zp;v(")) , Ipi,pil=0, Zpi =0. (0.2)

We deﬁne a Hecke—type quantum dyna,rmcal R-matrix R(p) as a map from
h* to End (V ® V) satisfying the twisted braid relation :

Rn(P)Rz:S(P - Ul)Ru(p) = Ryy(p — 01)312(P)R23(P —vy) (0.3)

and the Hecke condition

Ry =1+ (- DRp), 7:=4q7". (0.4)

(Although the notation is taylored to the special case in which the parameter
g takes values on the unit circle; we shall not use this property in the main
body of the paper.) The subscripts in (0.3) refer to the, by now standard,
tensor product notation of Faddeev et al. (see, e.g., [1]); in particular, R23(p—
v1) € End (V®3) has matrix elements

? i1i213 i1 D 1) \221
(Rza(p - vl))h;ja = 51': R( ( l)).12;133 ‘(0'.5)

The twisted braid relation (0.3) is equivalent to the quantum dynamical [2,

3] (or deformed [4]) Yang-Baster equation (QDYBE) for the matrix R(p )
related to the braid operator R(p) by R(p) = PR(p) where P stands for the
permutation operator Pz y2 = y172, ¢,y € V, P? = 1. Abusing notation we
shall also refer to Eq.(0.3) by the above abbreviation. The term ”dynamical
R-matrix” for R( ) is suggested by the fact that in the physical applications
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its arguments play the role of (commuting) dynamical variables and that
f?(p) satisfies a finite difference rather than a purely algebraic equation.
The important concept of a quantum matriz algebra A = A(R(p). R)
(Sec.5) can be introduced as a (complex) associative algebra with 1 generated
by rational functions of ¢", i = 1,...,n, and the (noncommuting) entries of
an n X n matrix a = (a},) satisfying the quadratic exchange relations

R(p)dl az = ajp (sz;), ) (06)

where R = Rgl‘gj in the right hand side is a constant (i.e., p-independent)
solution of (0.3), (0.4), and all entries in a matrix row a' = {a!}"_, are
acting equivalently as shift operators for p: :

pa' = d (p+v9) or pjpat = ai(pjk+6;:—5,‘;) for pjx = p;—pi. (0.7)

Remark 1 It has been pointed out [5, 4] that, in the su(2) case, the matrix
a generates the g-Clebsh~Gordan coefficients while R(p) plays the role of a
”quantum 63-symbol” [6, 7, 8]. :

Remark 2 Eq.(0.6) is related to the one with indices 1 and 2 interchanged,

R(p)aza; = ayar B, : (0.8)

by the substitution & — PRP , f?,(p) — Pl%(p) P. Tt is, on the other hand,
formally obtained from

Ra,a, = @@ R(p) . . (0.9)

by the substitution @ = a~!; the same substitution relates (0.8) to

a8

El 62 = _1 62 R(p) . (010)

Since

f(p), = P R(p)P (0.11)

satisfies conditions of the same type as I%(p), we can start with either of
these relations. '

The QDYBE, introduced by Gervais and Neveu [2] for the exchange al-
-gebra associated with the Liouville equation and applied to the zero mode
fa,lgebra [5) of the Wess-Zumino—Novikov-Witten (WZNW) model [9, 10, 11]
I1s attracting ever more attention. Its classical counterpart, introduced in [3]
(see also [12]) has been displayed in {5] for the sl(2) case and in [13] for an

2

arbitrary simple Lie algebra. The quantum R(p) is central to a continuing
study [4) of g-deformed cotangent bundles on group manifolds and quan-
tum model spaces. A quasiHopf-algebraic point of view is taken in {14, 15]
where R(p) is obtained by a Drinfeld twist of the constant R-matrix. Felder
[16] explores the more general case of (classical and) QDYBE depending
on a spectral parameter and finds elliptic solutions of this equation. These
solutions are applied in [17] to quantize Calogero~-Moser and Ruijsenaars-
Schneider models. A class of SL(n}m)-type solutions of the QDYBE (and
related trigonometric solutions of the equation with spectral parameter) are
described in [18]. A more mathematically minded approach to the subject
in terms of "b-algebroids” is being developed in [19].

The present work was motivated in part by earlier study [20, 21, 22] of the
canonical quantization of the WZNW model (following [6, 10, 5, 11, 23]). It
was noticed, in particular, that the exchange relations [21] for the chiral zero
modes a!, that diagonalize the U,(sl(2)) monodromy matrix can be written
in the form (0.8). As a result, the operator realization of the chiral group
valued field was understood as a-quantization of the (deformed) classical
Poisson bracket relations of [13] thus opening the way to its generalization
for SU(n). Here we show that a special solution of the QDYBE (0.3) yields
a new matrix representation of the Hecke algebra. We coucentrate on a
general study of the Hecke algebra properties of this solution and the ensuing
properties of the quantum matrices satisfyiug (0.6) relegating applications to
the WZNW model to a subsequent publication-[24] which is highlighted in
Section 6. A central result is the computation of the quantum determinant
of a and the (based on it) evaluation of the inverse quantum matrix.

The paper is organized as follows. We review and extend in Section 1
results of Gurevich [25] on quantum (anti)symmetrizers and illustrate them
in Section 2 on the known example of a constant R. We proceed in Section 3
to a study of a family of S L(n)-type dynamical R-matrices and describe two
types of symmetry transformations for this family: the twist transformation
(a version of Drinfeld’s twist for dynamical R-matrices) and the canonical
shifts. In Section 4 we show that these dynamical matrices provide a new real-
ization of the Hecke algebra. This allows to define "dynamical” (p-dependent)
analogs of quantum antisymmetrizers, including the Levi-Civita € tensor. In
Section 5 we study the quantum algebra A, define the quantum determinant
det (a) and compute the inverse matrix a~!. We demonstrate that A pro-
vides a realization of a reflection equation algebra which is interpreted as
a quantum monodromy algebra in the WZNW theory. An Appendix is de-
voted to deriving some useful identities for the parameters determining the
solution of the QDYBE found in [18] and to computing the normalization of

the dynamical Levi-Civita tensor.



1 Hecke algebras and ¢-antisymmetrizers

In this Section we collect some basic notions on Hecke algebras and describe
the g-antisymmetrizers technique which is to be applied later on. We follow
closely the approach of D. Gurevich [25].

