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1. Introduction. The goal of the present Letter is to construct the 
mappings that act like the discrete symmetry transformations of the N = 2 
supersymmetric (n,m) Generalized Nonlinear Schrodinger ((n,m)-GNLS) 
hierarchy [1]. Recently, a variety of N = 2 supersymmetric integrable 
hierarchies, derived by the junction of the Lax operators for the N = 2 
supersymmetric (n- 1, m)-GNLS and a = 4 KdV [2, 3] hierarchies, was 
proposed in [4]. We also explain its ·origin. We demonstrate that this 
variety is gauge related to the variety of N = 2 supersymmetric (n,m)­
GNLS hierarchies. 

Let us start with a short summary of the main facts concerning the 
N = 2 supersymmetric (n,m)-GNLS hierarchy [1] and introduce some 
new relations which will be useful in what follows. 

The Lax operator of theN = 2 supersymmetric ( n, m )-GNLS hierarchy 
has the following form1

: 

L=8-~(F.F.+F.D8-1 [DF.j), [D,L]=O, (1) 

where F.( Z) and Fa( Z) (a, b = 1, ... , n + m) are chiral and antichiral 
N = 2 superfields 

DF.(Z) = 0, D F.(Z) = 0, (2) 

respectively, which are bosonic for a = 1, ... , n and fermionic for a = 
n + 1, ... , n + m; Z = {z, 0, 71) is a coordinate of N = 2 superspace and 
D, D are the N = 2 supersymmetric fermionic covariant derivatives 

8 1-8 - 8 1 8 
D = 80- 2° 8z' D = 871- 2° 8z' 

2-2 {-} 8 D = D = 0, D, D = -
8

z = -8. (3) 

For positive-integer k, such a Lax operator provides the consistent flows 

8~,L = [A,L], A= (Lk)>1 (4) 

1 Hereafter; summation ov~r repeated indices is understood and the square brack­
ets mean that entering operators act only on superfields inside the brackets, e.g., the 
fermionic derivative D in the Lax operator (1) acts only on the term Fa inside the 
brackets. 
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and the infinite number of conserved currents can be obtained as follows: 

Hk = 1 dZ(Lk)o, (5). 

where the subscripts :;:: 1 and 0 mean the sum of the purely derivative 
terms and the constant part of the operator, respectively. There are four 
additional integrals of motion 

H1 = 1 dzF.F., (6) 

where we have only space integration due to the equation of motion 

-~a~,(F.F.) ~ lW)o) 1
, (7) 

where the sign 1 means the derivative with respect to z. 
Equations belonging .to the N = 2 supersymmetric ( n, m )-GNLS hier­

archy admit the complex structure 

F * - ( ·)d·-•p F =p - ( ·)d·-•p D a' - -2 ab b, a - -z abrb, 

n• - n n*- n t* - ( 1)k+lt * -v - u, u - u, k - - k, z - z, (8) 

where i is the imaginary unity and da define the grading FaFb = ( -1 )dad, FbFa 
with the property d.= 1 (da = 0) for fermionic (bosonic) superfields; Pab 
is a permutation matrix (P2 = I) belonging to the discrete permutation 
subgroup of the G L( n[m) supergroup, which is the group of invariance of 
the Lax operator ( 1). 

From eq. (4) with the Lax operator (1), one can easily extract the 
equations for the superfields F., · 

a~Ja = ((LkhlFa)o. (9) 

Applying the transformations (8) to eqs. (9), one can derive the corre­
sponding equations for the superfields Fa, 

8- ' k+l * k -
8,Ja = ( -1) ((L h•Fa)o, (10) 

where L* is the complex-conjugate Lax operator 

L* = &+ ~(F.F.- F.D&-1 [DF.j), A*= (L* kh,, [D,L*] = 0, (11) 
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which also provides the consistent flows. The first nontrivial flow from (9), 
(10) is the second flow which reads 

a " --a--,---
8,,F.=F. +D(FbFbDF.), 8,,F.=-F. +D(FbFbDF.). (12) 

The set of equations (12) form theN = 2 supersymmetric GNLS equations. 

2. Discrete symmetries of the N = 2 super-GNLS hierarchies. 
Here, we demonstrate that in addition to the transformations of the N = 
2 supersymmetry and GL(n[m) supergroup, the N = 2 supersymmetric 
(n, m)-GNLS hierarchy is invariant with respect to discrete mappings. In 
the particular cases corresponding to n = 0, m = 1 and n = 1, m = 0, 
such mappings were obtained in [5, 6]. Following the scheme developed 
in [6], we derive their generalizations for arbitrary values of the discrete 
parameters n and m. 