In the present context by a Hecke algebra Hi(q) we understand a -
algebra with generators 1,1, 9, .. ,gk 1, & nonzero parameter g 6 C; and
defining relations

9i Gi+1 9i = Git1 Gi Gi41 for 1<i<k-2, (1.1)
9 =1+(g-q)g for 1<i<k—1, (1.2)
g9i9i=g;g if i—j]>2, (1.3)

where G := ¢~}

We shall consider the set of idempotents A '€ Hilq), j = 1,...,k,
associated with single column Young diagrams containing j nodes — the so
called g-antisymmetrizers. Their inductive definition is given by

A = 1, Al = A(J 1) § —1]g;- AL-1 (1.4
i (@ -l 1 1) )

Here [j] = (¢’ — @)/(q¢ — §) and we assume []] # 0, for 7 =2,...,k. Note,
that A®) is a central idempotent in the algebra Hi(q).
Equivalently, one may write

A6 = L gei- (¢

[]], - [.7 - l]gl) A(2’j_1)‘a (15)

where we have adopted the notation A7), 1 < i < j, for the central idempo-
tent of the subalgebra H; ;(¢) C H;(¢) generated by the subset 1,g;,...,g;_;.
In palticular A = ALY AGS) = 1.

Remark 1.1 All the subalgebras H; r+,( ) C Hi(g), t=1,...,k—r, are
isomorphic by definition. Moreover, they are related by inner Hk( )- auto-
morphisms. For example, the automorphism ¢; : Hi,1i(q) = Hig1r4ip1(q) is
given hy

Bi(t) = gigivr - Grait (Gigigr - Gri) T, VEE Hirgilg) - (1.6)

The term:g-antisymmetrizer for the elements AU) is-justified by the fol-
lowing properties: o : .

(5 +9AD = A9(g; +7) = 0
AW AGD — AGD 40) = 46)

.for i‘g"igj—l,“ , %)
for 1<i<i<y. = (i.8)

Remark 1.2 Replacing q by {—¢~!) in (1.4) leads to another sequence of
projectors, called symmetrizers. Abstractly, inside the Hecke algebra, it is a
matter of convention - which projectors one calls symmetrizers, and which -
antisymmetrizers. We use the common convention. However, on the level of
representations, when one can calculate the ranks of projectors and see which
sequence of projectors terminates, the distinction between symmetrizers and
antlsymmetnzers becomes meamngful '

Consider a representation pw, : Hi(q) = Aut(W) of the algebra H,(q)
in a vector space W . a : S

Definition 1.1 We shall say that py is a repfeséniation ofheight n in one
of the following two cases:
a) n < k and the conditions

oA = 0, (19)
rank pw(A™) = 1, ' (1.10)

are fulfilled, or

b) n =k and -rank py(AM) = 1.

Remark 1.3 The notion of height of a Hecke algebra representation was
introduced in [25] for the special case-of the representations generated by
constant R-matrices. There it was named the rank of the R-matriz. We
have changed the name here in order to avoid a possible confusion with the
standard notion of rank of a matrix. Note that the use of the term ‘height’
is suggested by the fact that imposing condition (1.9) for the representation
pw, results in vanishing of any central (and primitive) idempotent related to
a Young diagram (standard tableaux) containing -more then n boxes in one
of its columns.

Remark 1.4 In view of Remark 1.1, the whole sets of g-antisymmetrizers
{pwi (AN Yy eon and {pws (A(J - ”)}J 1,..k-nt+1 satisfy conditions
(1.9) and (1.10), respectlvely :

Remark 1:5 Instead of usmg (1.9) one can 1mp0se the condltlon

ABFD — g (1.11)



at the algebraic level. This is the way how generalized Temperley-Lieb-
Martin algebras are defined (cf. [26]). Below we present several useful equiv-
. alent forms of this condltlon

Lemma 1.1 The condition (1 11) is equwalent to any of the following rela-

tions
AP g gag = (—1)" g [n] AW AGRHD) - (L.12a)

(
912 - - gu A® = (=1)" g [n] ARV A (1.12b)
Gn -+ G2 AT = ’(-v—l)"'lq‘[n]A(")A(?'"+1) , .(1 12¢)
ARG 6o e = (=1)" g [n] AT A (1.12d)
A 4@+ 40 - []=240) (1.12e)
A(2,n+l)A(u)A(2,n+l) — [n]—'lA(‘Z,n+l) . (1 12f)

Proof. Applying repeatedly (1.4) for the g-antisymmetrizers that appear as
last factors in the resulting products and using (1.7), (1.8) we find

n 1 n n n
Aln+1) = + 1]A( )(q" ~ [n]g.)A™
= [n + 1] {an(ﬂ) (ﬂ)gn(qﬂ—l _ [n _ 1]gn_l)A("—1)}
B [n +1] {A(")(q" h q"—lg") + A(n)gngn—l(qn—2 ~[n- 2]gn—2)A("_2)}
1 _
= A(ﬂ) n__ n—ln _ nnn_ . ] '
n+1] ("= 7't + (1) gugnr 1) - (113)

Next, we apply A@"+1 to the both sides of Eq.(1.13). Using again (1.7)
and (1.8) we obtain

APFY = [ ——— A" {g[r] AR™) 4 (~1)"gogn- ..

(2,n+1)

Taking into account the relation (gngn-1 ... )A?"*) = AW (g.g._\...q1)
which is a consequence of (1.1) we end up with

A1)

[n+1] {q[n]A(n)A(2n+1)+( 1)"A™g g, .. gl} - (1.14)

This proves the equivalence of Eqgs.(1.11) and (1.12a). A similar argument
using iteratively a substitution of the first g-antisymmetrizer in the. right-
hand side of (1.4) implies the equivalence of (1.11) and (1.12b). Condition

(1.11) is transformed to the forms (1.12c) aud (1.12d) in the same manner
starting from Eq.(1.5). ) N
‘To show equivalence of (1.11) to (L.12e) and to (1.12f) one should employ
Eqs.{1.4) and(1.5), respectively. We shall treat the case of (1.12e) here.
Consider tlie difference :

[ AP AR gi0) _ g~ gin) ([]A2+1 — 1) A

= A {[n]A® g ~ < Ug) A — 1A
= [n 524G~ ) AW = o - 1fn + 1AM

where we have again used the definition (14) and the relations (1.8). Com-
paring the first and the last lines of the calculation we deduce the equivalence
of conditions. (1.11) and (1.12e). ' ]

Egs.(1.12a-f) display properties of the rank 1 idempotents py.(A™) that
ave hidden in (1.11). In fact, they are the basic technical tools which one
needs to effectively deal with the height n Hecke algebra representations.

[u the rest of the paper we make use of a special type of representations
of the algeblas H,(q) for which the representation space is given by A-th
tensor power of an (n-dimensional, in the case of SL(n}) vector space V:
W = VO These represeutations are generated by coustant or dynamical
R-matrices of Hecke type. The representations we are dealing with have the
specific feature that their height, when defined (i.e., for & > n). coincides
with the dimension of the space V' !. Below we first illustrate the general
notions introduced above on the well known case of constant §L(n)-type
R-matrices relegating the study of dynamical R-matrices to Sections 3 and
4.

2 Representations generated by a constant
R-matrix of SL(n) type
The R-matrix corresponding to the Drinfeld-Jimbo deformation of SL(n)

[27, 28] is an operator acting in a tensor square of an n-dimensional vector
space V' and given by

RS.‘E'; = " 585+ (q= T 0o, 35,05 (2.1)

In general, t.hlS( need not be the case. Examples wnt-h helghtp # dunV were con-
structed in [25].



(no summation ‘in the right-hand side) where the indices a, 3 take values
from1ton,and 0,5 ={l1ifa>p3,0ifa <3}

This R-matrix is-a particular representative of a family of constant Hecke
R-matrices, - i.e., it satisfies the braid relation and the Hecke condition

RIZR'ZBI}I‘Z = I}ZBRIZRZB 9 » (
R=1+@-9)R. (

)
)

Eqs.(2.2).(2.3) imply that the matrices Rz, Ras generate a representation
of H3(g) in V@, For an arbitrary k the representation pz, : Hi(q) —
Aut(V@*) generated by a constant Hecke R-inatrix is defined by

[
[SCR MV

Pax(gi) = Riigr - : - (24)
For representations py , generated by the R-matrix (2.1) we have
heightpﬁ’k =n if k>n.

The rank 1 g-antisymmetrizers pj ,(A"+=1)) are most conveniently described
in terms of q~analogues of (co- and contlavauant) Levi- ClVlta tensors which
are solutions of the equations
RB @':;C«al By ;3,_{_1 an = _qgal...a,u"_{;l,..an ,

oy ean B = —GCay wiagyans 8= 1,2, n—1,
It is straightforward to prove that these equations have unique (up to nor-
malization) solutions. The rank 1 condition (1.10) follows as a corollary.

In the special case of representations pj , generated by the R-matrix (2.1)
the only nonvanishing components of the e-tensors have pairwise different
indices ay, ayg,...a,, and can be chosen as

’ 60102“0" — qn(n 1)/2( ’q)[(a)- s 50102 an = ( q) i (25)

Here £(a) is the length of the permutation o = (;1 22' Z )

- The rank 1 ¢g-antisymmetrizers are expressed in terms of the s-tensors as

_— 1
prp(ALTTTN) = B
Here (by analogy with the matrix notation) we substitute the vector space
indices of e-tensors by their labels: a; — ¢. The "bra” and “ket” notation
of e-tensor indices is used in order to distinguish labels of matrix spaces

E]i...n+z’—1)€(l_wn+i_” , t=1,,k—n+1. (2.6)

from those of vector spaces. One should have in mind the following symbolic
decomposition for the matrix space label: i = Ii) ® (i]- For example, the

. equation A; ul? (‘ A")( i ul')) = 1 is to be understood as T5, A%, uf = v

Finally, we shall adapt for py , those formiulas (1.12a-f) which mll be used
in Section 5. Written in terms of the e-tensors the relations (1.12b), (1.12¢),
(1.12¢) and (1.12f) assume the form

P n+l( . .gn)E“"‘") = Rn . Rnn+16|“"“) — q6|2...n+x) N|1) , (2.7)

g = Ry g = gt ‘“*‘m (28)
KN=NK=1. (2.9)
Here the matrices N and K are defined as

(=1

Pr, n+l(

1 = 1..m)
N‘ 2n+ll = [n— 1! €(2..n41|€ ) (2.10)
n-1
mey (2D [2.n+1) .
K™y = g seens (2.11)

and for the e-tensors given by Eq.(2.5) we have just
- N=K=1. | (2.12)

3 SL(n)-type dynamicai R-matrices

We now turn to the dynamical R-matrix defined in the Introduction. In
order to present the QDYBE in a form suitable for our purposes we shall
introduce a set of commutative variables

X, i=1,...,n [X, X]=0, [[X'=1 (3.1a)
i=1 ' )

which play the role of elementary shift operators for pi
pX = X' (p+ o). (3.1b)

The elements X* and ¢® provide a realization of (the Weyl’s form of) the
canonical commutation relations. Note that in concrete applications they
can be naturally identified with (a subset of) dynamical variables of a model

(see, e.g., [5]).



Let us arrange the aux1lla.ry varlables X' into a unimodular diagonal
matrix,

X = diag{X",... X"}. det(X) =1. (3.2)

The Hecke-type dynamical R-matriz is characterized by the followmg set
of relations:

Ria(p) (X1 Ras(P) X7 ) Rualp) = (Xa Raa(p) Xi7") Rua (p) (X0 Baalp) X)),

_ (3.3)
R = I+(-DRG), (3.4)
Rlz(p)X1X2 = X1X2R12( ) (35)

Here the first and second relations are the dynamical Yang-Baxter equation .

and the Hecke condition, respectively. A condition of type (3.5), although not
always imposed on dynamical R-matrices, is also necessary in our treatment.
As we shall see below, it ensures that conditions (1.3) for the Hecke algebra
representations generated by R(p) are satisfied.

Following [18] we shall consider dynamical R-matrices of the form

R2(p) = ay,;,(p) 61262 + bii, (P ) 841522 12, 12 =1,...,n  (3.6)

7172 J2 7 n-i?

(there is no summation over repeated upper and lower indices in the right
hand side); in order to have a unique decomposition in terms of the unit
and the permutation matrices in the tensor square of spaces we impose the
condition b;;(p) = 0. This special class of p-dependent Hecke R-matrices will
be called dynamical R-matrices of an SL(n)-type 2.

The unknown functions a;;(p), &;(p) in'the Ansatz*(3.6) are to be fixed
by the conditions (3.3-3.5). The Hecke condition (3.4). gives

bi =0, b +b;=¢~7, for 1#£7, (3.7)
A5 Az — b,‘j bj,' =1 , for 1 75] . : (38)
ad—(g—§ai=1. (3.9

The last equation has two solutions: a; = = ¢*' for each ;. Below we
consider only the case a;; = ¢, Vi (the other cases correspond, in particular,
to quantum supergroups and have been -considered in [18}). Finally, the
dynamical Yang-Baxter equation (3.3) and Eq.(3.5) impose the constraints

aij(p1,---,Pn) = aij(pij) » bij(p1y- .. pn) = bii(pij) ,

%In [19] these R-matrices were called GL(n)-type R-matrices. We call them SL(n)-type
R-matrices instead since we impose the additional condition ¥ i, pi = 0 (see (0.2)) on
the variables p;.