Applying the gauge transformation 

L = a-• LG A= a-• AG- a-•_g_a 
' atk ' 

_g__z =[A L] 
atk ' 

(13) 

with the gauge function G equal to some given bosonic superfield F~, 

G=Ft (14) 

(i.e., the index l is an arbitrary fixed index belonging to the range 1 :::; l :::; 
n), substituting the tk-derivative of F1 (9) into (13), introducing the new 
superfield basis 

{J(Z), F;(Z), F;(Z),j = 1, ... ,l- 1,1 + 1, ... ,n, ... , n + m} 

- 1 -1 = 1 - -1 -
F, = ,j2F1 F,, F; =- ,;?.DD& (FtF;), 

1 1 - 1 
J= 2(2F.F.-(1nFt)) (15) 

and making obvious algebraic manipulations in the result, we obtain the 
following explicit expressions for the operators L and A: 

L = & - 2J- 2D&-• [n(J- ~F)';)]- F;D&-• [nii';], 
A= Wh., (16) 
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which coincide with the LA-pair considered in (4]. Thus, the integrable 
extension of the N = 2 supersymmetric a = 4 KdV hierarchy of Ref. (4] 
is gauge related to the N = 2 supersymmetric ( n, m )-GNLS hierarchy (1 J 

and relations (15) establish their explicit connection. For the particular 
case n = 1,m = 0, relation (15) was obtained in [1]. 

In the new basis (15), the second flow equations (12) become 

a~ -~~ -~ a.:::... ..::::::..., - ..::::::... 
8,,F; = F; +4D(JDF;), 8 ,,F; = -F; +4D(JDF;), 

8~,J=(-[D,D]J-2J2 +DF;·DF;) 1 , (17) 

and one can observe that they, as well as other equations belonging to the 
hierarchy, admit the complex structure 

-. _ c ·ld;-1 - = =· _ c· ·ld,-1 - - • _ F; - _, P;,F" F;- _, P;,F" J -.-J, 

IJ* = 0, 0* = IJ, tZ = ( -1)k+ltk, z* = z. (18) 

Applying the complex-conjugation transformations (8) and (18) to (15), 
we observe that in addition to relation (15), there exists one more 

- 1 . - -1 - = 1 .- -1 -
F; = - V2,'DD8 (FiP;,F,), F; = - V'i'Fi P;,F" 

1 1 - - I 

J=:/zF.F.+(lnFi) ), (19) 

which connects the second flow equations (17) to (12), as well as their 
corresponding hierarchies. Denoting the superfields F. and Fa in (15) by 

t- .!:: 
the new letters Fa and F "' respectively, and equating the corresponding 

superfields F;, F; and J belonging to the relations (15) and (19), we derive 
the mapping 

- -1 - . f- -1 t- - -1 t-.!::::. .- -1 -
DD8 (FiF;) =,pi P;,F,, DD8 (FiF;) =,pi P;,F,, 
lt-t- t-.±:. - - {-_ 
2(FiFi + F;F;- FiFi- F;F;) = (ln(FiFi)) 1 (20) 

that acts like the discrete symmetry transformation of the N = 2 su­
persymmetric ( n, m )-GNLS hierarchy. Acting by the fermionic covariant 
derivatives D and D on the first line of eqs. (20), these relations can be 
rewritten in a slightly different but· equivalent local form 

:- - . t- -1 t- t- .±:. .- -1 -
D (FiF; +,pi P;,F,) = 0, D (FiF; +,pi P;,F,) = 0, (21) 
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which can be more convenient for applications. Actually, it is easy to 
understand that up to an arbitrary permutation P;" relation (20) gives us 
n different discrete symmetry-mappings if one remembers that the index l 
enters (20) like a discrete parameter2 taking n values l = 1, ... , n. 

Now consider gauge transformation (13) with the gauge function 

G=(DF,)- 1
, (22) 

where F 1 is some given fermionic superfield (i.e., the index f is an arbitrary 
fixed index belonging to the range n + 1 S f S n + m). After introducing 

the new superfield basis {J(Z), F;(Z), F;(Z),j = 1, ... , n, ... , f- 1, f + 
1, ... , n + m} according to formulae 

- 1 - = 1- - -I-
F;= V2,(DF1)F;, F; =- V2,DD((DF1) F;), 

1 1 - -
J=-(-F.F.+(lnDF,) 1

) (23) 
2 2 

we obtain the following expression for the Lax operator L 

L =a- 2J + 2 [n(J- ~.F;a-l F;l] na-l- .F;na-l [na-l 'F;]. (24) 

We do not present the explicit expression for the operator A here, because 
what we actually need for our purpose is only the transformation law (23) 
in the new basis. For the. particular case n = 0, m = 1, relation (23) has 
been discussed in (7, 3]. 