10

bij bjr bri + bir by bji =0, \ (3.10)
_b.'j(Pij)q ’ (3.11)
g+ bij(pi;) '
where p;; := p; — p;. For a;; = q the general solution of (3.7) - (3.11) can be
written as (18]

bij(pi; + 1) =

ai;(p) = aij(pi;)ii(pij) «  bij(p) = q — &ii(pi;) » (3.12)

where &;;(p) are expressed as the following ratios:
¥ o e - 1,85)
lp) s Bi)

Here B;;(pi;) = Bi;(pij + 1). We shall consider f3;; as constant parameters
since their functional dependence does not change any of the results below.
The function f(p, ) satisfies the finite difference equation

flp+1.8)+ f(p - 1,8) = 21f(», 6) - (314)

f(pB) =7 + 156 - (3.13)

with the initial conditions
fl0,8) =1, f(L,B)=7+8. (3.15)

Equations (3.14) can be deduced from (3.11).
Not all of the remaining in (3.12), (3.13) parameters a;;(p;;) and B;; are
independent. The relations between them are given by :

ai =1,  aj(pi)ai(pi) = 1, (3.16)
| P
{ Bii=0, Bij+Bi=q—q for i#], (3.17a)
| BiiBixPri + BirBriBii =0 . o »(3.17b)
An easy way to solve Egs.(3.17a), (3.17b) is to make the substitution
By= 1= o o, =Pt T g (3.18a)
1 —m; Bi; ‘

We stress that the parameters 7;; are not fixed here and can be chosen as
arbitrary constants. In terms of the new variables m;; equations (3.17a),
(3.17b) take the simple form

T =1,

i ik Thi = 1,7 (3.18b)
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(3.22) are satisfied by A = APy;Py, where the matriz A .is diagonal,

d =T g _. =1 S 3 v g ,
and are solved by 7;; = [[i; Thk+l = T, for i < j. Hence, A;Jb’z = a;;56.616% the el‘ements,:a.-,-lc being given by P .
(¢—PIHI} B ' oy
Bi; = == — = , for 1<y 3.19 o) Yt if 2 #3,
i B —Th=i (B — g +79) ’ (3.19) ‘ iR E [pulpr + DI =7 (3.23)

where the remaining (n — 1) parameters 3; = f3;;4+; are independent. :
Proof. The operator ‘Ajg3 is symmetric in the first two'indices, Aizs =

dyn?:;iz};?l]lz _drt:lsactrrlil();;st.wo types of transformations on the set of SL(n)-type ' Az13 which implies that it commutes with any R-matrix of the form
_ , , " (3.6). Therefore, (3.22) is satisfied. :
1. a simple version of twisting for dynamical R-matrices: Eq.(3.21) can be checked directly. L D |
. e . . T These Lemmas demonstrate that the operator (3.20) indeed generates
R(p)y = Ra=FR(p)F, _ atwist leading to the changes a;; — a;;¥%, Bi; = Bij of the parameters .
g g 3] iV5ir Pij 3 P

- in (3.12), (3.13).
where F(p) = Fi2(p) P12 and in (3.12), (3.13)
o i — 2. canonical transformations of the dynamical parameters p; — pi + ¢,

Fia = Fji2(p) = 653 03 ¥iin(p) (3.20) where ¢;, i = 1,...,n are arbitrary constants satisfying the condition
(an analog of Drinfeld’s twist, see [29]). An explanations on how this Zi=t ?iv=‘0' ‘ f B . o T

twist works is given in the two Lemmas below. L . - 4 ‘
We conclude the Section by a brief discussion of the structure of the

family of SL(n)-type dynamical R-matrices (3.6), (3.12), (3.13). There are
two essentially different domains for the parameters f; of this family.

Fa' X7 By = A X5 Ao (3.21) | a) f; # 0 and f; # ¢ — 7, for all .

Lemma 3.1 Let F(p) be an operator acting in V V. If

for some operator A(p) acting in V@V @V and In this case the whole family (3.6), (3.12)',‘(3.13) can be genefat‘éd starting
: ~ from any particular representative with.the use of the two types of transfor-

f?(p)lg Atz = Apgs }AZ(p)23 | (3.22) mations described above. .
' Indeed, the parameters o;; can be excluded with the help of a twist.

then the matriz "Ry = FR(p)F~' satisfies (a version of - see the Then, performing a canonical transformation of the form

proof) the QDYBE (8.8).

: : . ‘ . -1 ,H _ i .
. " ‘ ” ” ” r—q+Q . .
Proof. Substitute 7R, in the QDYBE taking into account that the ¢’ = ¢ m; = ¢ ] B for 1<y,
k=i B

QDYBE has two more equivalent forms:
for instance, one excludes the parameters f;; from the Ansatz (3.6), (3.12),

. 12 N ’ . . .
R(p)as X3' R(p)12 X3 R(p)2s = X5 R(phiz X5 B(p)as X3 B(p)12 X3 , (3.13) and passes to a dynamical R-matrix with

R(P)ﬂ XflR(p)32X1 fz(P)n = X;lﬁ(p)32X1 f?(p)zl XI_I}AZ(p);nXl )

The first equation results from repeated application of (3.5) to (3.3).
The second equation is obtained from the first one by simply permuting
the subscripts 1 and 3. . n

&i(p) =[’4’[p—:]—1] ' - (329)

(cf. (3.13) - (3‘.17b)). This R-matrix is the limiting case 8; = oo of. our
family, and it is this type of dynamical R-matrix which is discussed in [5)-

Lemma 3.2 Let Fy; be the diagonal matriz (3.20) where i;; P =1
and ;; = 1. Assume that +;; depends on p;; only. Then, E¢s.(3.21),
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b) Either all ;= g —g, or all 5; = 0.
We shall consider the first case 8; = ¢ — @ for which
_J g7 for i<
’B”—{O for i>7 (3.25)

and put a;;j(pi;) = const;;. In this case the R-matrix (3.6), (3.12), (3.13)
becomes independent on the dynamical variables p; and is reduced to-the
constant R-matrix describing the multiparametric [30] deformations of GL(n)
which are all twist-equivalent.

With the particular choice

g for i<y ;
aij=4 1 for i=j ; (3.26)
q for 1>

one reproduces the standard SL(n)-type R-matrix (2.1).