In the new basis (23), the second flow equations (12) become 

a- ~~~ -- a..::::... ..::::::...n - --:. 

8,,F;=F; +4DD(JF;), 8,,F;=-F; +4DD(JF;), 
a - 2 -..:::::... 1 

8 ,, J = ([D, D]J- 2J - F;F;) , (25) 

and one can see that they admit the complex structure 

- d·- ..::::::... .:=::...* d-- -
F;" = ( -i) 'P;,F" F; = ( -i) 'P;,F" J* = -J, 

IJ* = 0, 0* = IJ, t; = -t2, z* = z. (26) 

2Let us remember that in (20), there is no summation over repeated indices l. 
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Following the above-discussed scheme, we apply the complex-conjugation 
transformations (8) and (26) to (23) and obtain one more mapping, 

- 2 - - -1 
F; =- y"2DD((DF1) P;,F,), 

..:==- Z- -
F; = y"2(DF1 )P;,F" 

1(1 - -
J = 2 2FaFa- (lnDF,)' ), (27) 

connecting the second flow equations (25) to (12), and, therefore, the map­
ping 

<- <-
iDD((DF,t1F;) = -(DF,)P;,F" 

+-- +--
iDD((DF,)-1F;) = (DF1)P;,F" 
1 +-f- +-+- t--

2(F,F, + F;F;- F1F1 - F;F;) = (ln(DF1 . DF1))' (28) 

acts like the discrete symmetry transformation of theN = 2 supersymmet­
ric (n, m)-GNLS hierarchy. Acting by the fermionic covariant derivatives 
D and D on the first line of eqs. (28), these relations can be represented 
in the following equivalent form: 

+-- +--
D (-i((DF1t 1F;) '+ (DF1)P;,F,) = 0, 

+-- +--
D (i((DF1)-1F;) '+ (DF1)P;,F,) = 0. (29) 

Modulo an arbitrary permutation P;" relation (28) gives us m different 
discrete symmetry-mappings because the index f takes m different values 
l =n+ 1, ... ,n+m. 

Let us note that one can rewrite equations (25) in a form similar to 
(17), 

8 II -- 8- - II - - -
-a,, if!;= if!; +4D(J Dif!;), -a,, if!;= -if!; +4D(JDif!;), 

-a~J = ( -[D, D]J- 212 + Dif!; · Dif!;) ', (30) 

if one introduces the new superfields J, if!; and if!; by the following invert­
ible relations3 

- 1 = - ~-J = -J, if!;= ;a- DF;, if!;= ;a- DF;; 

J = -1, F; = iDif!;, F; = iDif!;. (31) 

3Transformations of such kind have been discussed in [4]. 
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However the system (30) does not completely coincide with (17): in com­
parison with (17), its time direction is reversed. Due to this crucial dif­
ference, we can not equate the corresponding superfields entering (17) and 
(30) to produce new discrete symmetry-mappings for theN = 2 supersym­
metric (n, m)-GNLS hierarchy. Nevertheless, the system (30) is equivalent 
to (17), and relations (23), (27), and (31) establish an explicit connec­
tion of the integrable hierarchy of Ref; [4] to the N = 2 supersymmetric 
(n, m)-GNLS hierarchy. 

3. Bosonic limit of the mappings. Let us briefly discuss the bosonic 
limit of the mappings (20) and (28) in order to generate the discrete sym­
metries for the bosonic GNLS and modified GNLS (mGNLS) hierarchies. 

To do this, we set all fermionic components of the superfields F. and 
Fa equal to zero and define the bosonic components as [1 J 

1 I - 1 _ 
ba = y"2Fa, bp = y"2Fpl, 1 $ a,{3 $ n, 

1 - -1 -
g, = v"iDF,+nl exp( -a (bpbp)), 

- 1 - -1 -
9p = v"iDFp+nl exp(a (bpbp)), 1 $ s,p $ m, (32) 

where I means the (0, 0) -t 0 limit. In terms of such' components, eqs. (12) 
for the fields ba, ba and g, "§, are completely decoupled: 

8 II - I 
at, ba = ba - 2bpbpba , 

8 II 2 -at2 9s = 9s - 9v9p9s, 

a-b -b" 2b_b_b' at2 a = - a ~ {3_ 13 a ' (33) 

a- - "+2 --at,9, = -g, 9P9p9,· (34) 

The set of equations (34) form the bosonic GNLS equations [8]. Concerning 
the set of equations (33), we call them mGNLS equations, reflecting the 
name of its first representative-modified NLS equation [9] corresponding 
to the case of n = 1. 

The bosonic limit of the mapping (20) ( (28) ), acting like a discrete 
symmetry transformation of equations (33) and (34), also splits into two 
independent mappings, which one can see from the explicit expressions 
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+- -1 +- +- '!::" -
b,ba I+ i( b, Papbp) I= 0, b,ba I+ i(b,-1Papbp) I= 0, a# l, 
t-'!::" t-t" - - t-_ 
btbl + baba- btbt- Daba = (ln(btbt)) 1

, 

+- '!::" +- '!::" 
btbt 1 + baba 1

- b,b, 1
- baba 1 = (lnbt) 11

, (35) 

<- <-
g:; = Psp9p, g' = P,Pgp 

for the mapping (20), and 

<- t: 
ba'Papbp 1 +baPaf]b/3 1 

= 0, 
+-:: - - :: 
b13bt3- b13bt3 = -(lnba 1

) 
1 + (1n(Paf3bf3)) 1

, 

<- <-
-i(9/'9s) 1 + g j'Psp9p = 0, 

t--lt-

i(g f g ,) I+ 9J'Psv!lp = 0, 
+- +- +- +- +-
YJ = C19"j', 9/gf + 9,g, -9/YJ -9,g, = -(1ng1)" 

(36) 

(37) 

s # /, 
(38) 

for the mapping (28), where there is no summation in eq. (37) over re­
peated indices a and c, in eq. (38) is an arbitrary constant. In the deriva­
tion of these expressions, obvious simplifying transformations, as well as 
the integration of some intermediate equations, have been done. 

The mapping (36) forms the discrete permutation subgroup of the 
GL(m) group, which is a group of covariance for the GNLS equations (34). 
The mapping (38) coincides with the mapping which can be easily derived 
using the Darboux-Biicklund transformations of the GNLS Lax operators 
constructed in [10]. Regarding the symmetry mappings (35) and (37) for 
the mGNLS hierarchy (33), to our knowledge, they are presented for the 
first time. 

In addition to mappings (35) and (37), there are other symmetries of 
the mGNLS equations. One can produce them if one remembers that the 
GNLS and mGNLS equations are related by the following transformations 
[1]: 

9, = b, 1 exp( -8-1(bpbp)), g, = b, exp(8- 1(bpbp)). (39) 
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Applying the complex-conjugation operation (8) to relations (39) for the 
bosonic components (32), one can obtain one more relatiOn, 

9, = ib, exp(-8-1(bvbv)), g, = ib, 1 exp(a-'(bpbp)). (40) 

Therefore, we can introduce two different relations for the fields with the 
arrow: 

·+- t- +-:: 
9, = b, 1 exp(-8-1(bpbv)), 

t- '!::" +- t:-
g, = b, exp(8- 1(bpbp)), 

+- +- t-'!::" 
9, = ib, exp(-8-'(bpbp)), 

+- :: +- .:: 
g, = ib, 1 exp(a-'(bvbv)). (41) 

If one takes some fixed combination of the fields without the arrow, 9, g, 
<- <-

and the fields with the arrow 9, g, from the set of relations (39)-( 41 ), and 
substitutes it into the mappings (36) and (38), one can generate new map­
pings for the mGNLS hierarchies, with different combinations generating 
different mappings. Let us only mention that one such mapping coincides 
with the mapping (37), and, in this way, it is possible to reproduce the 
mapping considered in [11 J for the modified NLS equation and to obtain 
new mappings. It is a simple exercise to derive their explicit forms, and 
we do not present them here. 

4. Conclusion. In this Letter, we constructed mappings (20) and (28), 
which act like a discrete symmetry transformations of the N = 2 super­
symmetric (n, m)-GNLS hierarchy (1), ( 4), and produced their bosonic 
counterparts (35)-(38). We also established explicit relations (15), (19), 
(23), and (27) connecting the integrable hierarchy, obtained by the junc­
tion of the Lax operators for the N = 2 supersymmetric a = 4 KdV and 
(n -1,m)-GNLS hierarchies, to theN= 2 supersymmetric (n,m)-GNLS 
hierarchy. 

Symmetry mappings contain valuable information about the integrable 
hierarchies corresponding to them [12, 13, 5, 6]. In addition to this, there 
is one more reason that stimulates interest in such mappings-they are 
usually integrable themselves, i.e., every new mapping may give us a new 
example of a one-dimensional integrable system. Thus, for the N = 2 su­
persymmetric f-Toda chain [5] corresponding to the case of n = 0, m = 1, 
the integrability under appropriate boundary conditions has been proven 
in [14]. It is interesting to generalize this investigation for the case of ar­
bitrary values of the discrete parameters n and m. In this context, it is 
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important to have Darboux-Biicklund transformations of the N = 2 su­
persymmetric (n, m)-GNLS Lax operators which should generate our mapc 
pings and contain important information about their integrability proper­
ties and solutions. We hope to analyze this complicated problem in future 
publications. 
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