Remark 3.1 In the intermediate cases (where only a part of the parame-
ters J; are equal to 0 or ¢ — @) the corresponding dynamical R-matrix l%(p)
contains the (dynamical and constant) R-matrices described in a) and b) as
submatrices. -

4 Representations generated by SL(n)-type
dynamical R-matrices .

Now we are in a position to introduce the Hecke algebra representations
associated with Hecke-type dynamical R-matrices. '

Proposition 4.1 Let l%(p) be a dynamical R-matriz of the Hecke type. The
matrices o

pfi(p),k(gi) = (X1X2 e X,'_I)R,',,'.f.l(p)(Xng - ._X,'_l)_l ,i = ]., v ,k—l,
>, : R : (4.1a)
generate a Hecke algebra representation, pp )\ - Hi(q) — Aut(V®*F).

Proof. Obviously, equation (3.3) imply that the matrices P x(gi) and
PR(p)k(9i+1) satisfy the braid relations (1.1). Then, the conditions (3.5) en-
sure that the matrices (4.1a) satisfy (1.3) and, therefore, (4.1a) represent the
generators of the braid algebra Bi. Finally, the Hecke conditions (1.2) for

the generators (4.1a) follow from the Hecke property (3.4) of the dynamical
R-matrix (1.2). |
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‘Remark 4.1 In contrast with the case of constant Hecke R-matrix (2.4) the

representations generated by a dynamical Heclfe R—matl:ix are nonlo'cal; in
other words, the matrices pp,) ,(gi) act nontrivially as diagonal m?‘trlces on
V; with j <1 (and not merely on V; ® Viz1). Only the representation of the
first generator with i = 1 has the usual ‘locality’ prqperty‘.

Remark 4.2 One can construct representations equivalent to pg,) , In which
some other generator is ‘localized’ instead g; . For instance, the representa-

tion Ppgs)k which localizes /—’R(p),k(gk—l) is given by
Papslt) = (Xlxi~'-Xk)”‘p,;(p)_;.-(t)(-’(lxz YL) . VteHilq) (4.‘_11‘))

so that 7 L B
Phpyalg) = (Xigz- - Xi)” Riinr(p)(Xip2 - Xi) - (4.1c)

Note that in addition to the nonlocal property the repge;entation matrices

- of Pap)k depend explicitly on k.

From now on we shall restrict ourselves to discussing those representations
PR(p) which are generated by the S L(n)-type d)fnamic.a,l R—ma:trices (3.6),
(3.12), (3.13).. For k& > n all these representations are of heightn. ?‘he
rank | g-antisymmetrizers are conveniently expressed in terms of dyr'lam.lcal
£-tensors EW-™ (p) and €. (p), which are the unique (up to normalization)
solutions of the equations

P i(9) E(p) = f?gu'"")(l’) Col<i<n—t1. (4.2)
E..n|(P) Pﬁ(p),k(gi) -4 8(1-~~nl(P) )

The only nonvanishing components of these £-tensors have pairwise different
indices 1,2, ., in and look like ‘ .

(=1 T eslpsi) 11 Ewwnn(Piia) » (4.3)
(74)ed(o) 1<a<bgn

Eninin®) = (=14 T euilpis) - (4.4)

(3)€d{o)

gilig...i,. (P)

Here ¢(o) is the length of the permutation o = (l”i:: ), and

J(0) = {(iasib) : @ < byia >0} -

The dynamical E-tensors (4.3), (4.4) are normalized so that they would co-
incide with the constant e-tensors (2.5) in the case (3-25), (3.26).
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Now the expressions for rank 1 g-antisymmetrizers in the representations
PR(p)k 3T€ given by - ,
pacn, k(A"""*""’) . -
[ ], (Xi-. i-l)5“"'”+i_l)(P)g(i...n+i-1|(P)(Xl . Xia)h. (45)
The numerical coefficient in thls formula is calculated with the use of the

relation : ;
E.a(P)EX-"p) =[]t (4.6)

which is proved in the Appendix.
We conclude the discussion on dynamical R-matrices by writing down for-
mulas (1.12a), (1.12d}), and (1.12e), (1.12f) for the representation pg,y .4, :

E1..nllP) PRy nt1(GnGn-1 - - W(P) X1 € nin(P)XTY L (4.7)

XlE(2...n+ll(p)Xl_lpR(p),yH.;(glg2 “en gn) =q Nll()n+1|(p) g(ln}(p) ) (48)
' K(p)N(p)=N({p) K(p)=1.
Here the matrices ¥ (p) K (p) are defined as

q) = ql\"lnﬂ

Nll()n+1|(1’) = [ 1)’;—], Xi€a. nin(P)XT teltn)(py | (4.10)
- KM ) = %&1 AP)XEFT ()X (4.11)

For the SL(n)-type dynamical R-matrices the matrices N(p), K (p) are diag-
onal. Inserting formulas (4.3), (4.4) for the dynamical e-tensors into (4.10),
(4.11) and using (4.6), one ends up with the following expressions for their
diagonal components:

N'( = (K 1(1’ 0:) &ii(pi) » (4.12)

H ai; (pij —

J#i
where 8;; = {1if j >4, 0if j<i }.

5 Quantum matrix algebra A(R(p), R): quan-
tum determinant and inversion formula

We shall apply the above techhique to the Qﬁantum matrix algebra A which
is defined as follows (cf. Introduction).
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Definition 5.1 Let F be the field of the camplez meromorphic functions
of the (commuting) variables pij =1, . Let R(p) be a dynamical R-
matriz of an SL(n)-type and Rbea constant SL(m) -type R-matriz. Assume

 that both R(p) and R satisfy the Hecke condition (0.4) with the same value

of . Then A= A(R(p), R) is a complez algebra with 1 that is generated by
F and the mn elements ai, (i = 1,...,n and « =1,...,m), satisfying the
relations

R(p)r2 a1 az = alta2 R, | (5.1)
af(p) = Xf(p)Xa, = Vflp)€ (5:2)

where X is a unimodular diagonal matriz (3.2) whose dzagonal elements X'
satisfy (3.1a), (3.1b). ‘ 4 :

Remark 5.1 The definition above is given for arbitrary m and n. However
in the sequel we shall discuss the case m = only.

Remark 5.2 For the applications envxsaged here, the field F of meromorphic
functions of p; can be replaced by its subfield of rational functions of ¢/ (as
stated in the Introduction). Then we should just require

Xk p.','(Xk)-l = qpij+55k—5ek

instead of (3.1b). Note that for ¢ a root of unity, ¢** = 1 (cf. Eq.(6.8) below)
p;j are only determlned up to an additive integer. multlple of 2h.

Remark 5.3 More general matrix algebras are of interest in which the R-
matrices on both sides of the quadratic relations (5.1) are allowed to depend
on possibly different sets of commuting variables p and p’

R(p)12Q1Q2 = QIQZR(p)m, o (5.3)

while the shift properties assume the form
Pk Q; = Qj' (P +6,—6) , P Q;’

Such A(R(p), R(¢')) can be treated in much the same way or reduced to the
study of two matrix algebras of the above type setting Q’ = auaJ , Where @
and @ satisfy exchange relations of the type (0.6) and (0.10), respectively (see
[24]). Note that dynamical quantum groups (introduced in [16]) are defined
by relations similar to (5.3) and (5.4) but with the dynamical R- matrices
(and momenta P p') related to each other by some equivalence transformation
R(p)) = X~'R(p)X. Another desirable modification of the matrix algebra
(5.1) corresponds to the case when Ris an SO, or Sp, constant R-matrix.

= Qi(Pu+&ir—8). (5.4)
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In this case B and R(p) satisfy a third order (Birman-Wenzl) ¢ondition
instead of the Hecke property (1 2) and the QDYBE 3. 3) have to be modlﬁed

correspondmgly

Remark 5.4 The algebra. A dlﬁers from the one con51dered in [33] where
the counterpart of a matrix b = X~'a (denoted by ! (w) in Eq.(11) of
[33]) which commutes with p is used for changing the basis of chiral vertex
operators. It is assumed in [33] that the elements of b only depend on p and
hence commute among themselves while in our case this is not so. Indeed,
the reflection equation subalgebra M(R), defined in Proposntlon 5.5 below, is
non-commutative although its elements commute with the p’s. The difference
is essential: as a result, Cremmer and Gervais do not recover the standard
(constant) SL,(n) R-matrix for n > 2 but introduce instead new solutions
of the Yang-Baxter equation. One of the authors (I.T.) would like to thank
J.-L. Gervais and E. Cremmer for an enlightening discussion on this point.

The term "matriz algebra” 3 for the algebra A = A(R(p), R) is justified
by the fact that we shall be able to (define and) compute the determinant
of @ - as a function of p - and to find the inverse of a . In the case of
2 x 2 matrices the determinant of a was constructed in [4] (see also [32])
for the special choice 3; = o0, a;; = 1 of the parameters. We shall present
the definition of the determinant in a general setting.

Definition 5.2 Let a = |[a}|| be the matriz of generators of the algebra
A(R (p), R) The determznant of the' matriz a is gzven by -

det(a) = " ],5(1 AP)aras . 6I1...n) ) | : ;(5;5)

The meaning of this definition is made clear by the following three Propo-
sitions. The first and the third of them are the quantum analogues of the
basic determinant properties. The second one allows to perform an SL(n)-
reduction in the algebra A(R(p), R).

Proposition 5.1 The product (a; a; . ..a, ) intertwines between constant and
dynamical e-tensors:

g(l...nl(P)al az ...ap = det(a) 6(1...7:] 2 o | (56)
a1az-...0, gt = ‘Sll'j'")(p) det(a) . (5.7)

Proof. First, observe that due to the relatiqns (5.1), (5.2) the product of
k matrices (a;az ...a;) intertwines between the representations py, and

3More conventional quantum matrix algebras have been introduced in {1, 30] and their
matrix nature were further investigated in [25, 31).
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PRipyx Of the algebra H;(q). Indeed,

(a1 ..-ar)ppu(gi) = (a1 co.ai ) Rigiyny
= aj ...-Q;-) (R,'(,'+1)(p)a,' aiy) )a,-+2 o Qr (58)
= (X1 Xo)Rign()( Xy Xio) TN ar oak) = ppgyalgidlan - -ak)
In particular, one has

(@1 - an )pp.l AM) = Pip) (A ™ (ay ...an) ..

Multiplying both sides by pp ,(A™) from the right or by pg, (A from the
left and using projector property of the g-antisymmetrizer one comes to the

equations

P ANr 00) = pip AN 0n Do (AT (59
(@1 a0 )Pan(A™) = papya (A7) (@ - an)pg (A . (5.10)

Finally, expressing (2.6), (4.5) for constant and dynamical g-antisymmetri-

zers in terms of the c-tensors, one transforms (5.9), (5.10) to the form (5.6),
(5.7). n
Proposition 5.2 The element det(a) “of the algebra A(R(p) R) commutes
with the generators p, and its commutatwn with the generators a!, is described

by :
det(a)a = K(p)adet(a), - {5.11)

where the diagonal matrix I\'(p),is given in (4:11), (4.12).
Proof. Consider the permutation of det(a) with an arbitrary function 2(p):
det(a)h(p) = g(l...nl(p)al ce.lp h(P)Ell")/[n]‘ - .
= Eum(P)(Xn - XDAP) (X .. X1) Py oo an ™ ]t (5.12)

Since the only nonvanishing components of the tensor 5(1 n{(p) are those with
pairwise different indices and due to the dlagonal structure of the matrix X

one has

g(l...n|(17)~\’n X = g(l...n[(P) det(4\,) = g(l.,,nI(P) s

“where in the last equality the unimodularity of X (see’(3.2)) is taken into
account. Now we can complete the transformation of (5.12):

det(a)h(p) =
=h(P)Eu..a(P)(Xn-.. Xy )7lay ..., s'l"'")/[n]! = h(p)det(a) .
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This proves commutativity of det(a) and pi.- :
Consider now permutation of det(a) with the matrix a. It is technically

convenient to take a living in the matrix space with label (n+1):
det(a) ant1 = €(~,_,_,,|(p) {a1 ...@nann }6""'")/{n1! ‘ }
= {g(i (P )sz(p) ;;,(gn gl)}al e lngl {P;;_l,,ﬂ(gn---91)5“'"")}/[n]!
- K In+12II {Xlg(z (P XT g, } {02 a +l€|2...n+1)} K—lll)("+”/[n]!
= K" (P {€a. n+u(p)€'2 »+1)(p)} det(a) KV (,.H./[n]'
(K( ')aA )ﬂ det(a)
The following formulae are used in the course of the calculation:. (5.5) and
(5.8) in the first line, (4.7) and (2.8) in the second line, (5.2) and (5.7) in the
" third line, and (4.6) in passing to the last line. For clarity we put- into braces

those expressions which are to be transformed in the next step.
Fmally, substltutmg 1 for the ma.trlx I\ (see (2. 12)) we obtam (5 11). =

Corollary 5.1 The element

A = det(a) J] 2222 (ps) | (5.13)
i flpis) ‘ RO
where f(pij) = @ + [p,,]ﬂ,, and the functzons i are deﬁned by the relatwns
‘Pu pi; +1) :
aij(pyy) = 2P T , 5.14
i(pij) = 2is(p0) (5.14)

belongs to the ceqter of the algebra .A( R(p), R). The SL(n) reduction in the
algebra A(R( ), R) can be performed by imposing the condition A=1.

Proof. We shall search for the central element in A(R R(p), R) in the form
A = U(p) det(a), where U(p) is some function of p; which is to be fixed. As
follows from the Proposition 5.2 the element A commutes with p; and its
‘commutativity with the generators al imposes the following condltlons on

the function U :
XU@p)X)T = U(p)K:'(p) ,i=l..n. (5.15)

Now using (3.1b), (3.13) and (4.12) it is straightforward to check that with
the choice (5.13), (5.14) one satisfies conditions (5.15). n

Proposition 5.3 Let the algebra A(R(p), R) be completed with the inverse
determinant of a: (deta)~! det(a) = det(a)(deta)™' = 1. Then the left and
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right inverse of a is given by

i 1 n-1
(a 1)1) (= )l]' (deta)™ Eq nyry(p) a2

1] = cag et (5.16)

[n

Proof. We first check that the expression (5.16) is a left inverse of a:

i1 —_1)»! :
( l) ('n+l| Qny1 = -([———)—1]—' (det a) 1 {5(2...n+1|(P)¢12 . Uy Appl }E|l...n)
(=pr!
= [ 1]' (det a) det(a)€(2 n+1'€| N“)n_'_l‘l _ nll(ﬂ+l'

Here we have used successively Egs.(5.6), (2.10) and (2.12).
Checking that (5.16) is also a right inverse is slightly more complicated:

(=)t

[n—

(deta) 'K, (P){015<2 ws(P)yaz - anel

—1nil
a (a 1)| )(n+1|

_

-1 {al deta) }52 wir(p)az - an e

T -1t
= _([%"1]' (det @) K1(p) X1 Eg.ntri(P) X7 {ax g 611...,1)}

= (det )" Ki (p) N}, (p) det(a) = 1),y ,

where we have applied successively Egs.(5.11), (52), (5.7), (4.10) and (4.9).
. . o U

The existence of inverse matrix a~! is needed in many applications of the
algebra A(R(p), R). As an example of such application we shall construct
a realization of a reflection equation algebra M(R) (for definition of this
algebra see e.g. [34] and references therein) in terms of the generators of
A(R(p), R). We have to use here the following general property of S L(n)-
type dynamical R-matrices (which has been noticed in [5] for the SL(2) case,

see also [4] [14]):

Proposxtlon 5.4 The dynamical matriz R(p) (8.6), (3.12), (3.13) satisfies
the equation .

Dy R(p) D™ = R(p)™ 012, : (5.17)
where the diagonal matrices D and o
Di=q*s , (on)ih = 8105 ou, (5.19)
_are fized by (5.17) as o _
| g =g my (£3) (.19
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, o =q% (5.20)
so that d; are functions of p.

Proof. First of all we note that from the Hecke condition (3 4) (and (3.7))
one can deduce

R(p)_l = (at'xiz(p) - (q - q)aili’l) 6;;6;: - bizu( )6_;:6_;: ) (521)

Substitution of (3.6), (5.18) and (5.21) into (5.17) gives the following equa-
tions for the parameters oy; and d; ,

ai; = (ai — (9= §)8;) oi » (5.22)

"4 by = —bjioi; . (5.23)

Equation (5.22) leads to (5.20) while (5.23) is equivalent (in view of (A7)
to (5.19). ]

Now we construct the matrix M*s which is diagonalized with the help of
the matrix a’, and the spectrum of which is defined by the matrix D (5.18),

5.19
(519 M=a"'Da . (5.24)

It is clear that [D;, D;] = 0 and therefore the spectrum of the matrix M
gives a commutative set of elements.

] Prop051tlon 5.5 The elements of the matriz M (5.24) satzsfy a reflection
equation of the form

MR M, B = R M, R—‘ M, (5.25)

and_thus provide a realization of a reflection equation subalgebra M(R) in
A(R(p) R). The matriz elements of M satisfy the following ezchange rela-
tions with the generators of A(R(p), )

[Dg, MI] =0 s Ml a; = q ag R_l M2 R_l . (526)

Proof. Using (5.2), one can bring the commutation relations of the matrix
D with the elements a, to the form

aD;=q 01 Dyay, (5.27)

where the diagonal matrix o), is given by (5.18), (5.20). Eqs.(5.24) and
(5.27) imply [D,, M;] = 0. Then one proves (5.25) and the second relation
in (5.26) by using (5.24), (5.1), (5.27) and (5.17) . [ |
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6 Application to the SU(n) WZNW model

As an application of quantum matrix algebras we briefly describe here a
typical problem of the two dimensional conformal field theory in which such
matrices arise (see [24] for more details). :

Let G be a connected compact Lie group and g = g(¢,x) be a map from
the cylinder R x §! into GG which satisfies the Wess—Zumino-Novikov-Witten
(WZNW) equations of motion. The general periodic solution g(¢,z) =
g(t.x+2r) of these equations factorizes into a product of group valued chiral

fields
ga(t,x) = ul(e — t)ag(x +t)  (classically, g.u,i € G), (6.1)
each of which satisfies a twisted periodicity condition; in particular,
u(z +2r) =uw(x)M, (Me€Q) (6.2)

where M is the monodromy. »
Furthermore, the quantum chiral fields obey quadratic exchange relations
[35, 6, 10, 11, 5, 23, 36, 20, 21]

w(y)u(x)y = wlehu(y)R(x —y) & Pu(y)u(ah = u(;c)gu(y)ll%(;r ~y).

(6.3)
Here the matrix R(x) is a solution of the the quantum Yang-Baxter equation
whose z-dependence is given by a step function, while R(r) is the associated
braid operator: ( ;

R(z) = RO(zx) + R™'0(—2), R(x)= PR(zx) = &V (6.4)

(e(x) = O(x) — 0(~x) ) .
Since R enters Eq.(6.3) in pair with P it should be normalized to have
determinant det R = det P. For G = SU(n) this implies the relation

Riv1 = 3 plg:) (for @ =1+ (¢— g ) — det B =det P = (—1)(3)
(6.5)
so that we have to renormalize R of (2.1) by multiplying it by gn . (The
resulting R has eigenvalues ¢ -+ and —g+= of multiplicities ( ) and ( )
respectively; thus the product of all n? eigenvalues of R is indeed (— )(2) J)
We expand, following [21] and [4], u(z) into a basis of zero modes that

diagonalizes the monodromy matrix M at least for "physical weights” (sat-
isfying pin < h):

ul(z) = a! uMz,p), aM=Da, Dj= qd'J;. (6.6)
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Here d; = —2p; — 1/n + 1, p = {p:} are central elements of the reflection
equation algebra M(}A?); in the quantum field theoretic representation at
hand they form a commuting set of operators such that Eq.(0.7) takes place.
The eigenvalues of the differences p;;+1 (= p; — piy1) are natural numbers
that can be identified with the extended weights, A; + 1 labeling the (finite
dimensional) irreducible representations of SU(n) . The labels of the (;‘)

dimensional fundamental representation are given by /\,(j) =68,1<i,j<
n — 1. Under these assumptions Eq.(6.3) implies exchange relations of the
type ) )

R(p)aa; = aya2 Ry, . (6.7)
where R(p) obeys the QDYBE (0.3). QDYBE Hence, the results displayed
in Sections 3 and 4 can be applied with slight modifications. (Since R(p)
. and Ry, enter (6.7) homogeneously, the factor g of (6.5) cancels in the two
sides.) Thus we can also apply the results of Section 5 to the (chiral zero
mode) quantum matrix algebra A of the SU(n) WZNW model. It should
be noted that in this case ¢ is a root of —1 assocnated with the level k 5u(n)
Kac-Moody algebra:

q?ei%, [2) = g+ = 2cos

=, h=n+k(zn+l).  (68)

The eigenvalues ¢% of the diagonal matrix D can be expressed as differ-
ences of conformal dimensions. Indeed, according to [21], the chiral vertex
operators uJ(:r p) satisfy uj(z + 2m,p) = u;(z,p)e 2riAn(p)- A"(”‘“’m)) where
the matrices v and p are defined by (0.1) and (0.2). Here the conformal
dimensions are expressed in terms of the SU(n) Casimir operator,

2hanlp)=Clp) =2 ¥ g -2 (e

1<i<k<n

so that
- | o
dj = Cap) = Co(p + v9) = =2(pp¥)) = pOf" = = —1-2p;.  (6.10)

Inserting this in (5.19), we deduce that m;; = 1 so that we arrive at the
special solution (3.24) for R(p), allowing to present (6.7) in the form
aij(p)lpi; — 1] alaly = [pij) ahal — g*paPiral aly (here €,p is equal 1 for a > 3,
0 for @ = 8 and —1 for a < ). According to the analysis of Section 3 we
can reduce (6.11) to the case e;;(p) = 1 by a suitable twist.

An important consequence of (6.8) and (6.11) is the existence of an ideal
I, of A generated by n? elements (ai)* such that the factor algebra A/Z}, is

24

finite dimensional [24] . This allows to define a finite dimensional ”Fock space
representation” of A with a unique vacuum vector [vac.> corresponding to
trivial su(n) weight A; =0 (piiz1 =1, ¢ =1,...,n—1) such that @ |vac >=
Ofori>1, Z[vac>=0.

Acknowledgements

This work started while three of us, L.K.H., 0.V.0O. and I.T.T. were vis-
iting the Bogoliubov Laboratory of Theorgtlcal Physics of the JINR, Dubna
and was completed while A.P.I., L.LK.H. and I.T.T. were visiting the Depart-
ment of Physics of the University of Pisa, ICTP (Trieste) and the Erwin
Schrodinger Institute for Mathematical Physics, respectively. We thank all
these Institutions for hospitality and support. This work was also supported
in part by RFBR (grant 97-01-01041), INTAS (grant 93-127-ext), by the
exchange program between INFN and' JINR (Dubna) and by the Bulgarian
National Foundation for Scientific Research under contract F-404.

Appendix. Normalization of dynamical Levi-
Civita tensors

The definitions (4.3), (4.4) lead to the expression
Eauin@ €)= [ &usy (A1)

1<a<b<n

(there are no summations over the indices i;), and the normalization condi-
tion (4.6) for the dynamical £-tensors follows from

Proposition A Let &; = d ~ b;; where d is a constant (comparing with
(3.12), one gets d = q) and the elements b;; satisfy (3.7), (3.10). Then the
following identity holds:

= Z' T 6= [k]d!, (A.2)

Sp 1<a<b<k

where k < n, [k]q = ﬁi";(‘f\—_'\L"l (A= q—'g) and Sy denotes all permutations

‘of indeces (i1, ...,ik) (ia # iy for a # b). Note that [k]g = [k] for d = q (as

it is needed in (4{.6)).

Proof We shall proceed by induction. For k£ = 2 we have I, = §&,;, +&,,i, =
2d— ) =[2]4. Let (A.2) is correct for some k (1 < k < n), then for £+ 1 we
derive

TS (H Einn) H €iain | =

Sk41 =1 1<a<b<k
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k41 ] k1 o k41 k41

=2 |(IT &) E IT - | =L 22 TT & -
r=1 1=1 Sk a#r#d r=1 i=1
l#r 1<a<b<k+1 l#r

Therefore we should prove the identity

E+1 k41 k4l k41
[k + 1]d = E H’&'n,— E H d bznr . (A'3)
r=1 =1 r=1 =1
I#r I#r : :

This identity follows from the relation

>

r=1

s

big, = A" (m<k+1), (A.4)

o~
Hu
i

which can be obtained by induction. Indeed, from Eqs.(3.7), (3.10) we have
form=2,3 ' :
biviy + bigiy = A 5 bigiy bigiy + biyiy bigip + biyiy bigiy = A1

Then we deduce

bii, = biyi, | A™72

s

Z(/\ bivir) [T b | =

1=2 . 1=3

I#r
=biziy 3 biviy [[bui, = 3 (A = by, biiy — bigi, bigi, ) I b, =
r=3 - I=3 r=3 . 1=3 -
. l#r ‘ lfr
= "t E Hb,’,,‘r s
) r=2 iI=1
l#r

which proves (A.4). Expa.ndmg the right hand side of (A.3) in power series
of d and taking.into account (A.4) we verify the relations (A.3) and, thus,
complete the proof. |

One can reformulate the statement of Proposition A in more concise form
(only in terms of elements &;)

‘Proposkvition B Let &i; salisfy
G+ &i=[2 =&l b+ il (1£T#k#1).
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We rewrite these conditions as

S [ =[] for k=23, (A.5)

r=1 1=
#r

~——

Then, equation (A.5) is also valid for 4 < k < n, and the following identity

holds:
=3 I1 G =KL (A9)
Se 1<a<b<k
where Sy, denotes all permutations of the indices (iy,...,1) and iy # iy for
a#b.
Proof The proof is similar to that of Proposition A. |

Remark There are many other interesting relations among the elements b;;
(3.7). (3.10) (as well as among &;;). For example, one can easily deduce the
identity : :

biyiy bigia -+ big_y ix biv i = (=1)F bigiy bigi_y - - -

1112

biziz biyiy
which generalizes (310) and follows from the relation

_ th(p) q2p,", —
bi;(p)

Note that we consider m;; as constants which are independent of p;.
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